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We introduce a new class of extension rings called the generalizedMalcev-Neumann series ring 𝑅((𝑆; 𝜎; 𝜏))with coefficients in a ring
𝑅 and exponents in a strictly ordered monoid 𝑆 which extends the usual construction of Malcev-Neumann series rings. Ouyang
et al. in 2014 introduced the modules with the Beachy-Blair condition as follows: A right 𝑅-module satisfies the right Beachy-Blair
condition if each of its faithful submodules is cofaithful. In this paper, we study the relationship between the right Beachy-Blair
condition of a right 𝑅-module𝑀

𝑅
and its Malcev-Neumann series module extension𝑀((𝑆))

𝑅((𝑆;𝜎;𝜏))
.

1. Introduction

Throughout this paper 𝑅 denotes an associative ring with
identity; (𝑆, ⋅, ⩽) is a strictly ordered monoid (i.e., (𝑆, ⩽) is an
ordered monoid satisfying the conditions that if 𝑠 < 𝑠

, then
𝑠𝑡 < 𝑠


𝑡 and 𝑡𝑠 < 𝑡𝑠

 for 𝑠, 𝑠, 𝑡 ∈ 𝑆). Recall that a subset
𝑋 of (𝑆, ⩽) is said to be artinian if every strictly decreasing
sequence of elements of 𝑋 is finite and that 𝑋 is narrow
if every subset of pairwise order-incomparable elements of
𝑋 is finite. Suppose the two maps 𝜎 : 𝑆 → End(𝑅) and
𝜏 : 𝑆 × 𝑆 → 𝑈(𝑅) (the group of invertible elements of
𝑅). Let 𝐴 = 𝑅((𝑆; 𝜎; 𝜏)) denote the set of all formal sums
𝑓 = ∑

𝑥∈𝑆
𝑎
𝑥
𝑥 such that supp(𝑓) = {𝑥 ∈ 𝑆 | 𝑎

𝑥
̸= 0}

is an artinian and narrow subset of 𝑆, with componentwise
addition and the multiplication rule is given by

(∑

𝑥∈𝑆

𝑎
𝑥
𝑥)(∑

𝑦∈𝑆

𝑏
𝑦
𝑦)

= ∑

𝑧∈𝑆

( ∑

{(𝑥,𝑦)|𝑥𝑦=𝑧}

𝑎
𝑥
𝜎
𝑥
(𝑏
𝑦
) 𝜏 (𝑥, 𝑦)) 𝑧,

(1)

for each ∑
𝑥∈𝑆

𝑎
𝑥
𝑥 and ∑

𝑦∈𝑆
𝑏
𝑦
𝑦 ∈ 𝐴. In order to ensure

the associativity, it is necessary to impose two additional
conditions on 𝜎 and 𝜏: namely, for all 𝑥, 𝑦, 𝑧 ∈ 𝑆,

(i) 𝜎
𝑥
(𝜏(𝑦, 𝑧))𝜏(𝑥, 𝑦𝑧) = 𝜏(𝑥, 𝑦)𝜏(𝑥𝑦, 𝑧),

(ii) 𝜎
𝑥
𝜎
𝑦
= 𝜂(𝑥, 𝑦)𝜎

𝑥𝑦
, where 𝜂(𝑥, 𝑦) denotes the auto-

morphism of 𝑅 defined by

𝜂 (𝑥, 𝑦) (𝑟) = 𝜏 (𝑥, 𝑦) 𝑟𝜏 (𝑥, 𝑦)
−1

∀𝑟 ∈ 𝑅. (2)

It is now routine to check that 𝐴 = 𝑅((𝑆; 𝜎; 𝜏)) is a ring
which is called the ring of generalizedMalcev-Neumann series.
We can assume that the identity element of𝐴 is 1; this means
that

𝜎
1
= Id
𝑅
, 𝜏 (𝑥, 1) = 𝜏 (1, 𝑥) = 1. (3)

In this case 𝑟 → 𝑟1 is an embedding of 𝑅 as a subring into 𝐴.
For each 𝑓 ∈ 𝐴 \ {0} we denote by 𝜋(𝑓) the set of

minimal elements of supp(𝑓). If (𝑆, ≤) is a strictly totally
ordered monoid, then supp(𝑓) is a nonempty well-ordered
subset of 𝑆 and 𝜋(𝑓) consists of only one element.

Clearly, the above construction generalizes the construc-
tion of Malcev-Neumann series rings, in case of 𝑆 = 𝐺

(an ordered group), which was introduced independently by
Malcev and Neumann (see [1, 2]).

If the order ≤ is the trivial order, then 𝐴 = 𝑅((𝑆; 𝜎; 𝜏)) is
the usual crossed product ring 𝑅[𝑆; 𝜎; 𝜏]. Also, if the monoid
𝑆 has the trivial order and 𝜏 is trivial, then 𝐴 = 𝑅((S; 𝜎; 𝜏)) is
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the usual skewmonoid ring 𝑅[𝑆; 𝜎]. However if the monoid 𝑆
has the trivial order and𝜎 is trivial, then𝐴 = 𝑅((𝑆; 𝜎; 𝜏)) is the
usual twistedmonoid ring𝑅[𝑆; 𝜏]. Finally, if themonoid 𝑆 has
the trivial order and 𝜎 and 𝜏 are trivial, then 𝐴 = 𝑅((𝑆; 𝜎; 𝜏))

is the usualmonoid ring𝑅[𝑆] (see Sections 3.2 and 3.3 in [3]).
Moreover, if 𝛼 is a ring endomorphism of 𝑅, set 𝑆 = Z

≥0

endowed with the trivial order. Define 𝜎 : 𝑆 → End(𝑅) via
𝜎(𝑥) = 𝛼

𝑥 for every 𝑥 ∈ Z
≥0

and 𝜏(𝑥, 𝑦) = 1 for any 𝑥, 𝑦 ∈ Z.
We have 𝐴 = 𝑅((𝑆; 𝜎; 𝜏)) is the usual skew polynomial ring
𝑅[𝑥, 𝛼]. However if ≤ is the usual order, then 𝐴 = 𝑅((𝑆; 𝜎; 𝜏))

is the usual skew power series ring 𝑅[[𝑥, 𝜎]]. If 𝛼 is a ring
automorphism of 𝑅, 𝑆 = Z and ≤ is the usual order, then
𝐴 = 𝑅((𝑆; 𝜎; 𝜏)) is the usual ring of skew Laurent power series
𝑅[[𝑥, 𝑥

−1
, 𝛼]].

At the same time, if we set also𝜎(𝑠) = Id
𝑅
∈ End(𝑅) for all

𝑠 ∈ 𝑆, then it is easy to check that polynomial rings, Laurent
polynomial rings, formal power series rings, and Laurent
power series rings are special cases of 𝐴 = 𝑅((𝑆; 𝜎; 𝜏)).

If 𝑀
𝑅
is a unitary right 𝑅-module, then the Malcev-

Neumann series module 𝐵 = 𝑀((𝑆)) is the set of all
formal sums ∑

𝑥∈𝑆
𝑚
𝑥
𝑥 with coefficients in 𝑀 and artinian

and narrow supports, with pointwise addition and scalar
multiplication rule is defined by

(∑

𝑥∈𝑆

𝑚
𝑥
𝑥)(∑

𝑦∈𝑆

𝑎
𝑦
𝑦)

= ∑

𝑧∈𝑆

( ∑

{(𝑥,𝑦)|𝑥𝑦=𝑧}

𝑚
𝑥
𝜎
𝑥
(𝑎
𝑦
) 𝜏 (𝑥, 𝑦)) 𝑧,

(4)

where ∑
𝑥∈𝑆

𝑚
𝑥
𝑥 ∈ 𝐵 and ∑

𝑦∈𝑆
𝑎
𝑦
𝑦 ∈ 𝐴. One can easily

check that (i) and (ii) ensure that 𝑀((𝑆)) is a unitary right
𝐴-module. For each 𝜑 ∈ 𝐵 \ {0} we denote by 𝜋(𝜑) the set
of minimal elements of supp(𝜑). If (𝑆, ≤) is a strictly totally
ordered monoid, then supp(𝜑) is a nonempty well-ordered
subset of 𝑆 and 𝜋(𝜑) consists of only one element.

Recall from Faith [4] that a ring 𝑅 is called a right zip ring
and if the right annihilator r

𝑅
(𝑋) of a subset 𝑋 ⊆ 𝑅 is zero,

then r
𝑅
(𝑋
0
) = 0 for a finite subset 𝑋

0
of 𝑋. Although the

concept of zip rings was initiated by Zelmanowitz [5] it was
not called so at that time.

Recall from [6] that a right 𝑅-module𝑀
𝑅
is called a right

zip module provided that if the right annihilator of a subset
𝑋 of𝑀

𝑅
is zero, then there exists a finite subset𝑋

0
⊆ 𝑋 such

that r
𝑅
(𝑋
0
) = 0.

According to Rodŕıguez-Jorge [7], a ring 𝑅 satisfies the
right Beachy-Blair condition if its faithful right ideals are
cofaithful; that is, if 𝐼 is a right ideal of 𝑅 such that r

𝑅
(𝐼)

vanishes, then r
𝑅
(𝐼
0
) = 0 for a finite subset 𝐼

0
of 𝐼. Clearly,

a right zip ring is a right Beachy-Blair ring.
Ouyang et al. in [8] generalized the right Beachy-Blair

condition from rings into modules as follows: A right 𝑅-
module 𝑀

𝑅
is called module with the Beachy-Blair condition

provided that if the right annihilator of a submodule 𝑁
𝑅
of

𝑀
𝑅
is zero, then there exists a finite subset𝑁

0
⊆ 𝑁 such that

r
𝑅
(𝑁
0
) = 0.

Themain aim of the present paper is to investigate condi-
tions for theMalcev-Neumann seriesmodules𝑀((𝑆))

𝑅((𝑆;𝜎;𝜏))

to satisfy the right Beachy-Blair condition. The proofs of our
results obtained here are very similar to those obtained by
Ouyang et al. in [8] and by Salem et al. in [9].

2. Generalized Malcev-Neumann Series
Modules with the Beachy-Blair Condition

We start this section with the following notions and defini-
tions.

Let 𝑉 be a subset of𝑀
𝑅
; then

𝑉 ((𝑆))

= {𝜑 = ∑

𝑥∈𝑆

𝑚
𝑥
𝑥 ∈ 𝐵 | 0 ̸= 𝑚

𝑥
∈ 𝑉, 𝑥 ∈ supp (𝜑)} .

(5)

Definition 1. A ring 𝑅 is called 𝑆-compatible if, for all 𝑎, 𝑏 ∈ 𝑅

and 𝑥 ∈ 𝑆, 𝑎𝑏 = 0 if and only if 𝑎𝜎
𝑥
(𝑏) = 0.

Definition 2. A right 𝑅-module𝑀
𝑅
is called 𝑆-compatible if,

for each 𝑚 ∈ 𝑀, 𝑎 ∈ 𝑅, and 𝑥 ∈ 𝑆, 𝑚𝑎 = 0 if and only if
𝑚𝜎
𝑥
(𝑎) = 0.

Definition 3. A ring 𝑅 is called 𝑆-Armendariz if whenever
𝑓𝑔 = 0 implies 𝑎

𝑥
𝜎
𝑥
(𝑏
𝑦
) = 0 for each 𝑥 ∈ supp(𝑓) and

𝑦 ∈ supp(𝑔), where 𝑓 = ∑
𝑥∈𝑆

𝑎
𝑥
𝑥 and 𝑔 = ∑

𝑦∈𝑆
𝑏
𝑦
𝑦 are

elements of 𝐴.

We extend the 𝑆-Armendariz concept to modules as
follows.

Definition 4. A right 𝑅-module 𝑀
𝑅
is called 𝑆-Armendariz

if whenever 𝜑𝑓 = 0 implies 𝑚
𝑥
𝜎
𝑥
(𝑎
𝑦
) = 0 for each 𝑥 ∈

supp(𝜑) and 𝑦 ∈ supp(𝑓), where 𝜑 = ∑
𝑥∈𝑆

𝑚
𝑥
𝑥 ∈ 𝐵 and

𝑓 = ∑
𝑦∈𝑆

𝑎
𝑦
𝑦 ∈ 𝐴.

It is clear that 𝑅 is an 𝑆-Armendariz (𝑆-compatible) ring
if and only if 𝑅

𝑅
is an 𝑆-Armendariz (𝑆-compatible) module.

For a subset 𝑈 of𝑀
𝑅
, we define r

𝐴
(𝑈) as the set

r
𝐴 (𝑈) = {𝑓 ∈ 𝐴 | (𝑢1) 𝑓 = 0 for each 𝑢 ∈ 𝑈} . (6)

Lemma 5. Let 𝑀
𝑅
be a right 𝑅-module. Then r

𝐴
(𝑈) =

r
𝑅
(𝑈)((𝑆; 𝜎; 𝜏)), for any subset 𝑈 of𝑀

𝑅
.

Proof. Let𝑓 = ∑
𝑠∈𝑆

𝑎
𝑠
𝑠 ∈ r
𝐴
(𝑈).Then for each 𝑢 ∈ 𝑈we have

(𝑢1)𝑓 = 0. Thus

0 = (𝑢1)(∑

𝑠∈𝑆

𝑎
𝑠
𝑠) = ∑

𝑠∈𝑆

𝑢𝜎
1
(𝑎
𝑠
) 𝜏 (1, 𝑠) 𝑠 = ∑

𝑠∈𝑆

𝑢𝑎
𝑠
𝑠, (7)

which implies that 𝑢𝑎
𝑠
= 0 for each 𝑠 ∈ supp(𝑓). Hence

𝑎
𝑠
∈ r
𝑅
(𝑈) for each 𝑠 ∈ supp(𝑓). So 𝑓 ∈ r

𝑅
(𝑈)((𝑆; 𝜎; 𝜏)) and

r
𝐴
(𝑈) ⊆ r

𝑅
(𝑈)((𝑆; 𝜎; 𝜏)).

On the other hand, suppose that 𝑓 = ∑
𝑠∈𝑆

𝑎
𝑠
𝑠 ∈ r
𝑅
(𝑈)

((𝑆; 𝜎; 𝜏)); then 𝑎
𝑠
∈ r
𝑅
(𝑈) for each 𝑠 ∈ supp(𝑓). Thus 𝑢𝑎

𝑠
= 0

for each 𝑢 ∈ 𝑈, which implies that 𝑢𝜎
1
(𝑎
𝑠
)𝜏(1, 𝑠) = 0 for each

𝑢 ∈ 𝑈 and 𝑠 ∈ supp(𝑓). Hence (𝑢1)𝑓 = 0 and 𝑓 ∈ r
𝐴
(𝑈). So

r
𝑅
(𝑈)((𝑆; 𝜎; 𝜏)) ⊆ r

𝐴
(𝑈). Therefore r

𝐴
(𝑈) = r

𝑅
(𝑈)((𝑆; 𝜎; 𝜏)).
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When 𝑀
𝑅
= 𝑅
𝑅
we have the following consequence of

Lemma 5.

Corollary 6. Consider r
𝐴
(𝑈) = r

𝑅
(𝑈)((𝑆; 𝜎; 𝜏)), for any

subset 𝑈 of 𝑅.

Note the following: for 𝜑 = ∑
𝑥∈𝑆

𝑚
𝑥
𝑥 ∈ 𝐵, let C

𝜑
= {𝑚
𝑥
|

𝑥 ∈ 𝑆} and for a subset 𝑉 ⊆ 𝑀((𝑆)), we have C
𝑉
= ∪
𝜑∈𝑉

C𝜑.

Lemma 7. Let 𝑀
𝑅
be an 𝑆-compatible and 𝑆-Armendariz 𝑅-

module. Then

r
𝐴 (𝑉) = r

𝑅
(C
𝑉
) ((𝑆; 𝜎; 𝜏)) (8)

for any 𝑉 ⊆ 𝐵.

Proof. Let𝑉 ⊆ 𝐵 and 𝑇 = C
𝑉
= ∪
𝜑∈𝑉

C𝜑 = ∪
𝜑∈𝑉

{𝑚
𝑥
| 𝑥 ∈ 𝑆}.

We show that r
𝐴
(𝑉) = r

𝑅
(𝑇)((𝑆; 𝜎; 𝜏)) and it is enough to

show that r
𝐴
(𝜑) = r

𝑅
(C𝜑)((𝑆; 𝜎; 𝜏)) for each 𝜑 = ∑

𝑥∈𝑆
𝑚
𝑥
𝑥 ∈

𝑉. In fact, let 𝑓 = ∑
𝑦∈𝑆

𝑎
𝑦
𝑦 ∈ r
𝐴
(𝜑). Then 𝜑𝑓 = 0. Since𝑀

𝑅

is an 𝑆 -Armendariz module,𝑚
𝑥
𝑎
𝑦
= 0 for each 𝑥 ∈ supp(𝜑)

and 𝑦 ∈ supp(𝑓). Then 𝑎
𝑦
∈ r
𝑅
(C
𝜑
) for each 𝑦 ∈ supp(𝑓).

Thus 𝑓 ∈ r
𝑅
(C𝜑)((𝑆; 𝜎; 𝜏)) and r

𝐴
(𝜑) ⊆ r

𝑅
(C𝜑)((𝑆; 𝜎; 𝜏)).

Now, let 𝑓 = ∑
𝑦∈𝑆

𝑎
𝑦
𝑦 ∈ r
𝑅
(C𝜑)((𝑆; 𝜎; 𝜏)). Then 𝑎

𝑦
∈ r
𝑅
(C𝜑)

for each 𝑦 ∈ supp(𝑓). Hence 𝑚
𝑥
𝑎
𝑦
= 0 for each 𝑥 ∈ supp(𝜑)

and 𝑦 ∈ supp(𝑓). Since 𝑀
𝑅
is 𝑆-compatible, it follows that

𝑚
𝑥
𝜎
𝑥
(𝑎
𝑦
) = 0, which implies that 𝑚

𝑥
𝜎
𝑥
(𝑎
𝑦
)𝜏(𝑥, 𝑦) = 0 for

each 𝑥 ∈ supp(𝜑) and 𝑦 ∈ supp(𝑓). Consequently

0 = ∑

𝑧∈𝑆

( ∑

{(𝑥,𝑦)|𝑥𝑦=𝑧}

𝑚
𝑥
𝜎
𝑥
(𝑎
𝑦
) 𝜏 (𝑥, 𝑦)) 𝑧 = 𝜑𝑓. (9)

So 𝑓 ∈ r
𝐴
(𝜑) and it follows that r

𝑅
(C𝜑)((𝑆; 𝜎; 𝜏)) ⊆ r

𝐴
(𝜑). So

r
𝐴 (𝑉) = ⋂

𝜑∈𝑉

r
𝐴
(𝜑) = ⋂

𝜑∈𝑉

r
𝑅
(C𝜑) ((𝑆; 𝜎; 𝜏))

= (⋂

𝜑∈𝑉

r
𝑅
(C𝜑)) ((𝑆; 𝜎; 𝜏))

= r
𝑅 (𝑇) ((𝑆; 𝜎; 𝜏)) = r

𝑅
(C
𝑉
) ((𝑆; 𝜎; 𝜏)) .

(10)

For a right 𝑅-module𝑀
𝑅
, we define

r
𝑅
(2
𝑀
) = {r

𝑅 (𝑈) | 𝑈 ⊆ 𝑀} ,

r
𝐴
(2
𝐵
) = {r

𝐴 (𝑉) | 𝑉 ⊆ 𝐵} .

(11)

Lemma 5 gives us the map Π : r
𝑅
(2
𝑀
) → r

𝐴
(2
𝐵
) defined by

Π(𝐼) = 𝐼((𝑆; 𝜎; 𝜏)) for every 𝐼 ∈ r
𝑅
(2
𝑀
). Obviously Π is an

injective map.
In the following lemma we show thatΠ is a bijective map

if and only if𝑀
𝑅
is 𝑆-Armendariz.

Lemma 8. Let𝑀
𝑅
be an 𝑆-compatible 𝑅-module. The follow-

ing conditions are equivalent.

(1) 𝑀
𝑅
is an 𝑆-Armendariz 𝑅-module.

(2) Π : r
𝑅
(2
𝑀
) → r

𝐴
(2
𝐵
) defined byΠ(𝐼) = 𝐼((𝑆; 𝜎; 𝜏)) is

a bijective map.

Proof. (1)⇒(2).
It is only necessary to show thatΠ is surjective. Let𝑉 ⊆ 𝐵

and 𝑇 = C
𝑉
. Since Π(r

𝑅
(𝑇)) = r

𝑅
(𝑇)((𝑆; 𝜎; 𝜏)), the proof of

this direction follows directly from Lemma 7.
(2)⇒(1).
Let 𝑓 = ∑

𝑦∈𝑆
𝑎
𝑦
𝑦 ∈ 𝐴 and 𝜑 = ∑

𝑥∈𝑆
𝑚
𝑥
𝑥 ∈ 𝐵 such that

𝜑𝑓 = 0. Then 𝑓 ∈ r
𝐴
(𝜑). By assumption r

𝐴
(𝜑) = 𝑇((𝑆; 𝜎; 𝜏))

for some right ideal 𝑇 of 𝑅. Hence 𝑓 ∈ 𝑇((𝑆; 𝜎; 𝜏)) which
implies that 𝑎

𝑦
∈ 𝑇 ⊆ r

𝐴
(𝜑) for each 𝑦 ∈ supp(𝑓). So,

𝜑(𝑎
𝑦
1) = 0 and we have that

0 = (∑

𝑥∈𝑆

𝑚
𝑥
𝑥) (𝑎

𝑦
1) = ∑

𝑥∈𝑆

𝑚
𝑥
𝜎
𝑥
(𝑎
𝑦
) 𝜏 (𝑥, 1) 𝑥 (12)

for each 𝑥 ∈ supp(𝜑) and 𝑦 ∈ supp(𝑓). Thus 𝑚
𝑥
𝜎
𝑥
(𝑎
𝑦
) =

0 for each 𝑥 ∈ supp(𝜑) and 𝑦 ∈ supp(𝑓). So, 𝑀
𝑅
is an 𝑆-

Armendariz module.

Recall that a ring is reduced if it has no nonzero nilpotent
elements. Reduced rings have been studied for over forty-
eight years (see [10]). In 2004, the reduced ring concept was
extended to modules by Lee and Zhou [11] as follows: a right
𝑅-module 𝑀

𝑅
is reduced if, for any 𝑚 ∈ 𝑀

𝑅
and any 𝑎 ∈ 𝑅,

𝑚𝑎 = 0 implies𝑚𝑅∩𝑀𝑎 = 0. Clearly, if𝑀
𝑅
is reduced, then,

for all𝑚 ∈ 𝑀
𝑅
and 𝑎 ∈ 𝑅,𝑚𝑎 = 0 implies𝑚𝑅𝑎 = 0. It is clear

that 𝑅 is a reduced ring if and only if 𝑅
𝑅
is a reduced module.

Now, we are able to prove the main result.

Theorem 9. Let 𝑀
𝑅

be a reduced, 𝑆-compatible, and 𝑆-
Armendariz right 𝑅-module. If 𝑀

𝑅
satisfies the right Beachy-

Blair condition, then 𝐵
𝐴
satisfies the right Beachy-Blair condi-

tion.

Proof. Suppose that a right 𝑅-module 𝑀
𝑅
satisfies the right

Beachy-Blair condition and 𝐽 is a right 𝐴-submodule of 𝐵
such that r

𝐴
(𝐽) = 0.

From Lemma 8, we conclude that r
𝑅
(C
𝐽
)((𝑆; 𝜎; 𝜏)) =

Π(r
𝑅
(C
𝐽
)) = r
𝐴
(𝐽) = 0. Thus r

𝑅
(C
𝐽
) = 0.

Let C
𝐽
𝑅 denote the right 𝑅-submodule of 𝑀

𝑅
generated

by C
𝐽
. Since C

𝐽
⊂ C
𝐽
𝑅, we have r

𝑅
(C
𝐽
𝑅) ⊂ r

𝑅
(C
𝐽
) = 0. Since

𝑀
𝑅
satisfies the right Beachy-Blair condition, there exists a

finite subset

𝑋 = {

𝑛
𝑡

∑

𝑖=1

𝑞
𝑡

𝑖
𝑟
𝑡

𝑖
| 𝑞
𝑡

𝑖
∈ C
𝐽
, 𝑟
𝑡

𝑖
∈ 𝑅, 1 ≤ 𝑡 ≤ 𝑘} ⊂ C

𝐽
𝑅, (13)

such that r
𝑅
(𝑋) = 0. Let

𝑋
0
= {𝑞
1

1
, 𝑞
1

2
, . . . , 𝑞

1

𝑛
1

, 𝑞
2

1
, 𝑞
2

2
, . . . , 𝑞

2

𝑛
2

, 𝑞
𝑘

1
, 𝑞
𝑘

2
, . . . , 𝑞

𝑘

𝑛
𝑘

} . (14)

Then𝑋
0
is a finite subset of C

𝐽
. Nowwe will see that r

𝑅
(𝑋
0
) =

0. Let 𝑎 ∈ r
𝑅
(𝑋
0
); then 𝑞

𝑡

𝑖
𝑎 = 0 for 1 ≤ 𝑖 ≤ 𝑛

𝑡
and 1 ≤ 𝑡 ≤ 𝑘.

Since 𝑀
𝑅
is a reduced 𝑅-module, then 𝑞

𝑡

𝑖
𝑟
𝑡

𝑖
𝑎 = 0 for 1 ≤ 𝑖 ≤

𝑛
𝑡
and 1 ≤ 𝑡 ≤ 𝑘. Then for each (∑

𝑛
𝑡

𝑖=1
𝑞
𝑡

𝑖
𝑟
𝑡

𝑖
) ∈ 𝑋, we have

(∑
𝑛
𝑡

𝑖=1
𝑞
𝑡

𝑖
𝑟
𝑡

𝑖
)𝑎 = 0. Therefore 𝑎 ∈ r

𝑅
(𝑋) = 0, and so r

𝑅
(𝑋
0
) = 0

is proved.
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For each 𝑞
𝑡

𝑖
∈ 𝑋
0
, there exists an element 𝜑𝑡

𝑖
∈ 𝐽 such that

𝑞
𝑡

𝑖
∈ C
𝜑
𝑡

𝑖

. Let 𝑉 be a minimal subset of 𝐽 such that 𝜑𝑡
𝑖
∈ 𝑉 for

each 𝑞𝑡
𝑖
∈ 𝑋
0
; then𝑉 is a finite subset of 𝐽 and𝑋

0
⊂ C
𝑉
. Thus

r
𝑅
(C
𝑉
) ⊂ r
𝑅
(𝑋
0
) = 0. Now we show that r

𝐴
(𝑉) = 0. Let the

contrary; that is, r
𝐴
(𝑉) ̸= 0, and suppose that 𝑓 = ∑

𝑦∈𝑆
𝑏
𝑦
𝑦 ∈

r
𝐴
(𝑉) \ {0}; then 𝜑𝑓 = 0 for each 𝜑 = ∑

𝑥∈𝑆
𝑎
𝑥
𝑥 ∈ 𝑉. Let

𝑦 ∈ supp(𝑓); since𝑀
𝑅
is an 𝑆-Armendariz and 𝑆-compatible

module, we have 𝑎
𝑥
𝑏
𝑦
= 0 for all 𝑎

𝑥
∈ C
𝜑
and each 𝜑 ∈ 𝑉.

Hence 𝑏
𝑦
∈ r
𝑅
(C
𝑉
) = 0, a contradiction. Hence r

𝐴
(𝑉) = 0

is proved. Thus 𝐵
𝐴
satisfies the right Beachy-Blair condition.

When 𝑀
𝑅
= 𝑅
𝑅
we have the following consequence of

Theorem 9.

Corollary 10. Suppose that 𝑅 is a reduced, 𝑆-compatible,
and 𝑆-Armendariz ring. If 𝑅 satisfies the right Beachy-Blair
condition, then 𝐴 satisfies the right Beachy-Blair condition.
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Mathématiques Pures et Appliquées, vol. 46, pp. 203–214, 1967.

[11] T.-K. Lee and Y. Zhou, “Reduced modules,” in Rings, Modules,
Algebras and Abelian Groups, vol. 236 of Lecture Notes in Pure
and Applied Mathematics, pp. 365–377, Marcel Dekker, New
York, NY, USA, 2004.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


