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The paper presents a numerical investigation of non-Newtonian modeling effects on unsteady periodic flows in a two-dimensional
(2D) constricted channel withmovingwall using finite volumemethod.The governingNavier-Stokes equations have beenmodified
using the Cartesian curvilinear coordinates to handle complex geometries, such as, arterial stenosis. The physiological pulsatile
flow has been used at the inlet position as an inlet velocity. The flow is characterized by the Reynolds numbers 300, 500, and
750 that are appropriate for large arteries. The investigations have been carried out to characterize four different non-Newtonian
constitutive equations of blood, namely, the (i) Carreau, (ii) Cross, (iii) Modified-Casson, and (iv) Quemada. In these four models,
blood viscosity is a nonlinear function of shear rates. The Newtonian model has been investigated to study the physics of fluid and
the results are compared with the non-Newtonian viscosity models. The numerical results are presented in terms of streamwise
velocity, wall shear stress, pressure distribution as well as the vorticity, streamlines, and vector plots indicating recirculation zones
at the poststenotic region. Comparison has also been illustrated in terms of wall pressure and wall shear stress for the Cross model
considering different amplitudes of wall oscillation.

1. Introduction

Atherosclerosis is known as a major arterial disease. In ath-
erosclerosis, localized deposits and accumulation of choles-
terol and lipid compounds as well as proliferation of con-
nective tissues originate a partial decline in the arterial
cross-sectional area which, in particular, is called stenosis.
Atherosclerotic lesions mainly occur in arterial segments
with high curvature or bifurcations and junctions initiating
notable alterations in flow structure and fluid loading on
vessel walls [1]. Diabetes, smoking, inflammation, ischemia,
and so forth are the main risk factors of stenosis develop-
ment. Although the precise mechanisms responsible for the
initiation of this phenomenon are not apparently known, it
has been established that once a mild stenosis is developed,
the resulting flow disorder plays a significant function in the
further development of the disease that eventually changes
the regional blood rheology as well [2, 3].

Non-Newtonian viscosity can be employed to charac-
terize the rheological behavior of blood. The rheology and

the fluid dynamical properties of blood flow can play a
significant role in the fundamental understanding, diagnosis,
and treatment of many cardiovascular and arterial diseases
[4]. Therefore, many researchers have paid their attention to
studying the hemodynamics for various viscous conditions.
For example, Tu and Deville [5] implemented Galerkin
finite-element method simulations for physiological pulsatile
flow through a severe stenosis. They treated blood as non-
Newtonian fluid employing a Herschel-Bulkley model which
roughly behaves like blood.They illustrated results for steady
and pulsatile flow conditions in terms of velocity profile,
formation of vortex in separate regions, pressure drop across
the stenosis, wall shear stress, and the vorticity contours.
Non-Newtonian behavior of the blood is a crucial factor
affecting the primary and secondary flow patterns near the
junction between the bypass graft and the stenosed artery.
Chen et al. [6] explored the non-Newtonian fluid flow in a
stenosed coronary bypass numerically employing the Car-
reau-Yasuda model where they revealed significant differ-
ences in axial velocity profiles, secondary flow streamlines,
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and wall shear stress (WSS) between the non-Newtonian
and Newtonian fluid flows. Moreover, the effects of both
non-Newtonian behavior and the pulsation of blood flow on
the distributions of luminal surface low-density lipoprotein
(LDL) concentration and oxygen flux along the wall of the
human aorta were numerically analyzed by Liu et al. [7]
whereas Razavi et al. [8] performed a numerical analysis
to study the viscous effects of blood. The power-law model
demonstrated higher deviations in terms of velocity and
wall shear stress compared to Newtonian and six other
non-Newtonian viscosity models in their investigation. They
also found that increasing stenosis intensity causes more
disturbed flow patterns in the downstream of the stenosis and
WSS develops remarkably at the stenosis throat. Sriram et al.
[9] reveal the importance of incorporating non-Newtonian
blood properties into estimates of WSS in microvessels.

Taking the physiological inlet condition of the blood flow
into consideration, Long et al. [10] numerically simulated
pulsatile blood flow in straight tube stenosis models with
area reduction of 25%, 50%, and 75%. A measured human
common carotid artery blood flow waveform was used as the
upstream flow condition which has amean Reynolds number
of 300. The results indicated WSS oscillations (between
positive and negative values) at various downstream locations
in some models. On the other hand, comparison between
numerical solution for simple pulsatile and physiologically
pulsatile flow through a 61% stenosed artery was worked out
by Zendehbudi and Moayeri [11]. They considered laminar
flow, Newtonian and axisymmetric rigid tube for flow field
computation.

Effects of compliance on diagnostic parameters have also
been studied by Moayeri and Zendehbudi [2] where they
numerically investigated pulsatile blood flow through ste-
notic arteries considering physiological flow in a dog femoral
artery assuming Newtonian fluid. An isotropic elastic and
incompressible material was assumed for the wall at each
axial section but a nonuniform distribution of the shear
modulus in axial direction to model the high stiffness of
the wall at the stenotic location. Their results indicated that
deformability of the wall causes an increase in the time
average of pressure drop, but a decrease in the maximum
wall shear stress. Furthermore, flow field and stress field for
different degrees of stenoses under physiological conditions
were investigated by Li et al. [12] which suggests that severe
stenoses cause considerably large pressure drop across the
throat that inhibits wall motion resulting in higher blood
velocities and higher peak wall shear stress and localization
of hoop stress.

A different kind of enquiry was carried out to study the
influence of arterial wall-stenosis compliance on the coronary
diagnostic parameters by Konala et al. [13].Three parameters
were defined as fractional flow reserve (FFR), pressure drop
coefficient (CDP), and lesion flow coefficient (LFC) to be
assessed for varying degrees of epicardial stenoses. The
paper concluded that the differences in diagnostic parameters
with compliance at intermediate stenosis (78.7–82.7% area
blockage) could lead to misinterpretation of the stenosis
severity. Again, the critical rates of blood flow acceleration
and deceleration at sites of artificially induced stenosis (vessel

side-wall compression or ligation) are a function of tissue
elasticity; this was found by Tovar-Lopez et al. [14] when
they investigated the relationship between the local hydro-
dynamic strain-rates and the severity of arteriolar stenosis
in the small bowel mesenteric vessels of mice. Vahidi and
Fatouraee [15] presented a computational model using fluid
structure interactions (FSI) to investigate the physical motion
of a blood clot inside the human common carotid artery.
They simulated transportation of a buoyant embolus in an
unsteady flow within a finite length tube having stenosis.
The maximum magnitude of arterial wall shear stress during
embolism occurred at a short distance proximal to the throat
of the stenosis.

Paul et al. [16, 17] andMolla et al. [18] investigated the sim-
ple sinusoidal pulsatile flow in a planer channel with a cosine
shape single stenosis for maximum Re = 2000 using the LES
technique. They [19–21] also have studied the physiological
pulsatile flows in a channel with a single stenosis for the
Newtonian and non-Newtonian fluids using the large-eddy
simulation technique. Again, rheological properties of blood
have been studied for transition-to-turbulent condition using
LES technique in [22].

From the physiological point of view, wall pressure and
wall shear stress caused by physiological pulsatile flow in
a stenosed artery play significant roles in hemodynamics.
Fry [23] revealed that high wall shear stress initiated by
atherosclerosis is a strong parameter for endothelial or inner
side damage in an artery. It can also overstimulate platelet
thrombosis causing blockage [24]. Therefore, it is important
to study the hemodynamic factors to realize the basic scenario
behind the physiology of arterial diseases. Moreover, from
the above discussion it is apparent that many researchers
performed various simulations to study the fluid flow pattern
both physically and physiologically. In the present study, we
also simulated the pulsatile flow through an axisymmetric
artery considering Newtonian, Carreau [25], Cross [26],
Modified Casson [27], and Quemada [28] models as molec-
ular shear thinning viscosity models and studied different
interesting flow phenomena varying the fluid viscosity, wall
condition, flow velocity, and geometry. The objective of this
study is to analyze the modeling consequences of various
non-Newtonian fluids in terms of streamlines, wall pressure,
and wall shear stress along with the Newtonian one. Efforts
have been made to obtain a very good flow insight in a
stenotic artery considering physiological inlet and moving
arterial wall with a very small degree of oscillation.

2. Hypothesis

The wall motion is generated using (A.8) that is given in the
appendix. In this study, the wall moves sinusoidally along
the height of the channel. Apparently, the wall oscillation is
prescribed by the authors. As a result, it influences the flow
pattern but the wall motion is not induced by the fluid flow.
This is how our study differs from fluid structure interaction
where both fluid and structure influence each other.
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Figure 1: (a) Schematic view of the model geometry and (b) grid system where fine meshes are located near the walls and after the stenosis.

3. Governing Equations

Physiological pulsatile flow is simulated for Reynolds number
300. The arterial wall is assumed moving and blood is mod-
eled as both Newtonian and non-Newtonian fluids for the
flow field computation.The governing momentum equations
for non-Newtonian 2D flows are
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The blood viscosity, 𝜇 = 𝜇(| ̇𝛾|), depends on the shear rate
̇𝛾 = (1/2)(𝜕𝑢

𝑖
/𝜕𝑥
𝑗
+ 𝜕𝑢
𝑗
/𝜕𝑥
𝑖
), and its magnitude is defined

as | ̇𝛾| = √2 ̇𝛾
𝑖𝑗
̇𝛾
𝑗𝑖
. When blood is treated as a Newtonian

fluid, its viscosity tends to become constant value which is
denoted by 𝜇

∞
= 3.45 × 10−3 Pa⋅s. Moreover, constitutive

relations used for the apparent viscosity of the blood are
presented in Section 6 for non-Newtonianmodels.The above
governing equations have been modified using the general
Cartesian curvilinear coordinate system which is described
in the following section.

4. Computational Geometry

The geometry is a two-dimensional (2D) channel with a
cosine-shaped blockage or stenosis. Owing to the presence
of the stenosis, the cross-sectional area of the channel, 𝛿,
is a variable in the streamwise direction [i.e., 𝛿 = 𝛿(𝑥)].
Away from the stenosis, the height of the channel is constant
and is represented here using 𝐷 (i.e., 𝛿 = 𝐷 in the region
either upstream or downstream of the stenosis). The stenosis
is centered at 5𝐷 downstream of the channel inlet (i.e., the
inlet location is 𝑥/𝐷 = −5) and 15𝐷 upstream from the
channel outlet. The stenosis is centered at 𝑥/𝐷 = 0.0 and
length of the stenosis is 2𝐷. The mathematical form of the
stenosis chosen for this study is

𝑦

𝐷

= 1−
𝑓
𝑐

2
(1+ cos 𝑥𝜋

𝐷

) ; −𝐷 ≤ 𝑥 ≤ 𝐷, (2)

where 𝑓
𝑐
= 𝛿/𝐷 is a parameter that controls the height of the

stenosis. In the present study, 𝑓
𝑐
is fixed to 1/2 that results in a

50% reduction of the cross-sectional area at the center of the
stenosis. However, a schematic view of the model has been
depicted in Figure 1(a) along with a subsequent illustration
of the grid in Figure 1(b).

5. Physiological Flow

The physiological pulsatile velocity profile is obtained from
the solution of a one-dimensional momentum equation
where the pressure gradient is the Fourier series of time [29].
Womersley first calculated the physiological velocity profile
for a tube by using the pressure gradient.

The steady part of the solution of the velocity field is
obtained as
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The oscillatory part of the solution takes the following
form:
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Using the definition of Womersley number, 𝛼 =

𝐷√𝜔𝜌/𝜇, the full solution including the steady and oscilla-
tory part for𝑁 harmonics can be written as
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The real part of this solution is used to generate physiological
velocity profile at the inlet of the channel which is shown
below:
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In the above equation, constants𝐴0 and 𝐴 correspond to
the steady and oscillatory parts of the pressure gradient;𝑀

𝑛

and 𝜙
𝑛
represent coefficients and the phase angle; 𝑁 is the

number of harmonics of the flow set to 4 (considering the
first four harmonics of the pressure pulse that are necessary
for modeling realistic arterial blood waveforms); 𝜔 def

= 2𝜋/𝑇
is the frequency of the pulsations, 𝑇 is the time period of a
pulsation cycle, and 𝑖 = √−1 is the unit imaginary number,
where bulk velocity 𝑈 depends on the Reynolds number. In
present study, for streamwise velocity no slip condition has
been used at the wall but the normal velocity component
changes as V = 𝜕𝜉2/𝜕𝑡. The zero gradient condition is applied
at the outlet of artery, where velocity gradients 𝑢 and V are
zero along the streamwise direction.

6. Non-Newtonian Viscosity Models

The shear rate varies from 1 to 1200 s−1 over a cardiac cycle
in human arteries [12]. Blood behaves as non-Newtonian
fluid in some parts of the cardiac cycle as well. Hence, it is
necessary to consider the non-Newtonian behavior of
blood while studying hemodynamics. There are four non-
Newtonian viscosity models that are incorporated for the
numerical simulation.Themodels are summarized in Table 1.
Newtonian fluid viscosity is always constant against the
shear rate. On the other hand, non-Newtonian fluid viscosity
changes depending on the shear rate. However, Boger [30]
showed in his experiment that non-Newtonian fluids should
exhibit Newtonian behavior or their viscosity should remain
constant in both lower and higher shear rate.

Figure 2 represents the relationship between blood vis-
cosity and the shear rate for Newtonian and four different
non-Newtonianmodels. In thesemodels, there is a limitation
in the lower shear rate limits; they are not showing constant
viscosity or Newtonian behavior according to Boger [30].

The relationship between the shear rates and viscosity for
the non-Newtonian blood viscosity models, that is, Carreau,
Cross, Modified Casson, and Quemada models along with
the Newtonian viscosity model, is presented in Figure 2.
Blood viscosity is constant in the Newtonian model shown
by the solid line. On the other hand, the viscosity of blood
produced by non-Newtonian models for low shear rates (less
than 100 s−1) is higher than that of the Newtonian model.
Viscosity in the Carreau and Modified Casson models tends
to asymptotic constant viscosity, 𝜇

∞
, at the shear rate 𝛾 >

104 s−1. The Quemada and the Cross models exhibit the non-
Newtonian properties of blood at shear rates 𝛾 < 104 s−1.

Table 1: Non-Newtonian models with given molecular viscosity of
blood.

Model Effective viscosity*

Newtonian 𝜇
∞
= 3.45 × 10−3 Pa⋅s

Carreau → Carreau
[25]

𝜇(| ̇𝛾|) = 𝜇
∞
+ (𝜇0 − 𝜇∞)[1 + (𝜆 ̇𝛾)

2
]

(𝑛−1)/2

𝜇0 = 0.056 Pa⋅s
𝜆 = 3.131
𝑛 = 0.3568

Cross → Cross [27]

𝜇(| ̇𝛾|) = 𝜇
∞
+

(𝜇0 − 𝜇∞)

[1 + ( ̇𝛾/𝛾
𝑐
)

𝑛
]

𝜇0 = 0.0364 Pa⋅s, at a very low shear rate
𝛾
𝑐
= 2.63 s−1

𝑛 = 1.45

Modified Casson
→ González and
Moraga [27]

𝜇(| ̇𝛾|) = (√𝜂𝑐
+

√𝜏0

√
𝜆 + √ ̇𝛾

)

𝜂
𝑐
= 3.45 × 10−3 Pa⋅s

𝜏0 = 2.1 × 10−2 s−1

𝜆 = 11.5 s−1

Quemada →
Quemada [28]

𝜇(| ̇𝛾|) = 𝜇
𝑝
(1 − 1

2
𝑘0 + 𝑘∞√| ̇𝛾|/𝛾𝑐

1 + √| ̇𝛾|/𝛾
𝑐

𝜙)

−2

𝜙 = 0.45 for haematocrit
𝜇
𝑝
= 1.2 × 10−3 Pa⋅s

𝛾
𝑐
= 1.88 s−1

𝑘
∞
= 2.07 and 𝑘 = 4.33

*In non-Newtonian models, viscosity is a function of | ̇𝛾|, which is the global
shear rate.
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Figure 2: Relations between the shear rate and the apparent blood
viscosity for the different models.

Particularly, theCrossmodel asymptoticallymatches the con-
stant viscosity at the shear rates 𝛾 > 102 s−1 whereas the
Quemada model shows the asymptotic nature below the
constant viscosity, 𝜇

∞
.

7. Numerical Procedures

The FORTRAN code employed in our computation uses a
finite volume approach where the governing equations are
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Figure 3: Comparison of streamwise velocity in two different axial locations (a) 𝑥/𝐷 = 0.0 and (b) 𝑥/𝐷 = 2.5 considering axisymmetric wall
condition and corresponding experimental (Ahmed and Giddens [33]) and numerical data (Damodaran et al. [34]) extracted from literature.

integrated over the mesh control surface to obtain a system
of algebraic equations. To facilitate calculation, the governing
equations are transformed into curvilinear coordinates.

To discretize the governing equations (A.9) a second-
order central difference is used for the spatial derivatives.
Time derivatives are discretized by a three-point backward
difference scheme with a constant timestep of 𝛿𝑡 = 1 × 10−3.

Using this pressure correction algorithm, the pressure
and velocity components are stored at the center of a control
volume according to the collocated grid arrangement. The
Poisson like pressure correction equation is discretized by
using the pressure smoothing approach, which prevents the
even odd node uncoupling in the pressure and velocity fields.
A BI-CGSTAB [31] solver is used for solving the matrix of
velocity vectors, while for the Poisson like pressure correction
equation a ICCG [32] solver is applied due to its symmetric
and positive definite nature.

8. Code Validation

In the present study, a 2D simulation is performed using the
same code and for the code validation purpose, the 2D code
is compared with the experimental results of Ahmed and
Giddens [33] and numerical results of Damodaran et al.
[34] in Figure 3. Moreover, for this specific study, two grid
independence tests have also been performed as a part of code
validation.

Here, the grid independence test has been carried out in
Figure 4 to establish a suitable combination of grid configura-
tion to accurately predict the physiological flow behavior for
different viscous fluids in a model arterial stenosis. Different
combination of grids has been chosen here as different cases
that are Case 1: (150 × 50) ≈ (𝑥 × 𝑦); Case 2: (330 ×
110) ≈ (𝑥 × 𝑦); and Case 3: (420 × 140) ≈ (𝑥 × 𝑦). The
number of streamwise grid points upstream of the stenosis
is always fixed at 50 but the rest of the grid points are
distributed nonuniformly within and downstream of the
stenosis. Figure 1 shows the grid system and here it is clearly
seen that the grid is significantly refined to accurately resolve
the wall shear stress in the near wall region and after the
center of the stenosis.

In this section, the grid independence test is done for the
streamwise velocity at different locations for above three cases
considering Re = 500.The results are identical for Cases 1 and
2 in streamwise velocity up to the stenosed portion. On the
other hand, a bit variation is observed between the three cases
in some poststenotic regions and this percentage of error is
quite acceptable since the high Reynolds number and also the
physiological inlet condition drive the flow to be transitional
to turbulent. The effect of wall oscillation (the amplitude
of oscillation, 𝐴 = 0.0003) also contributes to this slight
variation in magnitudes. Therefore, it can be concluded that
the present grid is capable of providing convergent solution
independent of different grid sizes. Moreover, it is convenient
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Figure 4: Grid resolution test with respect to streamwise velocity, 𝑢/𝑈 at (a) 𝑥/𝐷 = −5.0 (inlet) (b) 𝑥/𝐷 = 0.0, (c) 𝑥/𝐷 = 1.0, (d) 𝑥/𝐷 = 2.0,
(e) 𝑥/𝐷 = 3.0, (f) 𝑥/𝐷 = 4.0, (g) 𝑥/𝐷 = 5.0, (h) 𝑥/𝐷 = 6.0, (i) 𝑥/𝐷 = 8.0, (j) 𝑥/𝐷 = 10.0 (k), 𝑥/𝐷 = 12.0, and (l) 𝑥/𝐷 = 15.0 (outlet) while
𝐴 = 3 × 10−4, where Re = 500 with two grid systems. Case 1: solid line for 150 × 50 control volumes. Case 2: dashed line for 330 × 110 control
volumes. Case 3: symbol for 420 × 140 control volumes.

to investigate the characteristics of the hemodynamic factors
using any of the cases as they provide appropriate and con-
vergent solutions; hence, Case 2 (330 × 110) has been chosen
in this investigation.

9. Results and Discussion

9.1. Laminar Flow Behavior. In the following parts of the
discussion, we have particularly studied the hemodynamic
parameters, that is, streamlines, wall pressure and wall shear
stress, vorticity, and so forth, for two different Reynolds
numbers; that is, Re = 300 and Re = 500 considering various
rheologicalmodels.However, the bulk velocity𝑈 is computed
here consideringRe = 500 to study the laminar flowbehavior.

9.1.1. Effect of Wall Oscillation. The wall of the model geom-
etry has been considered oscillating in this study. Hence,
different results considering four different amplitudes of

oscillation, that is, 𝐴 = 0.0 (rigid wall condition), 𝐴 = 1 ×
10−4, 𝐴 = 2 × 10−4, and 𝐴 = 3 × 10−4, are presented here.

Figures 5(a) and 5(b) represent the wall pressure and wall
shear stress (WSS), respectively, for different amplitudes of
wall oscillation. Non-Newtonian physiological pulsatile flow
is considered as an inlet flow for Modified Casson model.
From the figure it is clearly observed that pressure drop is
significantly higher at the stenosis throat in the rigid wall
condition (𝐴 = 0.0000). As the amplitude of wall oscillation
increased, the pressure drop at the center of stenosis is
also optimized. Moreover, the oscillating wall conditions
create highly oscillating pressure distribution throughout the
arterial segment. On the other hand, the wall shear stress
is the maximum at the stenosis center for highly oscillating
wall condition (𝐴 = 0.0003) that is illustrated in Figure 5(b).
Flow with different oscillation amplitudes causes more or less
closer range of shear stress in the poststenosis region whereas
the rigidwall condition contributes to less fluctuating and less
negative shear stress in the downstream of the stenosis.
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Figure 5: (a) Wall pressure, 𝑝/𝜌𝑈2, and (b) wall shear stress, 𝜏
𝑤
/𝜌𝑈

2 for different amplitude of wall oscillation considering Modified Casson
model while Re = 500.
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Figure 6: Streamwise centerline velocity for different amplitude of
wall oscillation consideringModifiedCassonmodel while Re = 500.

The centerline velocity pattern in the streamwise direc-
tion considering different wall conditions is presented in
Figure 6 for Re = 500. All the flows cause increasing the
velocity at the stenosis throat. The rigid wall model then
decreases the velocity in the downstream regions that fluctu-
ates in a small range between (−0.01, 0). On the contrary, as
the amplitude is increased, the fluctuation increases tremen-
dously in the downstream regions. Moreover, he highest
oscillating wall model causes the velocity to oscillate between
(−0.028, 0.022) at 𝑥/𝐷 = 1.0 to 𝑥/𝐷 = 2.0.

The effect of wall oscillation is also presented here in
terms of streamlines considering Modified Casson model in
Figure 7. Figure 7(a) depicts the streamlines for the rigid wall

model that corresponds to the presence of a pair of wide recir-
culation regions in the downstream of the stenosis. However,
the streamtraces are straight near the upper and lower walls
of the geometry in this model. Conversely, as we increase
the amplitude of wall oscillation, the streamtraces start
bending in the near wall regions and the sinusoidal shaped
streamtraces are apparent in the oscillating wall models.

9.1.2. Comparison between Re = 300 and Re = 500 Flow
Characteristics. Since studying the flow intensity in a stenosis
can help to predict various biomedical issues as blockage of
the arterial segment, magnitude of velocity at every point
in the geometry is an important indicator as well. In the
following part, the results of streamwise velocity caused by
physiological pulsatile flow with a critical stenosis are going
to be discussed.

The nondimensionalized streamwise velocity (𝑢/𝑈)
recorded at different axial locations is presented in Figures
8(a)–8(l) for the Newtonian and different non-Newtonian
models considering Re = 300. The investigation has been
started with the inlet position and ended with outlet but
between these two positions several points were also taken
to show how velocity develops gradually in the artery in
these points. The 𝑥-axis represents the velocity profile in
some streamwise locations where the 𝑦-axis shows different
locations on the artery. A fully developed physiological
pulsatile profile is observed at the inlet that is shown in
Figure 8(a). The velocity increases and attains the highest
value at the neck of the stenosis in Figure 8(b) where
the Newtonian and non-Newtonian models show almost
identical patterns; the non-Newtonian models cause the
velocity profiles to be flattened. Velocity of the flow starts
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Figure 7: Streamlines for different amplitude of the wall oscillation (a) 𝐴 = 0.0, (b) 𝐴 = 1 × 10−4, (c) 𝐴 = 2 × 10−4, and (d) 𝐴 = 3 × 10−4
considering Modified Casson model while Re = 500.
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Figure 9: Two consecutive cardiac cycles.

decreasing gradually throughout the downstream of the
stenosis and reaches the lowest peak in Figure 8(l). Significant
variations in velocity between the different viscous models
are observed in the poststenotic regions through Figures
8(c)–8(h) where Newtonian model causes the highest and
Cross model causes the lowest velocity. Negative values of
velocity in the downstream locations of the stenosis near
the upper and lower wall correspond to the presence of
permanent recirculation zones shown in Figures 8(c)–8(e).

In the presence of severe stenosis, resistance, or impe-
dance to flow, pressure drop becomes highly significant and,
in detail, can finally restrict the flow to human body parts
[35]. Thus, knowledge of the relationship between the flow
and the pressure drop across a stenosis is a prerequisite to
comprehending the effect of stenotic obstructions on the
distribution of blood flow to peripheral vascular beds. How-
ever, thrombus and atherosclerotic plaque form a stenosis
and modify the local hemodynamics including shear which
is well known to affect thrombosis characteristics. Therefore,
thrombus formation and embolization are shear-dependent.
Likewise, atherothrombosis can induce acute myocardial
infarction and stroke by progressive stenosis of a blood vessel
lumen to full occlusion [36]. As a result, it is also important
to study the effect of wall shear stress inside an idealized
constriction caused by physiological pulsatile inlet flow.

According to Ku [37], the cyclic nature of the heart pump
creates pulsatile conditions in all arteries. Moreover, heart
alwaysmaintains two cyclic phases. Blood is ejected and filled
in the heart in alternating cycles called systole and diastole.
Blood is pumped out of the heart during systole and rests dur-
ing diastole when no blood is ejected. Wall pressure through
an oscillating wall arterial segment with stenosis for Re =

300 considering different phases of a cardiac cycle has been
estimated here which is depicted in Figure 10.These diagrams
are illustrated based on a physiological cardiac cycle which is
also shown in Figure 9. Six distinct phases of a cardiac cycle
are plotted here for wall pressure which is again shown inset.

Wall pressure exhibits a gradual decreasing manner cou-
pled with slight drop in the constriction in the early systolic
phase that is shown in Figure 10(a). It drops maximum for
the Carreau model at the center of the stenosis near the
peak systole that is shown in Figure 10(b). Oscillating nature
of the wall pressure pattern is prominent in these phases.
In the late systole, wall pressure follows again a decreasing

manner accompanied by less oscillations throughout the
arterial segment. Wall pressure for the Newtonian model is
remarkably visible in the early diastole (Figure 10(d)) since
it is pretty higher in magnitude than the other models.
Moreover, wall pressure caused by all themodels shows sharp
zigzags in the prestenotic zones that drop in the bulge and
then oscillate almost in sinusoidal manner in the poststenotic
regions. Wall pressure becomes nearly steady and oscillates
slowly in themiddiastolic phase that is shown in Figure 10(e).
The Modified Casson model shows relatively high oscillating
magnitudes whereas the Cross and the Carreau models cause
lowermagnitudes of wall pressure. Oscillation becomes again
high for all the rheological models near the late diastolic
phase shown in Figure 10(f).

Wall pressure variations for various viscous models con-
sidering Re = 500 are presented in Figure 11. Different
phases of a physiological pulsatile cycle are considered here to
visualize the exact scenario of fluid pressure created upon the
arterial walls. In the beginning of the pulse, the wall pressure
varies in a range of (−2, 2) for all the models while the highest
wall pressure occurs at the proximal end of the stenosis and
the lowest pressure occurs at the stenosis throat by the viscos-
ity varying models. On the contrary, multiple peak values are
observed to occur by the Newtonian model at different axial
locations; that is, 𝑥/𝐷 = −1.0, 𝑥/𝐷 = 3.0, and 𝑥/𝐷 = 5.0.
However, Carreaumodel maintains a lower wall pressure and
Newtonian model maintains a higher pressure throughout
the arterial locations. All the models cause a lower range
of wall pressure during the peak systolic phase at 𝑡/𝑇 =

9.1 when the wall pressure becomes most negative at the
stenosis throat. However, it recovers the magnitude during
the end systolic phase when the highest wall pressure occurs
at 𝑥/𝐷 = 5.0 by the Newtonian model. The wall pressure
again falls to a lower range during the cardiac phase, 𝑡/𝑇 =

9.5 where the Carreau model shows a comparatively higher
magnitude and the Newtonian model maintains the lower
range of wall pressure. The wall pressure recovers during
the middiastolic phase where the stenosis throat experiences
the lowest pressure like the other phases and the Carreau
model shows the lower range of pressure. Near the end
diastolic phase, the wall pressure follows the previous pattern
creating the lowest pressure at the center of the stenosis (−4
inmagnitude)where theNewtonianmodel causes the highest
and the Carreau contributes to the lowest wall pressure.

Similar results for wall shear stress considering different
phases of a cardiac cycle have been evaluated in this work
which is depicted in Figure 12. Six distinct phases of a cardiac
cycle, that is, early systole, peak systole, late systole, mid
diastole, and late diastole, are plotted here considering Re =
300 for WSS that is also shown inset.

In the early systolic phase, it is clearly seen that all five
viscous fluids follow a oscillating pattern and the peak WSS
occurs at the throat of the stenosis. In the peak systole, the
similar pattern is maintained by all the rheological models
as well as the Newtonian one. The peak value occurs sharply
at the center of the stenosis followed by oscillating zigzag
pattern during peak systole that is also the highestWSS (with
a magnitude 0.8) among all other phases. All the viscous
models show roughly closer values of WSS throughout the
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Figure 10: Wall pressure, 𝑝/𝜌𝑈2, at different pulsatile phases (a) 𝑡/𝑇 = 9.0, (b) 𝑡/𝑇 = 9.1, (c) 𝑡/𝑇 = 9.3, (d) 𝑡/𝑇 = 9.5, (e) 𝑡/𝑇 = 9.6, and (f)
𝑡/𝑇 = 9.9 for Re = 300 while 𝐴 = 3 × 10−4.

arterial segment during these two phases. However, the
Carreau and the Cross models cause relatively higher range
of shear stress while the Newtonianmodel shows lower range
of WSS. In the late systole and middiastolic phases that are
shown in Figures 12(c) and 12(d), the WSS follows the same
pattern as the previous phases but the peak value decreases
gradually here and drops to a magnitude around 0.5 at the
early diastolic phase. Moreover, the viscous models exhibit
some variations in magnitude in the arterial locations; that
is, here each curve for the models can easily be identified
separately. WSS for another diastolic phase and the late
diastole is depicted in Figures 12(e) and 12(f). The peak value
occurs at the throat location. The oscillation also ceases at

the middiastole but it starts increasing near the late diastolic
phase and tries to catch the WSS pattern of the early systolic
one. In simple words, shear stress is very high in the systolic
phases that is again erratically sharp but it becomes small
in magnitude and also slower in frequency in the diastolic
phases especially in the middiastole.

Wall shear stress distribution for various rheological
models considering Re = 500 has been illustrated in
Figure 13 where the scenario is presented for different phases
of a cardiac cycle. The WSS follows almost similar pattern
throughout the arterial positions during different phases of
the cardiac pulse. The peak stress generally occurs at the
stenosis throat and an oscillatingWSS is observed at different
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Figure 11: Wall pressure, 𝑝/𝜌𝑈2, at different pulsatile phases (a) 𝑡/𝑇 = 9.0, (b) 𝑡/𝑇 = 9.1, (c) 𝑡/𝑇 = 9.3, (d) 𝑡/𝑇 = 9.5, (e) 𝑡/𝑇 = 9.6, and (f)
𝑡/𝑇 = 9.9 while Re = 500 and 𝐴 = 3 × 10−4.

poststenotic arterial locations. However, the highest WSS is
observed during peak systolic and end diastolic phases; that
is, 𝑡/𝑇 = 9.1 and 𝑡/𝑇 = 9.9 with a magnitude near 0.3.
Moreover, all the models cause the highest peak at the center
position of the stenosis and the Cross and the Carreaumodels
behave in a similar manner when Re = 500.

Figure 14(a) illustrates the streamlines caused by phys-
iological pulsatile flow in a stenosed arterial segment for
Re = 300. Figure 14(a)(i) represents the streamline for New-
tonian case and Figure 14(a)(ii) to Figure 14(a)(v) represent
the streamlines for four different non-Newtonian viscosity
models (Carreau, Cross, Modified Casson, and Quemada,
resp.). In the case of Newtonian fluid, the flow is fully

developed in the constriction. The magnitude of velocity
field ranges from 1.60 to 1.80 from the proximal region to at
least 6𝐷 downstream region from the stenosis neck. For the
Carreau and Cross models, the length of high velocity field
is significantly shorter than the Newtonian model. It ends at
𝑥/𝐷 = 1 position and no flow recirculation is observed in
these regions. Unlike the previous two viscosity models, the
Modified Cassonmodel creates relatively longer high velocity
field in the poststenotic region. The Quemada model acts
differently than theModified Cassonmodel; the velocity field
is very weak in the constriction. In fact, recirculation region
is absent inside the stenosed arterial segment when the Re =
300.The difference in the length of high velocity field for each
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Figure 12: Wall shear stress, 𝜏
𝑤
/𝜌𝑈

2, at different pulsatile phases (a) 𝑡/𝑇 = 9.0, (b) 𝑡/𝑇 = 9.1, (c) 𝑡/𝑇 = 9.3, (d) 𝑡/𝑇 = 9.5, (e) 𝑡/𝑇 = 9.6, and
(f) 𝑡/𝑇 = 9.9 while Re = 300 and 𝐴 = 3 × 10−4.

model can be explained from the fact that the behavior of
the Quemada model is the most viscous followed in order
of decreasing viscous behavior by the Cross, the Carreau, the
Modified Casson, and finally the Newtonian model.

Vorticity highly depends on viscosity. More insight into
the flow separation seen in Figure 15 is given through
the streamwise vorticity contours, 𝜔 = 𝜕V/𝜕𝑥 − 𝜕𝑢/𝜕𝑦.
Figure 15(i) to Figure 15(v) represent five different viscosity
models, that is, the Newtonian, Carreau, Cross, Modified
Casson, and Quemada models, respectively. It is noted that a
total of 15 different contour levels are plotted between their
maximum and minimum values that can be viewed easily
through the legend color bar. The vortex units rotated in

the clockwise and anticlockwise direction give positive and
negative values of 𝜔, respectively. The clockwise rotations are
represented by the solid lines where the anticlockwise rota-
tions are represented by dashed lines. Vorticity is very high in
low viscosity models. As a result, more vortices are generated
from the nose of the stenosis where the flow separation begins
in the Newtonian fluid shown in Figure 15(a)(i). Multiple
vortical structures are observed in the downstream regions
between 0 < 𝑥/𝐷 < 6; one acts in the anticlockwise direction
and the other acts in the clockwise direction near the upper
and lower walls. Both of them interact with each other and
then roll up to downstream region. According to Berger and
Jou [1], multiple vortices propagate at higher speed than
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Figure 13: Wall shear stress, 𝜏
𝑤
/𝜌𝑈

2, at different pulsatile phases (a) 𝑡/𝑇 = 9.0, (b) 𝑡/𝑇 = 9.1, (c) 𝑡/𝑇 = 9.3, (d) 𝑡/𝑇 = 9.5, (e) 𝑡/𝑇 = 9.6, and
(f) 𝑡/𝑇 = 9.9 while Re = 500 and 𝐴 = 3 × 10−4.

that of a single vortex that happens in the Newtonian fluid.
Furthermore, small clockwise vortices are seen in both the
upper and lower wall region even throughout the distant
downstream regions; vortex multiplication and flexibility of
the wall might contribute to this phenomenon. In case of
the non-Newtonian models, the Modified Casson model
creates comparatively larger area of vortex propagation from
0 < 𝑥/𝐷 < 3 that is mostly contributed by the near
wall small vortex structures. Other rheological models show
small vortical structures in the downstream regions. The
strength of the vortices is also weaker in these models than
the Newtonian fluid due to more viscosity. Among all of the

viscous models, Modified Casson model shows more and the
Cross model shows fewer vortex structures.

Vorticity for various viscous models considering Re =

500 is illustrated in Figure 15(b) that presents the flow sep-
aration clearly. A separate region of comparatively high veloc-
ity is present along the central axis of the artery of the
Newtonian model and multiple negative velocities with anti-
clockwise movement of the fluid particle is found near the
upper and lower walls of the geometry that covers a larger
region than that of the Re = 300 Newtonian fluid. Clockwise
movements of the fluid particles are dominant in almost every
regions of the arterial segment for the Carreau, Quemada,
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Figure 14: Streamlines for five different viscositymodels appended on the streamwise velocity contour (i) Newtonian, (ii) Carreau, (iii) Cross,
(iv) Modified Casson, and (v) Quemada models considering (a) Re = 300 and (b) Re = 500 for 𝐴 = 3 × 10−4.
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Figure 15: Vorticity for five different viscosity models appended on the streamwise velocity contour (i) Newtonian, (ii) Carreau, (iii) Cross,
(iv) Modified Casson, and (v) Quemada models considering (a) Re = 300 and (b) Re = 500 for 𝐴 = 3 × 10−4.
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Figure 16: Wall shear stress, 𝜏
𝑤
/𝜌𝑈

2, considering Modified Casson model for different stenosis heights at different pulsatile phases (a) 𝑡/𝑇 =
9.0, (b) 𝑡/𝑇 = 9.1, (c) 𝑡/𝑇 = 9.3, (d) 𝑡/𝑇 = 9.5, (e) 𝑡/𝑇 = 9.6, and (f) 𝑡/𝑇 = 9.9 for Re = 500 while 𝐴 = 3 × 10−4.

andCrossmodels except in the nearwall regions. A small area
with negative vorticity exits there and the viscous behavior
follows a descending order in these three models. However,
the Modified Casson model corresponds to the least viscous
behavior among the four rheological models; as a result, both
the high and low velocity regions are relatively larger in this
model.

9.2. Transitional Flow Behavior. High Reynolds numbers are
incorporated here to characterize the transitional behavior of
the flow studying the hemodynamic parameters, that is, wall
shear stress, streamtraces, and vorticity for different heights
of the model stenosis and different Reynolds numbers.

However, all the simulations have been done here considering
Modified Casson model and Re = 750 has been used to
compute the bulk velocity, 𝑈.

Wall shear stress distribution for Modified Casson model
considering Re = 500 and different percentages of the
stenosis height is shown in Figure 16. It is apparently seen in
the figure that as the stenosis height increases theWSS distri-
bution varies more in different parts of the geometry and the
60% stenosedmodel generally causes the highest peaks at the
throat location during different phases of the cardiac cycle.
A peak is found at the center of the stenosis by all the models
during the beginning phase of the cycle which is associated by
a drop at about𝑥/𝐷 = 3.0 by the 60% stenosedmodel. During
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Figure 17: (a) Streamlines and (b) vorticity considering Modified Casson model considering Re = 500 for different stenosis heights (i) 40%,
(ii) 50%, and (iii) 60% for Re = 500 when 𝐴 = 3 × 10−4.

the peak systole, two sharp peaks are observed at𝑥/𝐷 = 0.0 (a
positive rise) and 𝑥/𝐷 = 4.0 (a negative drop) by the mostly
stenosedmodel. At the end of the systole, the negativeWSS is
absent in the downstream region. WSS upswings the most by
all the stenosed models during the middiastolic phase shown
in Figure 16(e). However, the stress variation is evident for
the 60% stenosed model throughout the artery while the two
other models show relatively close values in different parts
of the artery. The end diastolic phase shows nearly similar
patterned WSS for all the models as the beginning phase of
the cardiac cycle.

The effect of increasing the percentage of stenosis in terms
of streamlines for Re = 500 is depicted in Figure 17(a)
where Figures 17(a)(i), 17(a)(ii), and 17(a)(iii) show 40%, 50%,
and 60% stenosed models, respectively. The streamtraces
are straight near the central axis of the artery as a result
of the absence of flow recirculation in these regions in the
40% stenosed model. Velocity field covers a region of higher
magnitude extending from𝑥/𝐷 = −1.0 up to the downstream
region and a pair of small vortices are found at the distal
end of the stenosis. When the percentage of stenosis is
increased to 50%, the density of flow recirculation increases
more than the previous case. Total four pairs of moderate
sized vortices form in different parts of the downstream
regions where the velocity range is also very high (1.70–1.90).
Very large recirculation regions are observed near the upper
wall of the arterial segment extending from 𝑥/𝐷 = 0.0.
to 𝑥/𝐷 = 4.0. due to the effect of 60% stenosed model.
Velocity also becomes very high in these regions and the
vortex distribution becomes asymmetric about the central
axis. As a consequence, the flow becomes transitional in this
stenosis height for Re = 500.

Vorticities for the Modified Casson model considering
Re = 500 and different heights of the stenosis, that is, 40%,
50%, and 60%, are depicted in Figure 17(b). Positive velocity
field exists near the central axis of the artery throughout
the artery while negative vorticity is found in the near wall
regions at about 𝑥/𝐷 = 1.0. The scenario completely changes

when the stenosis height is increased to 50% that is shown
in Figure 17(b)(ii). Comparatively high velocity region is
observed near the central axis under the cover of the constric-
tion while a relatively large negative velocity field is observed
in the downstream region. Both the high and low velocity
regions extend; as a consequence, both the clockwise and
anticlockwise rotations increase. If the percentage of stenosis
is increasedmore, to 60%, the flow loses its symmetric behav-
ior and becomes transitional. Negative vorticity appears near
the upper wall and the distal end of the constriction covering
a large region whereas, multiple small regions of anticlock
wise fluid movement are observed in the lower wall regions.

Wall shear stress distribution considering a range of
Reynolds number for the 50% stenosed Modified Casson
model is illustrated in Figure 18. WSS maintains zero mag-
nitude in the prestenosis regions for all the Reynolds number
fluids. It increases as a sharp peak at the throat location and
then drops to a range between (−0.18, 0.1).WSSmaintains an
oscillating pattern in the downstream region up to the outlet.
The notable observation is that as we increase the Reynolds
number, the WSS magnitude also increases at the stenosis
throat and the highest peak is found during the middiastolic
phase; that is, 𝑡/𝑇 = 9.6. Moreover, multiple negative peaks
are found at different downstream locations of the geometry
that are also contributed by the highest Reynolds number.

The effect of increasing the Reynolds number in terms of
streamlines considering Modified Casson model is depicted
in Figure 19(a) where Figures 19(a)(i), Figure 19(a)(ii), and
Figure 19(a)(iii) show Re = 300, Re = 500, and Re =

750 models, respectively. The streamtraces are straight near
the central axis of the artery due to the absence of flow
recirculation in these regions in the Re = 300model. Velocity
field covers a region of higher magnitude extending from
𝑥/𝐷 = −1.0 up to the 𝑥/𝐷 = 3.0. When the Reynolds
number is increased to 500, the flow recirculation increases.
Total two pairs of vortices form in the distal end region
where the velocity range is (0.1–0.3). The size and length of
the recirculation region increase near the upper wall of the
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Figure 18:Wall shear stress, 𝜏
𝑤
/𝜌𝑈

2, considering 50% stenosis ofModifiedCassonmodel for different Reynolds numbers at different pulsatile
phases (a) 𝑡/𝑇 = 9.0, (b) 𝑡/𝑇 = 9.1, (c) 𝑡/𝑇 = 9.3, (d) 𝑡/𝑇 = 9.5, (e) 𝑡/𝑇 = 9.6, and (f) 𝑡/𝑇 = 9.9 while 𝐴 = 3 × 10−4.

arterial segment covering from 𝑥/𝐷 = 0.0. to 𝑥/𝐷 = 5.0.
owing to the effect of Reynolds number, Re = 750. Velocity
becomes very high (up to 3.20) in these regions and the vortex
distribution becomes asymmetric about the central axis as a
number of small vortices are found near the lower wall of the
geometry. As a consequence, the flow becomes transitional.

The effects of flow separation caused by a range of Reyn-
olds numbers are depicted in Figure 19(b) in that the presence
of very low velocity in different parts of the arterial segment
is visible due to the effect of Re = 300. Negative velocity and
thus anticlockwise rotation of the fluid particles are observed
near the upper and lower walls of the geometry. A small
region of high velocity is observed at the stenosis throat when

the Reynolds number is increased to 500. However, negative
vorticity is found near the upper and lower walls of the
geometry in this model. Multiple negative vortical structures
form near the upper wall and in downstream region that
are absent near the lower wall. The asymmetric distribution
of the vortex generation and propagation corresponds to
transitional flow characteristics when the Re = 750.

10. Conclusion

Finite volume numerical simulations of unsteady, incom-
pressible, homogeneous blood flow in two-dimensional ste-
nosed model with sinusoidally oscillating wall condition
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Figure 19: (a) Streamlines and (b) vorticity for the Modified Casson model considering 50% stenosis model for different Reynolds numbers;
that is, (i) Re = 300, (ii) Re = 500, and (iii) Re = 750 when 𝐴 = 3 × 10−4.

have been presented in this paper. Flow field, flow induced
wall pressure, and wall shear stress have been evaluated for
Newtonian and non-Newtonian models (Carreau, Cross,
Modified Casson, and Quemada) under physiological pul-
satile condition.Thefindings of this investigation can be sum-
marized in following ways.

(i) Pressure drop is insignificant in the model predict-
ing less risk of limiting the blood supply to body
parts. Moreover, the Newtonian model maintains
relatively higher wall pressure during the systolic
phases throughout the arterial positions.

(ii) The wall shear stress reaches its highest peak at the
throat of the stenosis in the peak systole leaving the
atheromatous plaques prone to rupture. The phe-
nomenon of plaque disruption and thrombosis is not
ended by luminal occlusion only and it may lead to
extensive surface ulcerations comprising large areas
of the aortic wall. The Modified Casson and the
Newtonian models consistently follow a lower range
of shear stress and the Carreau and the Cross models
show relatively higher range of WSS.

(iii) Streamlines demonstrate the presence of recirculation
zones in the flow field that is found in the largest scale
by the Newtonian fluid where the flow is fully devel-
oped in the constricted region. This again increases
the possibility of thrombosis. However, the smallest
recirculation region is caused by the Carreau model.

It can be stated in essence the effect of wall oscillation
is evident in both the Newtonian and the non-Newtonian
models. Both the flow parameter and the wall condition,
being time variant, remarkably affect the wall pressure, wall
shear stress, and flow recirculation.As a result, theNewtonian
fluid is more likely to cause heart attack or blockage due to
its characteristics of low pressure and largest recirculation
region at the throat locations of the stenosis than the non-
Newtonian models. On the other hand, the Carreau and

Cross models exhibit higher risk of atherothrombosis owing
to the high wall shear stress in the arterial segment.

Appendices

A. Coordinate Transformation

Thompson et al. [38] introduced an approach where the finite
difference equations are formulated in a transformed curvi-
linear coordinate system that coincides with the boundaries
of the fluid domain. In this approach, flow domain in physical
space is mapped onto a rectangular domain in computational
space, as shown in Figure 20, where a two-dimensional case
is represented for simplicity. Mapping 𝑥

𝑖
→ 𝜉
𝑗
where 𝐽

𝑖𝑗

represents the elements of the Jacobian matrix, J, of the
transformation,

𝐽
𝑖𝑗
=

𝜕𝑥
𝑖

𝜕𝜉
𝑗

. (A.1)

The determinant of the Jacobian matrix, J is denoted by |J|;
that is,

|J| =
𝜕𝑥
𝑖

𝜕𝜉
𝑗

𝐴
𝑖𝑗
, (A.2)

where 𝐴
𝑖𝑗
are the elements of the cofactor matrix, A, of the

Jacobian, defined as

|A| = |J| J−1. (A.3)

The derivatives can be expressed in transformed time and
space in the following way:

𝜕𝜙

𝜕𝑡

=

𝜕𝜙

𝜕𝑡

𝜕𝑡

𝜕𝑡

+

𝜕𝜙

𝜕𝜉1

𝜕𝜉1
𝜕𝑡

+

𝜕𝜙

𝜕𝜉2

𝜕𝜉2
𝜕𝑡

, (A.4)

𝜕𝜙

𝜕𝑥
𝑖

=

𝜕𝜙

𝜕𝜉
𝑗

𝜕𝜉
𝑗

𝜕𝑥
𝑖

=

𝐴
𝑖𝑗

|J|
𝜕𝜙

𝜕𝜉
𝑗

, (A.5)
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Figure 20: Grid arrangement and notation in two-dimensional case in both physical space (a) and computational space (b). Solid lines
indicate the grid lines and the dashed lines indicate the faces of the control volume.

where 𝜙 is a generic variable. Here a moving wall condition
is used in the radial direction and the streamwise coordinate
(𝜉1) does not depend on time. So (A.4) can be written as

𝜕𝜙

𝜕𝑡

=

𝜕𝜙

𝜕𝑡

𝜕𝑡

𝜕𝑡

+

𝜕𝜙

𝜕𝜉2

𝜕𝜉2
𝜕𝑡

. (A.6)

The radial variable 𝜉2 is defined as the function of time and
space as

𝜉

new
2 = 𝜉

old
2 (1+𝐴× cos(2𝜋𝜉1

𝐷

) sin (2𝜋𝑡)) . (A.7)

So the time derivative of the radial coordinate is

𝜕𝜉2
𝜕𝑡

=

𝜉

new
2 − 𝜉

old
2

𝛿𝑡

,
(A.8)

where 𝐴 is the amplitude of oscillation and𝐷 is the diameter
of pipe. The governing equations (1) become

𝐴11
|J|
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+
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(A.9)

where 𝜉1 and 𝜉2 are used to represent coordinates along 𝑥 and
𝑦 directions, respectively.
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B. Physiological Flow

B.1. Steady Part of the Solution. Let us consider a one-dimen-
sional fluid flow with density 𝜌 and dynamic viscosity 𝜇
between two parallel plates separated by a distance 𝐷. The
governing equation of motion of the fluid is given by the
following form of Navier-Stokes equation:

𝜕

2
𝑢

𝜕𝑦

2 −
𝜌

𝜇

𝜕𝑢

𝜕𝑡

=

1
𝜇

𝜕𝑝

𝜕𝑥

, −

𝐷

2
≤ 𝑦 ≤

𝐷

2
, (B.1)

where

𝜕𝑝

𝜕𝑥

=

2
3
𝐴0. (B.2)

Here 𝐴0 is the constant corresponding to the steady pressure
gradient.

If the flow is in steady state,

𝜕𝑢

𝜕𝑡

= 0. (B.3)

Now from (B.1),

𝜕

2
𝑢

𝜕𝑦

2 =
1
𝜇

𝜕𝑝

𝜕𝑥

. (B.4)

The solution of the velocity field is obtained as (3).

B.2. Oscillatory Part of the Solution. For the oscillatory part,

𝜕𝑝

𝜕𝑥

= −𝐴
𝑚
𝑒

𝑖(𝑛𝜔𝑡+𝜙
𝑛
)
, (B.5)

where𝐴 is the constant corresponding to the oscillatory pres-
sure gradient. Let us assume that the solution of (B.1) is

𝑢 = V (𝑦) 𝑒𝑖(𝑛𝜔𝑡+𝜙𝑛). (B.6)

From (B.1) and (B.6),

V −
𝜌

𝜇

𝑖𝑛𝜔V = 0. (B.7)

Solving the auxiliary equation corresponding to (B.7),
𝑚 = ±√(𝜌/𝜇)𝑖𝑛𝜔, the complementary function can be
written as

V (𝑦) = 𝐴1 cosh(√
𝜌

𝜇

𝑖𝑛𝜔 ⋅ 𝑦)

+ 𝑖𝐵1 sinh(√
𝜌

𝜇

𝑖𝑛𝜔 ⋅ 𝑦) .

(B.8)

For the particular integral, the corresponding equation
can be written as

V =
𝐴
𝑚

𝜌𝑖𝑛𝜔

. (B.9)

Now combining the auxiliary equation and complemen-
tary function

V (𝑦) = 𝐴1 cosh(√
𝜌

𝜇

𝑖𝑛𝜔.𝑦)

+ 𝑖𝐵1 sinh(√
𝜌

𝜇

𝑖𝑛𝜔.𝑦)+

𝐴
𝑚

𝜌𝑖𝑛𝜔

.

(B.10)

The corresponding boundary conditions are 𝜕V/𝜕𝑦 =

0 at 𝑦 = 0 and V = 0 at 𝑦 = 𝐷/2. Applying these
two boundary conditions into (B.10), we get 𝐵1 = 0 and
𝐴1 = −𝐴𝑚/𝑖𝑛𝜔cosh(√(𝜌/𝜇)𝑖𝑛𝜔(𝐷/2)). Based on these, the
solution can be found in (4).

Using the definition of Womersley number, 𝛼 =

𝐷√𝜔𝜌/𝜇, the full solution including the steady and oscilla-
tory part for𝑁 harmonics can be written as (5).

The real part of this solution is used to generate physio-
logical velocity profile at the inlet of the channel.

B.3. Real Part of the Solution. In order to separate the real part
of the solution from (B.10), De Moivre’s theorem of complex
numbers is needed together with some trigonometric formu-
las. De Moivre’s theorem gives

(cos 𝜃 + 𝑖 sin 𝜃)𝑚 = [cos (𝑚𝜃) + 𝑖 sin (𝑚𝜃)] . (B.11)

If 𝑧 = 𝑥 + 𝑖𝑦, then

cosh 𝑧 = cosh 𝑥 cos𝑦+ 𝑖 sinh𝑥 sin𝑦. (B.12)

Using De Moivre’s theorem, we obtain

√
𝑖 = [cos(𝜋

2
)+ 𝑖 sin(𝜋

2
)]

1/2
=

1
√2

(1+ 𝑖) , (B.13)

cosh (√𝑖𝑛𝛼
𝑦

𝐷

) = cosh [𝛼√𝑛 1
√2

(1+ 𝑖)
𝑦

ℎ

]

= cosh(𝛼√𝑛
2
𝑦

𝐷

) cos(𝛼√𝑛
2
𝑦

𝐷

)

+ 𝑖 sinh(𝛼√𝑛
2
𝑦

𝐷

) sin(𝛼√𝑛
2
𝑦

𝐷

)

= cosh𝜙1 cos𝜙1 + 𝑖 sinh𝜙1 sin𝜙1,

(B.14)

cosh (√𝑖𝑛𝛼1
2
) = cosh [𝛼√𝑛 1

√2
(1+ 𝑖) 1

2
]

= cosh(√𝑛
2
𝛼

2
) cos(√𝑛

2
𝛼

2
)

+ 𝑖 sinh(√𝑛
2
𝛼

2
) sin(√𝑛

2
𝛼

2
)

= cosh𝜙2 cos𝜙2 + 𝑖 sinh𝜙2 sin𝜙2,

(B.15)

𝑒

𝑖(𝑛𝜔𝑡+𝜙
𝑛
)
= 𝑒

𝑖𝑃
= cos𝑃+ 𝑖 sin𝑃. (B.16)



Journal of Fluids 21

From (5), (B.14), and (B.15), we obtain

𝑢 (𝑦, 𝑡) =

𝐴
𝑚
ℎ

2

𝑖𝑛𝜇𝛼

2 [1−
cosh (√𝑖𝑛𝛼 (𝑦/𝐷))

cosh (√𝑖𝑛𝛼 (1/2))
] 𝑒

𝑖(𝑛𝜔𝑡+𝜙
𝑛
)
= 𝑖

𝐴
𝑚
ℎ

2

𝑛𝜇𝛼

2 [
cosh (√𝑖𝑛𝛼 (𝑦/𝐷))

cosh (√𝑖𝑛𝛼 (1/2))
− 1] (cos𝑃+ 𝑖sin𝑃) = 𝑖

⋅

𝐴
𝑚
ℎ

2

𝑛𝜇𝛼

2 [
cosh𝜙1cos𝜙1 + 𝑖sinh𝜙1sin𝜙1
cosh𝜙2cos𝜙2 + 𝑖sinh𝜙2sin𝜙2

− 1] (cos𝑃+ 𝑖 sin𝑃) = 𝑖

⋅

𝐴
𝑚
ℎ

2

𝑛𝜇𝛼

2 [
(cosh𝜙1cos𝜙1 + 𝑖sinh𝜙1sin𝜙1) (cosh𝜙2cos𝜙2 − 𝑖sinh𝜙2sin𝜙2)

cosh2𝜙2cos2𝜙2 + sinh2𝜙2sin2𝜙2
− 1] (cos𝑃+ 𝑖sin𝑃) ,

𝑢 (𝑦, 𝑡) = 𝑖

𝐴
𝑚
ℎ

2

𝑛𝜇𝛼

2 [
1
𝐷
𝑟

(cosh𝜙1cos𝜙1cosh𝜙2cos𝜙2 − 𝑖cosh𝜙1cos𝜙1sinh𝜙2sin𝜙2 + 𝑖sinh𝜙1sin𝜙1cosh𝜙2cos𝜙2

+ sinh𝜙1sin𝜙1sinh𝜙2sin𝜙2) − 1] (cos𝑃+ 𝑖sin𝑃) =
𝐴
𝑚
ℎ

2

𝑛𝜇𝛼

2
𝐷
𝑟

[(𝑖cosh𝜙1cos𝜙1cosh𝜙2cos𝜙2

+ cosh𝜙1cos𝜙1sinh𝜙2sin𝜙2 − sinh𝜙1sin𝜙1cosh𝜙2cos𝜙2 + 𝑖sinh𝜙1sin𝜙1sinh𝜙2sin𝜙2) − 𝑖𝐷𝑟] (cos𝑃+ 𝑖sin𝑃)

=

𝐴
𝑚
ℎ

2

𝑛𝜇𝛼

2
𝐷
𝑟

[𝑖cosh𝜙1cos𝜙1cosh𝜙2cos𝜙2cos𝑃+ cosh𝜙1cos𝜙1sinh𝜙2sin𝜙2cos𝑃− sinh𝜙1sin𝜙1cosh𝜙2cos𝜙2cos𝑃

+ 𝑖sinh𝜙1sin𝜙1sinh𝜙2sin𝜙2cos𝑃− 𝑖𝐷𝑟cos𝑃− cosh𝜙1cos𝜙1cosh𝜙2cos𝜙2sin𝑃+ 𝑖cosh𝜙1cos𝜙1sinh𝜙2sin𝜙2sin𝑃

− 𝑖sinh𝜙1sin𝜙1cosh𝜙2cos𝜙2sin𝑃− sinh𝜙1sin𝜙1sinh𝜙2sin𝜙2sin𝑃+𝐷𝑟sin𝑃] .

(B.17)

Separating from the above equation, the real part of the
solution is expressed in (6).

Nomenclature

English Symbols

𝐴: Amplitude of the wall oscillation (m)
𝐴
𝑖𝑗
: Elements of the cofactor matrix

𝐷: Diameter of artery (m)
J: Jacobian of transform coordinates
𝑝: Pressure (Pa)
𝑟: Radius of the pipe (m)
Re: Reynolds number (𝑈𝐷/])
𝑡: Time (s)
𝑈: Bulk velocity (m⋅s−1)
𝑢: Velocity along the streamwise direction (m⋅s−1)
V: Velocity along the radial direction (m⋅s−1).

Greek Symbols

𝜇: Viscosity of blood (kg⋅m−1 s−1)
𝛿: Height of stenosis (m)
]: Kinematic viscosity (m2⋅s−1)
𝜔: Vorticity (s−1)
𝜌: Density of blood (kg⋅m−3)
𝜏
𝑤
: Wall shear stress (kg⋅m2⋅s−1)

𝜉1: Coordinate along the streamwise direction (m)
𝜉2: Coordinate along the radial direction (m).
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