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In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy
inference system approach, ANFIS) and a multilinear regression (MLR) model were developed to simulate the DO, TP, Chl a, and
SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined
using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical errors,
including the mean absolute error, the root mean square error, and the correlation coefficient, computed from the measured and
the model-simulated DO, TP, Chl a, and SD values. The results indicate that the performance of the ANFIS model is superior
to those of the MLR and RBFN models. The study results show that the neural network using the ANFIS model is suitable for
simulating the water quality variables with reasonable accuracy, suggesting that the ANFIS model can be used as a valuable tool for
reservoir management in Taiwan.

1. Introduction

Water is an important resource for the survival and health of
humans and ecosystems. The quality of water is also crucial.
The wording, water quality, can be used to address the con-
dition in water column which included the characteristics of
physical, chemical, and biological characteristics. Assessing
the water quality variables is needed to develop best planning
and management for water resources [1, 2].

The definition of eutrophication is the nutrient enrich-
ment which means the excessive phosphorus and nitrogen
loads in lakes and reservoirs, resulting in a serious problem.
The natural or artificial enrichment of inland water bodies
can cause eutrophication with algal blooms to deteriorate the
water quality for human use and the decrease of dissolved
oxygen levels, resulting in adverse effects on fisheries. The
application of some modeling techniques to predict the
behavior of enriched water bodies allows for combating
adverse effects [3–5].

Due to the advanced computing capabilities, two-di-
mensional/three-dimensional reservoir hydrodynamic and

water qualitymodels have been developed andwidely applied
to resolve water quality problems [6–9]. Although determin-
istic models have been adopted for modeling water quality,
these models require input data, model parameters, and
extensive information to obtain results [10]. Because a large
number of factors affecting the water quality have compli-
cated nonlinear relationships with the variables, traditional
deterministic models are not easy to handle.

Because of the existing difficulties and challenges in the
simulating of water quality conditions using the hydrody-
namic and water quality model, relatively novel computa-
tional approaches, artificial neural networks (ANNs), which
have found wide acceptance in many disciplines, provide
an alternative method for understanding and managing the
water quality in reservoirs. ANNs are well-suited for this
application because of their informative processing charac-
teristics, such as nonlinearity, parallelism, noise tolerance,
and learning and generalization capabilities [11, 12].

One of the successful applications of artificial intelligence
techniques including knowledge-based systems, genetic
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Figure 1: The Mingder Reservoir and water quality sampling stations.

algorithms, artificial neural networks, and fuzzy inference
systems has been simulating complex nonlinear systems [13].
In particular, artificial neural networks have been successfully
used as tools to simulate and predict water quality in water
bodies [14–18]. The ANN model which is a black-box model
does not require knowledge of any of the parameters [19].
ANNs have several advantages including learning ability,
dealing with complex nonlinear data, and parallel processing
ability. Prediction with ANN can be performed by the
network learning experimentally generated data or using
validated models [20].

Recently, Ranković et al. [21] developed a feed-forward
neural networkmodel to simulate the dissolved oxygen in the
GruzaReservoir in Serbia. Soltani et al. [22] combined awater
quality simulation model and a hybrid genetic algorithm
to determine the optimal operating polices for different
reservoir outlets. The water quality simulation model is
based on an adaptive neural fuzzy inference system that
was trained using the results of a numerical water quality
simulationmodel. Again, Ranković et al. [15] used an adaptive
network-based fuzzy inference system model to simulate the
dissolved oxygen in the Gruza Reservoir in Serbia. However,

evaluating the efficiency of multivariate linear regression and
artificial neural network models to predict the water quality
parameters in reservoirs has not been reported.

The main objective of this study is to establish a mul-
tivariate linear regression (MLR) model and two artificial
neural networkmodels, including a radial basis function neu-
ral network (RBFN) and an adaptive neurofuzzy inference
system (ANFIS), to simulate the dissolved oxygen (DO), the
total phosphorus (TP), the chlorophyll a (Chl a) content,
and the Secchi disk depth (SD), which are commonly used
as indicators of the eutrophication of reservoirs. A further
aim is to demonstrate the application of these models to
identify complex nonlinear relationships between the inputs
and outputs in theMingder Reservoir, Taiwan.The simulated
and measured DO, TP, Chl a, and SD values were compared
using the MLR, RBFN, and ANFIS models.

2. Materials and Methods

2.1. Description of Study Area and Data Collection. The
Mingder Reservoir (Figure 1) is located in central Taiwan.
The reservoir, completed in 1970, has a total watershed area
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Figure 2: Carlson trophic state index (CTSI) for the Mingder
Reservoir.

of 61 km2 and an effective storage volume of 1.65 × 10
8m3

and was built as a water supply source to Miaoli County for
industrial supply, irrigation, and flood control. The dam site
of the Mingder Reservoir is located at the tributary of the
Houlong River and is approximately 7 km fromMiaoli City.

The Mingder Reservoir is an in-channel reservoir that
was formed by the construction of an earth dam and has a
surface area of 1.62 km2. Its water quality has been routinely
monitored over the past two decades, once per season since
1993. There are three water quality sampling stations in the
reservoir.

Carlson [23] proposed a trophic state index (CTSI)
related to the diverse aspects of the trophic state found in
multiparameter indices. The CTSI has the simplicity of a
single parameter index for the water quality assessment of
impounded water bodies. The CTSI has been adopted by the
Taiwan Environmental Protection Administration (TEPA) to
determine eutrophication status. It is calculated with three
variables: the Secchi disk depth (SD), the total phosphorus
(TP), and the chlorophyll a concentration (Chl-a). For this
reason, these three water quality variables were predicted
using three approaches presented in this study.

Figure 2 shows the CTSI values of the Mingder Reservoir
from 1993 to 2013. A CTSI value above 50 indicates that the
water body is eutrophic, as shown in Figure 2 for theMingder
Reservoir. This figure shows that the reservoir is in a status
between mesotrophic and eutrophic. Agricultural activities
are the major sources of nutrients and provide excessive
nutrient loads to the reservoir.

The historical water quality data, including the water
temperature, pH, electrical conductivity, turbidity, suspended
solids, total hardness, total alkalinity, Secchi disk depth,
dissolved oxygen, chlorophyll a concentration, total phos-
phorus, nitrate nitrogen, and biochemical oxygen demand
from 1993 to 2013, were collected from the TEPA and
analyzed. A statistical summary of the water quality variables
is shown in Table 1.

2.2. Adaptive Neurofuzzy Inference System (ANFIS). The
ANFIS is a fuzzy Sugenomodel with multilayer feed-forward
network which potentially captures the benefits of artificial
neural networks and fuzzy logic approaches in a single
framework. ANFIS provides easy learning and adaptation

since it is a framework of adaptive systems. The Sugeno
system is themost commonly adapted fuzzymodel forANFIS
framework to deal with the complicated nonlinear problems
because of less computational time [24].

To easily understand the architecture of ANFIS, we
assume that the fuzzy inference system has two inputs, 𝑥1 and
𝑥2, and only one output, 𝑦. Therefore two fuzzy if-then rules
based on a first-order Sugeno fuzzymodel is provide as below
[25]:

Rule 1: if 𝑥1 is𝐴1 and 𝑥2 is 𝐵1, then 𝑦1 = 𝑝1𝑥1+𝑞1𝑥2+
𝑟1,
Rule 2: if 𝑥1 is𝐴2 and 𝑥2 is𝐵2, then 𝑦2 = 𝑝2𝑥1+𝑞2𝑥2+
𝑟2,

where 𝐴
𝑖
and 𝐵

𝑖
are the fuzzy sets and 𝑝

𝑖
, 𝑞
𝑖
, and 𝑟

𝑖
are the

parameters that will be determined during the training and
testing processes.The architecture of ANFIS with two rules is
shown in Figure 3, in which circles represent fixed nodes and
squares indicate adaptive nodes. A brief introduction of the
ANFIS model follows.

Layer 1. Each node 𝑖 in this fuzzy layer is an adaptive node
with a node function

𝑂1,𝑖 = 𝜇
𝐴𝑖

(𝑥1) , 𝑖 = 1, 2,

𝑂1,𝑖 = 𝜇
𝐵𝑖−2

(𝑥2) , 𝑖 = 3, 4,
(1)

where 𝑥1 and 𝑥2 are the inputs to node 𝑖; 𝐴
𝑖
and 𝐵

𝑖
are the

linguistic labels; and 𝜇
𝐴𝑖
and 𝜇

𝐵𝑖−2
are the membership func-

tions for the𝐴
𝑖
and𝐵

𝑖
linguistic labels, respectively. Although

many membership functions such as the trapezoidal mem-
bership function, the Gaussian membership function, the
Gaussian combination membership function, the spline-
based membership function, and the sigmoidal membership
function can be used. Chau [26] investigated the effect of dif-
ferent membership functions on the performance of ANFIS
model and found that the differences are insignificant. In this
study, we adopted the generalized bell-shaped membership
function which is a commonly used function [26]:

𝜇
𝐴𝑖

=
1

1 +
󵄨󵄨󵄨󵄨(𝑥1 − 𝑐

𝑖
) /𝑎
𝑖

󵄨󵄨󵄨󵄨

2𝑏𝑖
,

𝜇
𝐵𝑖−2

=
1

1 +
󵄨󵄨󵄨󵄨(𝑥2 − 𝑐

𝑖
) /𝑎
𝑖

󵄨󵄨󵄨󵄨

2𝑏𝑖
,

(2)

where 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are the parameter sets. The parameters in

this layer are the premise parameters.

Layer 2. Each node in this layer is a fixed node which is
marked with circle and labeled with M in Figure 3. The
outputs of this layer, which are called the firing strengths
(𝑂2,𝑖), are the products of the corresponding degrees obtained
from Layer 1 (the input layer):

𝑂2,𝑖 = 𝑤
𝑖
= 𝜇
𝐴𝑖

(𝑥1) × 𝜇
𝐵𝑖

(𝑥1) , 𝑖 = 1, 2. (3)

Layer 3. Every node in this layer is a circle node labeled 𝑁

(Figure 3). The third layer contains fixed nodes that calculate
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Table 1: The statistic summary of the water quality variables in the Mingder Reservoir.

Variables Minimum Maximum Mean St. Dev. C. V
Water temperature (∘C) 13.70 33.60 23.46 5.18 0.22
pH 5.28 9.50 8.11 0.67 0.08
Electrical conductivity
(𝜇mho/cm 25∘C) 78.00 447.00 234.74 52.33 0.22

Turbidity (NTU) 0.87 750.00 13.64 58.63 4.30
Suspended solids (mg/L) 1.48 438.00 10.49 33.31 3.18
Total hardness (mg/L) 1.20 190.00 96.67 22.70 0.23
Total alkalinity (mg/L) 29.40 174.00 90.80 22.40 0.25
Secchi disk depth (m) 0.15 3.40 1.50 0.52 0.35
Dissolved oxygen (mg/L) 0.00 14.80 7.68 3.15 0.41
Chlorophyll a (𝜇g/L) 0.10 52.80 7.96 6.84 0.86
Total phosphorus (𝜇g/L) 3.00 191.00 22.01 16.97 0.77
Nitrate nitrogen (mg/L) 0.01 1.90 0.12 0.21 1.69
Biochemical oxygen demand
(mg/L) 0.69 50.98 8.67 5.78 0.67

St. Dev.: standard deviation.
C. V.: coefficient of variation (St. Dev./Mean).
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Figure 3: Architecture of the adaptive network-based fuzzy interface system (ANFIS).

the ratio of the firing strengths of the 𝑖th rule to the sum of all
rules’ firing strength:

𝑂3,𝑖 = 𝑤
𝑖
=

𝑤
𝑖

𝑤1 + 𝑤2
, 𝑖 = 1, 2. (4)

Layer 4. The nodes in this layer are adaptive and adjustable.
The output of each node is the product of normalized firing
strength, 𝑤

𝑖
, from the third layer:

𝑂4,𝑖 = 𝑤
𝑖
𝑦
𝑖
= 𝑤
𝑖
(𝑝
𝑖
𝑥+ 𝑞
𝑖
𝑦+ 𝑟
𝑖
) , 𝑖 = 1, 2, (5)

where 𝑝
𝑖
, 𝑞
𝑖
, and 𝑟

𝑖
in this layer are consequent parameters.

Layer 5. The single node computes the overall output by
summing all of the incoming signals:

𝑂5,1 =

2
∑

𝑖=1
𝑤
𝑖
𝑦
𝑖
=

∑
2
𝑖=1 𝑤𝑖𝑦

𝑤1 + 𝑤2
. (6)

The details and mathematical background for these algo-
rithms can be found in Jang [24].

2.3. Radial Basis Function Neural Network (RBFN). A radial
basis function neural network (RBFN) contains a feed-
forward structure including one input layer, a single hidden
layer, and one output layer, as shown in Figure 4.The concept
of the RBFN is to establish a radial basis function (𝜙) and to
determine the relationship between the input and the output
using curve-fitting approaches [27, 28]. A single output RBFN
with𝑚 hidden layer neurons can be described as

𝑦 =

𝑚

∑

𝑖=1
𝜔
𝑖
𝜙
𝑖
(𝑥) , (7)

where 𝑥 is the input vector; 𝜔
𝑖
is the connecting weights

between the hidden layer and the output layer; and 𝜙
𝑖
(𝑥)
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Figure 4: Architecture of the radial basis function neural network
(RBFN).

is the output value of the neuron in the hidden layer after
transfer by the radial basis function. Many radial basis
functions can be used in RBFN model. The most common
radial function is theGaussian function [29]which is adopted
in the present study:

𝜙
𝑖
(𝑥) = exp(−

󵄩󵄩󵄩󵄩𝑥 − 𝑐
𝑖

󵄩󵄩󵄩󵄩

2𝜎2 ) , (8)

where 𝑐
𝑖
is center vector of the 𝑖th neuron in the hidden layer;

𝜎 is defined as 𝜎 = 𝑑max/√𝑛𝑐, 𝑑max is the maximum distance
among 𝑐

𝑖
and 𝑛𝑐 is the number of the center vectors; and

‖𝑥 − 𝑐
𝑖
‖ denotes the Euclidean distance between 𝑥 and 𝑐

𝑖
. The

approach used to determine 𝑛𝑐 is the orthogonal least squares
(OLS) approach developed originally by Chen et al. [30] and
improved by Ham and Kostanic [31] and Kecman [32]. The
simplest way to select RBFN centers is random method [33].
However, theOLS algorithmprovides an optimumnumber of
centers (𝑛𝑐) in RBFN model from the training patterns [34].

2.4. Multilinear Regression. Multilinear regression (MLR) is
used to model the linear relationship between a dependent
variable and one or more independent variables. MLR is
based on least squares: the model is fit such that the sum
of the squares of the differences between the observed and
simulated values is minimized [35]. The model expresses the
value of a predicted variable as a linear function of one or
more predictor variables:

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋅ ⋅ ⋅ + 𝑏
𝑖
𝑥
𝑖
, (9)

where 𝑥
𝑖
is the value of the 𝑖th predictor, 𝑏0 is the regression

constant, and 𝑏
𝑖
is the coefficient of the 𝑖th predictor.

2.5. Indices of Simulation Performance. Many statistical
indexes can be used to evaluate the performance of models.
The most common indexes for evaluating the performance
of ANN models are the root mean square error (RMSE)
and the correlation coefficient (𝑅). To strictly evaluate the
performance of MLR, RBFNmodel, and ANFISmodel, three

criteria, mean absolute error (MAE), RMSE, and 𝑅, are
employed in this study. These criteria can be defined by the
following equations:

MAE =
1
𝑁

∑

𝑁

󵄨󵄨󵄨󵄨󵄨
(𝐶
𝑝
)
𝑁
− (𝐶
𝑚
)
𝑁

󵄨󵄨󵄨󵄨󵄨
,

RMSE = √
1
𝑁

∑

𝑁

[(𝐶
𝑝
)
𝑁

− (𝐶
𝑚
)
𝑁
]
2
,

𝑅 =

∑
𝑁
[(𝐶
𝑝
)
𝑁

− 𝐶
𝑝
] [(𝐶
𝑚
)
𝑁

− 𝐶
𝑚
]

√∑
𝑁
[(𝐶
𝑝
)
𝑁

− 𝐶
𝑝
]
2

∑
𝑁
[(𝐶
𝑚
)
𝑁

− 𝐶
𝑚
]
2

,

(10)

where𝑁 is the total number of data points, 𝐶
𝑝
is a simulated

water quality variable, 𝐶
𝑚

is a measured water quality
variable, and 𝐶

𝑝
and 𝐶

𝑚
denote the average simulated and

measured water quality variables, respectively.

3. Results and Discussion

3.1. Selecting the Input Variables. The selection of an appro-
priate set of input variables for the MLR, RBFN, and ANFIS
models is important for predicting the water quality variables
in reservoirs [36]. It is difficult to determine how many input
variables and which input variables should be adopted in the
MLR, RBFN, and ANFISmodels.The straight and useful way
is to find the correlation coefficient between the individual
dependent variables and water quality (DO, TP, Chl a, and
SD). A total of 389 data sets collected from 1993 to 2013 were
used for the analyses. Table 2 shows the correlation coefficient
(𝑅) between the individual dependent variables and DO, TP,
Chl a, and SD, respectively. A correlation coefficient greater
than 0.1 was set as the threshold for selecting the input
variables. It indicates that the most effective inputs to affect
DO are the pH value, chlorophyll a concentration, water
temperature, total phosphorus, nitrate nitrogen, and bio-
chemical oxygen demand. The most important water quality
variables that affect the TP are the turbidity, suspended
solids, pH value, dissolved oxygen, electrical conductivity,
and nitrate nitrogen. It also illustrates that themost important
input variables that affect Chl a and SD are, respectively,
the six variables of the pH value, dissolved oxygen, water
temperature, biochemical oxygen demand, nitrate nitrogen,
and total hardness, and the six variables of the suspended
solids, electrical conductivity, turbidity, total hardness, total
alkalinity, and total phosphorus.

3.2. Water Quality Prediction Using the Multilinear Regression
Model. The multilinear regression models were used to
predict DO, TP, Chl a, and SD. The multilinear regression
models in (11) to (14) were obtained from the input water
quality variables:

DO = 2.8083× pH+ 0.0887×Chl 𝑎 − 0.074

×WT− 0.0045×TP− 0.4928×NO3

− 0.0055×BOD− 13.851,

(11)
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Table 2: The correlation coefficient (𝑅) between individual dependent variable and DO, TP, Chl a, and SD.

Variables
𝑅 value between

dependent variable and
DO

𝑅 value between
dependent variable and

TP

𝑅 value between
dependent variable and

Chl a

𝑅 value between
dependent variable

and SD
Water temperature (WT) 0.2025 0.0861 0.3642 0.0571
pH 0.6339 0.2401 0.4090 0.0765
Electrical conductivity (EC) 0.0890 0.1769 0.0938 0.2164
Turbidity (TB) 0.0715 0.3505 0.0003 0.2140
Suspended solids (SS) 0.0812 0.3505 0.0094 0.2394
Total hardness (TH) 0.0289 0.0145 0.1051 0.1989
Total alkalinity (TA) 0.0250 0.0239 0.0488 0.1707
Secchi disk depth (SD) 0.0062 0.0982 0.0916 —
Dissolved oxygen (DO) — 0.1917 0.3963 0.0062
Chlorophyll a (Chl a) 0.3963 0.0453 — 0.0916
Total phosphorus (TP) 0.1917 — 0.0453 0.1080
Nitrate nitrogen (NO3) 0.1763 0.1740 0.1410 0.0978
Biochemical oxygen demand (BOD) 0.1199 0.0507 0.1777 0.0528

TP = 0.039×TB+ 0.07× SS− 4.4717× pH

− 0.2463×DO− 0.0553×EC+ 70.2402,
(12)

Chl 𝑎 = 1.1423× pH+ 0.5528×DO+ 0.3228×WT

+ 0.1079×BOD− 1.7734×NO3

− 0.0103×TH− 12.8466,

(13)

SD = − 0.0119× SS− 0.0025×EC+ 0.0042×TB

− 0.0016×TH− 0.0010×TA− 0.0017

×TP+ 2.4449,

(14)

where BOD is the biochemical oxygen demand (mg/L);
EC is the electrical conductivity (𝜇mho/cm 25∘C); NO

3
is

the nitrate nitrogen (mg/L); pH is the pH value; SS is the
suspended solids (mg/L); TA is the total alkalinity (mg/L); TB
is the turbidity (NTU); TH is the total hardness (mg/L); and
WT is the water temperature (∘C).

Equation (11) was used to predict the DO concentration
for the training and testing phases. 272 and 117 data sets were
used for training and testing the MLR model, respectively.
Table 3 shows the performance evaluation using the MLR
model for DO, TP, Chl a, and SD. The MAE, RMSE, and 𝑅

values for the DO training phase were 1.81mg/L, 2.33mg/L,
and 0.67, and these values for the DO testing phase were
1.81mg/L, 2.41mg/L, and 0.64, respectively.TheMAE, RMSE,
and 𝑅 values for the TP training phase were 9.82 𝜇g/L,
15.29 𝜇g/L, and 0.55, and these values for the TP testing
phase were 9.99𝜇g/L, 14.70 𝜇g/L, and 0.31, respectively. The
MAE, RMSE, and 𝑅 values for the Chl a training phase were
3.96 𝜇g/L, 5.85 𝜇g/L, and 0.50, and these values for the Chl 𝑎
testing phase were 4.18 𝜇g/L, 5.92𝜇g/L, and 0.55, respectively.
TheMAE, RMSE, and𝑅 values for the SD training phase were
0.34m, 0.45m, and 0.43, and these values for the SD testing
phase were 0.37m, 0.53m, and 0.35, respectively.

3.3. Water Quality Prediction Using the RBFN Model. Due
to the poor performance using the multilinear regression
model, the RBFN model was applied to predict the DO, TP,
Chl a, and SD in the reservoir. The same data sets adopted in
the multilinear regression model were used for training and
testing the RBFN model.

Table 4 shows the performance evaluation for the DO,
TP, Chl a, and SD during the training and testing phases.
The MAE, RMSE, and 𝑅 values for the DO during the
training phase were 1.49mg/L, 1.97mg/L, and 0.77, and these
values during the testing phase were 1.45mg/L, 1.96mg/L,
and 0.79, respectively. The MAE, RMSE, and 𝑅 values for
the TP during the training phase were 8.89 𝜇g/L, 11.77 𝜇g/L,
and 0.75, and these values during the testing phase were
7.95 𝜇g/L, 9.91 𝜇g/L, and 0.73, respectively. The MAE, RMSE,
and 𝑅 values for Chl a during the training phase were
3.09 𝜇g/L, 4.39 𝜇g/L, and 0.79, and these values during the
testing phasewere 2.86 𝜇g/L, 4.08𝜇g/L, and 0.75, respectively.
The MAE, RMSE, and 𝑅 values for SD during the training
phase were 0.29m, 0.39m, and 0.68, and these values during
the testing phase were 0.23m, 0.31m, and 0.76, respectively.
The performances for the DO, TP, Chl a, and SD using the
RBFN model were better than using the MLR model during
the training and testing phases.

Some specific parameters may cause significant changes
in ANNmodel [37]. In order to avoid overfitting or underfit-
ting, we repeated ANN model until the minimum of errors
occurred. Through the reiterative runs, the sum of error
reduction ratio in RBFN model is set to 0.85 for providing
the best performances. However, the statistical errors for the
𝑅 value were still lower than 0.8 using the RBFN model,
which means that the RBFN model is not good enough for
predicting the water quality variables.

3.4. Water Quality Prediction Using the ANFIS Model. An
alternative approach, the ANFIS model, was used to predict
the water quality variables. The network was trained using
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Table 3: Performance evaluation during the training and testing phases for multilinear regression model.

Water quality variable Training phase Testing phase
MAE RMSE 𝑅 MAE RMSE 𝑅

DO 1.81mg/L 2.33mg/L 0.67 1.81mg/L 2.41mg/L 0.64
TP 9.82 𝜇g/L 15.29 𝜇g/L 0.55 9.99 𝜇g/L 14.70 𝜇g/L 0.31
Chlorophyll a 3.96 𝜇g/L 5.85 𝜇g/L 0.50 4.18𝜇g/L 5.92 𝜇g/L 0.55
SD 0.34m 0.45m 0.43 0.37m 0.53m 0.36

Table 4: Performance evaluation during the training and testing phases for RBFN model.

Water quality variable Training phase Testing phase
MAE RMSE 𝑅 MAE RMSE 𝑅

DO 1.49mg/L 1.97mg/L 0.77 1.45mg/L 1.96mg/L 0.79
TP 8.89 𝜇g/L 11.77𝜇g/L 0.75 7.95𝜇g/L 9.91 𝜇g/L 0.73
Chl a 3.09 𝜇g/L 4.39 𝜇g/L 0.79 2.86 𝜇g/L 4.08 𝜇g/L 0.75
SD 0.29m 0.39m 0.68 0.23m 0.31m 0.76

Table 5: Performance evaluation during the training and testing phases for ANFIS model.

Water quality variable Training phase Testing phase
MAE RMSE 𝑅 MAE RMSE 𝑅

DO 1.30mg/L 1.74mg/L 0.85 0.92mg/L 1.32mg/L 0.88
TP 6.45𝜇g/L 9.92 𝜇g/L 0.86 5.44 𝜇g/L 7.42 𝜇g/L 0.86
Chl a 3.19 𝜇g/L 4.67 𝜇g/L 0.77 2.25 𝜇g/L 3.05 𝜇g/L 0.83
SD 0.21m 0.31m 0.80 0.15m 0.24m 0.89

the training data set (i.e., 272 data sets), and then it was
tested with the testing data set (i.e., 117 data sets). Figures
5 and 6 show the comparison of the model-predicted DO
and model-measured DO for the training and testing phases
and scatter plots, respectively. The error values, represent-
ing the predicted DO minus the measured DO, are also
shown in Figure 5. The MAE, RMSE, and 𝑅 values for
the training phase were 1.30mg/L, 1.74mg/L, and 0.85,
while these values for the testing phase were 0.92mg/L,
1.32mg/L, and 0.88, respectively, as shown in Table 5. Figures
7 and 8 compare the model-predicted and model-measured
TP concentrations for the training and testing phases and
scatter plots, respectively. The MAE, RMSE, and 𝑅 values
for the training phase were 6.45 𝜇g/L, 9.22𝜇g/L, and 0.86,
while these values for the testing phase were 5.44 𝜇g/L,
7.42𝜇g/L, and 0.86, respectively. Number of membership
functions of ANFIS model is specified as 2 to obtain the best
performances.

Figures 9 and 10 compare the model-predicted and
model-measured chlorophyll 𝑎 concentrations for the train-
ing and testing phases and scatter plots, respectively. The
MAE, RMSE, and 𝑅 values for the training phase were
3.19 𝜇g/L, 4.67 𝜇g/L, and 0.77, and these values for the testing
phase were 3.25 𝜇g/L, 3.05 𝜇g/L, and 0.83, respectively. The
performance evaluation for predicting the Chl 𝑎 concen-
tration using the ANFIS model during the training phase
is slightly inferior to that using RBFN model, but the per-
formance evaluation for predicting the Chl 𝑎 concentration
using the ANFIS model during testing phase is superior to
that using RBFNmodel (Table 4). This result may be the rea-
son that the predicted Chl 𝑎 concentration using the ANFIS

model underestimated the high Chl 𝑎 concentration in the
observational data during the training phase.

Figures 11 and 12 illustrate the comparison of the model-
predicted and model-measured Secchi disk depth for the
training and testing phases and scatter plots, respectively.
The MAE, RMSE, and 𝑅 values for the training phase were
0.21m, 0.31m, and 0.80, while these values for the testing
phase were 0.15m, 0.24m, and 0.89, respectively. Overall, the
performances of the DO, TP, Chl a, and SD with the ANFIS
model are better than those with the multilinear regression
model and the RBFN model. The performance evaluations
with ANFIS during the testing phase are superior to those
during the training phase. A similar result is also found in
Ranković et al. [15].

Akkoyunlu et al. [14] applied two ANN models and
an MLR model to estimate the DO concentration in Lake
Iznik, Turkey. They found that the MLR model performed
less accurately to predict the DO. In the current study, the
MLR model not only is less accurate for predicting the DO
concentration but also does not simulate the TP, Chl a, or SD
well.

3.5. Discussion. In general, the neural network models pro-
vide better performance than the MLR model in this study.
The MLR model is still a useful tool for simple and fast
predicting water quality, although the predicted results by
MLRmodel are of insufficient accuracy. For instance, Chenini
and Khemiri [38] adopted MLR approach to evaluate the
ground water quality in Maknassy Basin, central Tunisia.
Thoe and Lee [39] used MLR to forecast the daily water
quality of Hong Kong Beach.
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Figure 5: Comparison of predicted and measured dissolved oxygen using ANFIS model for the (a) training phase and (b) testing phase.
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Figure 6: Scatter plots of predicted and measured dissolved oxygen using ANFIS model for the (a) training phase and (b) testing phase.
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Figure 7: Comparison of predicted and measured total phosphorus using ANFIS model for the (a) training phase and (b) testing phase.
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Figure 8: Scatter plots of predicted and measured total phosphorus using ANFIS model for the (a) training phase and (b) testing phase.
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Figure 9: Comparison of predicted and measured chlorophyll a using ANFIS model for the (a) training phase and (b) testing phase.

Chau [26] performed a benchmarking comparison for
predicting the river flow discharge using ANN and ANFIS
models. His study indicated that the ANFIS model exhibited
better performance than ANN model, but the performance
of these two models were very close. Our study showed that
the predictions of water quality using RBFN and ANFIS
models had significant differences. It may be the reason
that the characteristics of input data are different. Chau [26]
used antecedent flow data (i.e., 𝑄

𝑡
, 𝑄
𝑡−1

, and 𝑄
𝑡−2

) as input
vector, while input data with different independent variables
is adopted in the present study.

4. Conclusions

ANN models (i.e., RBFN and ANFIS models) and an MLR
model were developed to predict the DO, TP, Chl a, and SD

in the reservoir. The performances of the RBFN, ANFIS, and
MLR models were evaluated using the mean absolute error,
the root mean square error, and the correlation coefficient.
The linear regression between the water quality variables
(DO, TP, Chl a, and SD) and the individual dependent
variables was used to select the major input variables for the
RBFN, ANFIS, and MLR models.

These models were then constructed to predict the DO,
TP, Chl a, and SD in theMingder Reservoir of central Taiwan.
The water quality variables predicted using the MLR model
did not yield good results.The correlation coefficient between
the predicted water quality variables and the measured data
was less than 0.8 using the RBFN model. In general, the
ANFIS model better predicts the water quality variables than
the RBFNmodel does.The ANNmodel, including the RBFN
and ANFIS model, can preserve the nonlinear characteristics
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Figure 10: Scatter plots of predicted and measured chlorophyll a using ANFIS model for the (a) training phase and (b) testing phase.
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Figure 11: Comparison of predicted and measured Secchi disk depth using ANFIS model for the (a) training phase and (b) testing phase.

between the input and output variables, which are superior to
conventional statistical approaches (i.e., the MLR model). In
the real world, temporal and spatial distributions in obser-
vational data do not exhibit simple regularities; therefore,
they are difficult to accurately predict. It is necessary to use
nonlinearmodels, such as theANNmodel, which are suitable
for complex nonlinear systems.The proposed approach using
the ANFIS model has yielded valuable information that can
be used by decision-makers for aiding reservoir water quality
management.

In the present study, we focus on the prediction of water
quality instead of forecast. In a future study, different lead-
time forecasts in the water quality can be developed to assist
the local authorities for water quality management. The soft
computing techniques, such as the combining fuzzy optimal

model with genetic programming [40, 41], support vector
machine [42, 43], and particle swarm optimization training
algorithm for a neural network [44], can also be develop to
improve the prediction of water quality in the reservoirs.
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