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Copyright © 2015 Öznur Demir-Ordu et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Some newN-[2-(aryl)-5-methyl-4-oxo-1,3-thiazolidine-3-yl]-pyridine-3-carboxamides were synthesized and their structures were
investigated by IR,NMR (1H, 13C, and 2D), andmass spectra.The presence of C-2 andC-5 stereogenic centers on the thiazolidinone
ring resulted in diastereoisomeric pairs. The configurations of two stereogenic centers were assigned based upon 1H NMR
analysis of coupling constants and 2D nuclear overhauser enhancement spectroscopy (NOESY) experiment. Resolution of the
diastereoisomers was performed by high performance liquid chromatography (HPLC) using a chiral stationary phase.

1. Introduction

Pyridine-3-carboxamide (nicotinamide), known as vitamin
PP (pellagra protective), is part of the vitamin B group and
plays an important role in biological oxidative chemistry.
Pyridine-3-carboxamide derivatives have gained attention
because of their diverse pharmacological activities, such as
cytoprotective [1], antiviral [2], antitumor [3], and anxiolytic
[4] activities.

Thiazolidin-4-one derivatives possess versatile biological
activities [5], including antifungal [6], antibacterial [7, 8],
anticancer [9, 10], anti-inflammatory [11–13], analgesic [14],
anticonvulsant [15, 16], antiviral [17, 18], and antidiabetic
activities [19, 20].

Currently, nearly 50% of the drugs are in use as race-
mates. But stereochemical factors generally have important
influence on biological activity of the drug molecules. The
two enantiomers present in a racemic mixture can possess
different biological activities; that is, one enantiomer has
therapeutic value; the other enantiomer may be less effective,
inactive, or highly toxic [21–27]. Therefore, the identification
and separation of stereoisomers are considered to be impor-
tant. Chiral compounds bearing thiazolidin-4-one ring have

also been studied for their stereochemistry. Several studies
have been done on these compounds regarding enantiodiffer-
entiation of stereoisomers in the presence of chiral auxiliary
[28], separation of enantiomers by chiral HPLC [29, 30], and
determination of absolute conformations [31, 32].

It is well known that combinations of two or more het-
erocyclic scaffolds in onemolecule can provide a series of com-
pounds with a broad spectrum of biological activity. Here, we
combine thiazolidin-4-one andpyridine-3-carboxamide scaf-
folds together as part of an ongoing project directed towards
the design and synthesis of biologically active nitrogen and
sulfur containing heterocyclic compounds [33]. Our research
focused on stereochemical investigations on diastereomeric
𝑁-[2-(aryl)-5-methyl-4-oxo-1,3-thiazolidine-3-yl]-pyridine-
3-carboxamides (2a–f) (Figure 1) by one- and two-dimen-
sionalNMR techniques. In addition, the analytical chromato-
graphic separation of some derivatives by chiral HPLC has
been examined using a chiral column.

2. Experimental
2.1. General. 1D 1H and 13C NMR spectra of all compounds
were recorded on a Varian-Unity Inova 500 spectrometer
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Table 1: 1H NMR (500MHz) data of compounds 2a–2f in DMSO-𝑑
6
.a

Entry C-6 methyl C-5 methine C-2 methine CO-NH

2a 1.55 (d, 𝐽 = 7.0Hz) 4.13 (qd, 𝐽 = 7.0Hz, 0.97Hz)
4.23 (qd, 𝐽 = 7.0, 1.47Hz)b 5.92 (s) 10.94 (s)

2b 1.54 (d, 𝐽 = 7.0)
1.55 (d, 𝐽 = 6.8Hz)

4.12 (q, 𝐽 = 6.8Hz)b
4.22 (q, 𝐽 = 6.8Hz)c 5.90 (s) 10.94 (s)

10.95 (s)

2c 1.55 (d, 𝐽 = 7.3Hz)
1.57 (d, 𝐽 = 7.3Hz)

4.15 (q, 𝐽 = 6.8Hz)b
4.25 (qd, 𝐽 = 6.8, 1.47Hz)

6.01 (d, 𝐽 = 1.47Hz)
6.02 (s)

10.99 (s)
11.01 (s)

2d 1.53 (d, 𝐽 = 7.3Hz)
1.55 (d, 𝐽 = 7.3Hz)

4.10 (q, 𝐽 = 7.3Hz)
4.16 (qd, 𝐽 = 7.3, 1.47Hz)b

5.87 (s)
5.88 (d, 𝐽 = 1.47Hz) 10.90 (s)

2e 1.54 (d, 𝐽 = 7.3)
1.55 (d, 𝐽 = 6.8Hz)

4.11 (q, 𝐽 = 6.8Hz)b
4.18 (qd, 𝐽 = 6.8, 1.46Hz)

5.89 (s)
5.90 (s) 10.97 (s)

2f 1.48 (d, 𝐽 = 7.3)
1.52 (d, 𝐽 = 6.8Hz)

4.10 (q, 𝐽 = 7.0Hz)b
4.21 (qd, 𝐽 = 7.0, 1.96Hz)

6.22 (d, 𝐽 = 1.96Hz)
6.26 (s)

11.04 (s)
11.05 (s)

aFor 1H NMR data of the other protons, see Section 2.
bThe signals corresponding to major diastereomer.
cCoupling with C-2 methine was observed as a shoulder.
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Figure 1: The synthesized compounds, 2a–f.

operating at 499.7MHz for 1H and 124.9MHz for 13C, using
tetramethylsilane (TMS) as an internal standard. Chemical
shifts (𝛿) were reported in parts per million (ppm). Spectral
widths of 14 and 230 ppm were used in 1H and 13C NMR,
respectively.The splitting patterns of 1HNMRwere designed
as follows: s: singlet, d: doublet, q: quartet, qd: quartet of
doublets, dd: doublet of doublets, and m: multiplet. NOESY
experiment was performed on a Varian-Mercury VX-400-
BB (spectrometer frequency: 399.98MHz, temperature: 24∘C,
relaxation delay: 2.0 sec, acquisition time: 0.15 sec, number
of increments: the number of points in t1: 200, number
of points in each FID (t2): 1920, and spectral width: 1H
channel; 14 ppm). HMBC experiment was performed on
a Varian-Unity Inova 500 spectrometer (spectrometer fre-
quency: 499.7MHz, temperature: 30∘C, relaxation delay:
1.0 sec, acquisition time: 0.128 sec, 400 increments, and spec-
tral width: 1H channel; 14 ppm, 13C channel: 230 ppm).
IR analyses were performed on a Shimadzu IR Affinity-
I FTIR using KBr discs; peaks are reported in cm−1. UV
analyses were performed on ShimadzuUV-1601; wavelengths
are reported in nm. Liquid chromatography analyses were
performed on Shimadzu SCL-10AVP with a diode array
detector and using ChiralpakAD column (particle size: 5𝜇m,
column size: 250× 4.6mm). Eluentwas n-hexane: 2-propanol
(85 : 15) (v : v) with a flow rate of 0.9mLmin−1. Reactions

were followed by TLC using silica gel 60-F
254

. Elemental
analyses were performed on Thermo Finnigan Flash EA
1112 CHNS-932 analyzer. Melting points were recorded using
Buchi B-540 melting point apparatus. The mass spectra were
obtained using Finnigan LCQ Advantage Max Waters 2695
Alliance Micromass ZQ.

2.1.1. General Procedure for the Preparation of N-[2-(Aryl)-5-
methyl-4-oxo-1,3-thiazolidine-3-yl]-pyridine-3-carboxamides.
To a suspension of 0.01mol of aryl 𝑁󸀠-(substituted benzyl-
idene)pyridine-3-carbohydrazide (1a–f) in 30mL dry ben
zene was added 2.5mL (0.028mol) of 2-sulfanylpropanoic
acid. The mixture was refluxed for 6–18 hours using a Dean-
Stark trap. Excess benzene was evaporated in vacuo. The
resulting residue was triturated with NaHCO

3
solution until

CO
2
evolution ceased and was allowed to stand refrigerated

until solidification. The solid thus obtained was washed with
water, dried, and recrystallized from ethanol.

Some spectral and X-ray crystallographic data of com-
pounds 2a, 2b, and 2f were reported regardless of stereo-
chemistry in our previously published articles [34–36].

2.1.2. N-[2-(4-Chlorophenyl)-5-methyl-4-oxo-1,3-thiazolidin-3-
yl]-pyridine-3-carboxamide (2a). Diastereomer ratio% (major/
minor): 54 : 46. 1H-NMR (500MHz, DMSO-𝑑

6
) 𝛿: 7.43–7.47

(2H, m, phenyl-H); 7.48–7.50 (1H, m, pyridine-H); 7.52-7.53
(2H, m, phenyl-H); 8.04–8.09 (1H, m, pyridine-H); 8.73
(1H, dd, 𝐽 = 6.3Hz, 1.4Hz, pyridine-H); 8.84, 8.85 (1H, 2d,
𝐽 = 2.9Hz, 1.4Hz, pyridine-H) [35] (for 1H NMR data of
other protons see Table 1). 13C-NMR (125MHz) (DMSO-𝑑

6
)

𝛿 (ppm): 20.6 (C-6, CH
3
); 39.8, 39.9 (C-5, CH); 60.4, 60.6 (C-

2, CH); 124.3, 124.4 (C13, CH); 127.9, 128.0 (C9, C); 129.3, 129.4
(C16, 20, CH); 130.4, 130.7 (C17, 19, CH); 134.2, 134.4 (C18, C);
135.9, 136.0 (C14, CH); 137.2, 138.1 (C15, C); 149.1, 149.2 (C10,
CH); 153.5, 153.6 (C12, CH); 164.5, 164.6 (C-8, C=O); 172.5,
172.6 (C-4, C=O) (for designations of carbons see Figure 3).

2.1.3. N-[2-(4-Bromophenyl)-5-methyl-4-oxo-1,3-thiazolidin-3-
yl]-pyridine-3-carboxamide (2b). Diastereomer ratio % (major/
minor): 60 : 40. 1H-NMR (500MHz, DMSO-𝑑

6
) 𝛿: 7.44–7.46
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(2H, m, phenyl-H); 7.49–7.56 (1H, m, pyridine-H); 7.57–7.60
(2H, m, phenyl-H); 8.05–8.09 (1H, m, pyridine-H); 8.72–8.73
(1H, m, pyridine-H); 8.86, 8.87 (1H, 2d, 𝐽 = 1Hz, pyridine-
H) [36] (for 1H NMR data of other protons see Table 1).
13C-NMR (125MHz) (DMSO-𝑑

6
) 𝛿 (ppm): 20.2 (CH

3
, C-6;

60%), 20.6 (CH
3
, C-6; 40%); 39.7 (CH, C-5; 40%), 39.8 (CH,

C-5; 60%); 60.4 (CH, C-2; 40%), 60.7 (CH, C-2; 60%); 122.8
(C, C18; 40%), 123.1 (C, C18; 60%); 124.3 (CH, C13; 40%),
124.4 (CH, C13; 60%); 127.8 (C, C9; 60%), 127.9 (C, C9; 40%);
130.7 (CH, C16, 20; 40%), 130.9 (CH, C16, 20; 60%); 132.2
(CH, C17, 19; 40%), 132.3 (CH, C17, 19; 60%); 135.9 (CH, C14;
60%), 136.0 (CH, C14; 40%); 137.7 (C, C15; 60%), 138.6 (C,
C15; 40%); 149.1 (CH, C10; 60%), 149.2 (CH, C10; 40%); 153.6
(CH, C12; 40%), 153.7 (CH, C12; 60%); 164.5 (C=O, C-8;
40%), 164.6 (C=O, C-8; 60%); 172.6 (C=O, C-4; 40%), 172.7
(C=O, C-4; 60%) (for designations of carbons see Figure 3).

2.1.4. N-[2-(4-Trifluoromethylphenyl)-5-methyl-4-oxo-1,3-thi-
azolidin-3-yl]-pyridine-3-carboxamide (2c). Diastereomer ratio
% (major/minor): 53 : 47. White powder (2.78 g, 73%); mp
170.0–173.1∘C; 1H-NMR (500MHz, DMSO-𝑑

6
) 𝛿: 7.49–7.51

(1H, m, pyridine-H); 7.72–7.78 (4H, m, 2-phenyl-H); 8.05–
8.10 (1H,m, pyridine-H); 8.72–8.73 (1H,m, pyridine-H); 8.85,
8.88 (1H, 2d, 𝐽 = 2.0Hz, pyridine-H) (for 1H NMR data of
other protons see Table 1); 13C-NMR (100MHz, DMSO-𝑑

6
)

𝛿: 20.2, 20.3 (C-6, CH
3
); 38.6, 39.2 (C-5, CH); 60.1, 60.4 (C-

2, CH); 124.2, 124.3 (C13, CH); 124.6 (CF
3
, q, 𝐽 = 271Hz);

126.1, 126.2 (C17, 19, CH); 127.6, 127.7 (C9, C); 129.0, 129.4 (C16,
20, CH); 129.8 and 130.0 (C18, C, q, 𝐽 = 32Hz); 135.8, 135.9
(C14, CH); 143.1, 144.0 (C15, C); 148.9, 149.0 (C10, CH); 153.5,
153.6 (C12, CH); 164.4, 164.5 (C-8, C=O); 172.5, 172.7 (C-4,
C=O) (for designations of carbons see Figure 3); IR (KBr):
]max = 3143, 3037, 1732, 1676, 1620, 1595, 1544; UV (EtOH):
𝜆max(log 𝜀) = 203.2 (28135), 219.6 (23655), 262.8 (63.68);
ESI MS: 𝑚/𝑧 = 380.08 ([M − H]−, 100); Anal. Calcd. for
C
17
H
14
F
3
N
3
O
2
S: C, 53.54;H, 3.70; N, 11.02%. Found: C, 53.75;

H, 3.92; N, 10.96%.

2.1.5. N-[2-(4-Benzyloxyphenyl)-5-methyl-4-oxo-1,3-thiazolidin-
3-yl]-pyridine-3-carboxamide (2d). Diastereomer ratio %
(major/minor): 80 : 20. White powder; yield: 3.68 g (88%);
mp 140.4–143.5∘C; 1H-NMR (500MHz, DMSO-𝑑

6
) 𝛿: 5.08

(2H, s, O-CH
2
-C
6
H
5
); 6.99–7.02 (2H, m, 2-phenyl-H);

7.31–7.35 (1H, m, pyridine-H); 7.37–7.51 (7H, m, 2-phenyl
and -O-CH

2
-C
6
H
5
); 8.06–8.09 (1H, m, pyridine-H); 8.73

(1H, dd, 𝐽 = 7.5Hz, 2.0Hz, pyridine-H); 8.84, 8.86 (1H, 2d,
𝐽 = 2.0Hz, pyridine-H) (for 1H NMR data of other protons
see Table 1); 13C-NMR (125MHz, DMSO-𝑑

6
) 𝛿: 20.0 (CH

3
,

C-6; 20%), 20.8 (CH
3
, C-6; 80%); 39.8 (CH, C-5; 20%), 39.9

(CH, C-5; 80%); 60.8 (CH, C-2); 70.0 (CH
2
, C21); 115.5 (C17,

19, CH); 124.3 (CH, C13; 80%), 124.4 (CH, C13; 20%); 128.0
(C9, C); 128.3 (CH, C24, 26; 80%), 128.4 (CH, C24, 26; 20%);
128.6 (CH, C25); 129.1 (CH, C23, 27); 130.0 (CH, C16, 20;
80%), 130.3 (CH, C16, 20; 20%); 130.6 (C15, C); 135.9 (CH,
C14; 20%), 136.0 (CH, C14; 80%); 137.5 (C, C22; 20%), 137.6
(C, C22; 80%); 149.1 (CH, C10; 20%), 149.2 (CH, C10; 80%);
153.6 (C12, CH); 159.6 (C18, C); 164.5 (C-8, C=O); 172.6 (C-4,
C=O) (for designations of carbons see Figure 5); IR (KBr):

]max = 3473, 3163, 3066, 1710, 1672, 1606, 1591; 1244. UV
(EtOH): 𝜆max(log 𝜀) = 204.8 (59593), 233.2 (280.89), 266.8
(13560). ESI MS:𝑚/𝑧 = 418.10 ([M −H]−, 100); Anal. Calcd.
for C

23
H
21
N
3
O
3
S: C, 64.47; H, 5.17; N, 9.81%. Found: C,

64.63; H, 5.06; N, 9.76%.

2.1.6.N-[2-(3-Methoxyphenyl)-5-methyl-4-oxo-1,3-thiazolidin-
3-yl]-piridine-3-carboxamide (2e). Diastereomer ratio %
(major/minor): 73 : 27. White powder; yield: 2.24 g (65%);
mp 101.0–105.0∘C; 1H-NMR (500MHz, DMSO-𝑑

6
) 𝛿: 3.74

(3 h, s, OCH
3
); 6.90–6.93 (1H, m, 2-phenyl-H); 7.02–7.04

(2H, m, 2-phenyl-H); 7.27–7.30 (1H, m, 2-phenyl-H); 7.50
(1H, dd, 𝐽 = 5.3, 4.8Hz, pyridine-H); 8.05–8.08 (1H, m,
pyridine-H); 8.72 (1H, dd, 𝐽 = 7.8, 2.0Hz, pyridine-H); 8.85
(major diastereomer), 8.87 (minor diastereomer) (1H, 2d,
𝐽 = 1.9Hz, 𝐽 = 1.9Hz, pyridine-H) (for 1H NMR data of
other protons see Table 1). 13C-NMR (125MHz, DMSO-𝑑

6
)

𝛿: 20.2 (CH
3
, C-6; 73%), 20.6 (CH

3
, C-6; 27%); 39.8 (CH,

C-5; 27%), 39.9 (CH, C-5; 73%); 55.8 (OCH
3
); 60.9 (CH,

C-2; 27%), 61.2 (CH, C-2; 73%); 113.5 (CH, C18; 27%), 113.8
(CH, C18; 73%); 115.3 (CH, C16; 27%), 115.4 (CH, C16; 73%);
120.4 (CH, C20; 27%), 120.8 (CH, C20; 73%); 124.3 (CH, C13;
27%), 124.4 (CH, C13; 73%); 127.9 (C, C9; 73%), 128.0 (C, C9;
27%); 130.4 (CH, C19; 27%), 130.5 (CH, C19; 73%); 136.0 (CH,
C14; 73%), 136.1 (CH, C14; 27%); 139.8 (C, C15; 73%), 140.5
(C, C15; 27%); 149.1 (CH, C10; 73%), 149.2 (CH, C10; 27%);
153.6 (CH, C12); 160.1 (C, C17; 73%), 160.2 (C, C17; 27%);
164.6 (C-8, C=O); 172.8 (C=O, C-4; 27%), 172.9 (C=O, C-4;
73%) (for designations of carbons see Figure 3); IR (KBr):
]max = 3487, 3176, 3076, 1707, 1670, 1610, 1591, 1546; 1260; UV
(EtOH): 𝜆max(log 𝜀) = 204.0 (42863), 225.0 (17859), 263.8
(6101); ESI MS: 𝑚/𝑧 = 342.23 ([M − H]−, 100); Anal. Calcd.
for C
17
H
17
N
3
O
3
S: C, 56.50, H, 5.30, N, 11.63%. Found: C,

56.47; H, 4.77; N, 11.50%.

2.1.7. N-[2-(2-Nitrophenyl)-5-methyl-4-oxo-1,3-thiazolidin-3-yl]-
piridine-3-carboxamide (2f). Diastereomer ratio % (major/
minor): 52 : 48. 1H-NMR (500MHz, DMSO-𝑑

6
) 𝛿: 7.51

(1H, dd, 𝐽 = 4.8Hz, 4.4Hz, pyridine-H); 7.61–7.65 (1H, m,
2-phenyl-H); 7.85–7.90 (2H, m, 2-phenyl-H); 8.04–8.11 (2H,
m, 2-phenyl-H and pyridine-H); 8.73 (1H, dd, 𝐽 = 8.3Hz,
2.0Hz, pyridine-H); 8.71, 8.79 (1H, 2d, 𝐽 = 2.4Hz, 𝐽 = 2.4Hz,
pyridine-H) [34] (for 1H NMR data of other protons see
Table 1). 13C-NMR (125MHz) (DMSO-𝑑

6
) 𝛿 (ppm): 19.0,

21.9 (C-6, CH
3
); 37.2, 39.2 (C-5, CH); 56.6, 56.7 (C-2, CH);

124.2, 124.3 (C13, CH); 125.6, 125.7 (C9, C); 127.9, 128.0 (C17,
CH); 128.3, 128.5 (C20, CH); 130,3, 130.5 (C19, CH); 135.3,
135,4 (C18, CH); 135.5, 135.8 (C15, C); 136.1, 136.2 (C14, CH);
148.1, 148.6 (C16, C); 149.2, 149.3 (C10, CH); 153.5, 153.6 (C12,
CH); 164.7, 164.8 (C-8, C=O); 172.8, 173.2 (C-4, C=O) (for
designations of carbons see Figure 3).

3. Results and Discussion

3.1. Chemistry. Novel compounds 2a–f have been synthe-
sized by the reaction of compounds 1a–f with racemic (±)-
2-sulfanylpropanoic acid in dry benzene (Figure 2).

The structures of the compounds were determined by
microanalysis, IR, 1H-NMR, 13C-NMR, HMBC, and ESI
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mass spectrometry. IR spectra of 2a–f showed common char-
acteristic absorption bands at 3142–3176 cm−1 (NH), 1707–
1732 cm−1 (thiazolidinone C=O), and 1670–1681 cm−1 (NH-
C=O) which provided evidence for the ring closure reaction
between 1a–f and 2-sulfanylpropanoic acid. Disappearance
of the peak at 8 ppm corresponding to N=CH proton of 1a–
f [37] and the observation of C-2 proton of 2a–f at 5.88–
6.30 ppm in the 1H-NMR spectra were also taken as the proof
of the formation of thiazolidin-4-one ring.

The structure of 2b was confirmed by the HMBC spec-
trum in which the correlations of C-8 (𝛿C 164.5, 164.6 ppm)
with H-10 (𝛿H 8.86 ppm), H-14 (𝛿H 8.07 ppm), and N-H
(H-7) (𝛿H 10.94, 10.95 ppm); C-4 (𝛿C 172.6, 172.7 ppm) with
H-5 (𝛿H 4.12, 4.22 ppm) and H-6 (𝛿H 1.54, 1.55 ppm); and
C-6 (𝛿C 20.6, 20.2 ppm) with H-2 (𝛿H 5.90 ppm), H-5 (𝛿H
4.12, 4.22 ppm), and H-6 (𝛿H 1.54, 1.55 ppm) enabled definite
assignment of CONH (C-8) and thiazolidinone C=O (C-4)
carbons (Figure 3).

3.2. Stereochemical Investigations. Due to the formation of
a new stereocenter at C-2, in principle four stereoisomers
were expected to form the following: two enantiomeric (2S-
5R/2R-5S, 2S-5S/2R-5R) and two diastereomeric pairs (2S-
5R/2S-5S, 2R-5S/2R-5R) (Figure 4). In fact, compounds 2a–
f were obtained as mixtures of unequal composition of two
diastereomers which were differentiated by their 1H NMR
spectra (Figure 5). It has been observed that the ratios of
the major and minor diastereomers calculated from the
integration values of the C-5 methine proton signals were
54% : 46%, 40% : 60%, 47% : 53%, 80% : 20%, 27% : 73%, and
48% : 52% for compounds 2a–f, respectively. 13C signals at
C-2, C-4, C-5, and C-6 positions for compounds 2b and 2e

also appeared as double peaks in the HMBC spectra due to
the formation diastereoisomers (see Section 2). Chiral HPLC
of compounds 2b and 2c on the Chiralpak AD-H column
resulted in four peaks (Figure 6) which further proved the
presence of four stereoisomers.

For all diastereomeric compounds (Figure 4), it was
observed that C-5 methine proton on the thiazolidinone
moiety was coupled with C-6 methyl protons and appeared
as two quartets (Table 1, Figure 5). Similarly the signal of C-6
methyl protons was coupled with C-5 methine and observed
as two doublets for compounds 2b–2f. In all of the 1H NMR
spectra of compounds2a–2f (except2b) the higher frequency
signals of C-5 methine appeared as a quartet of doublets due
to the long-range coupling with the C-2 proton. The two
diastereotopic C-2 hydrogens could be observed separately
only for compounds 2c–2f. Aromatic protons of pyridyl and
C-2 aryl rings gave signals between 6.9 and 9.0 ppm. In this
region some of the aromatic peaks corresponding to two
diastereomers could also be observed separately for all com-
pounds (Figure 5). The N-H proton was observed at around
11 ppm as two singlets with unequal integral ratios for com-
pounds 2b, 2c, and 2f and only one singlet for 2a, 2d, and 2e.

We have previously elucidated the stereostructures of
some oxazolidine derivatives byNOESY experiment [38–40].
The configurations of the major and minor stereoisomers
of thiazolidin-4-one derivatives (2a–2f) were determined
by means of 1H NMR and NOESY spectra of compound
2f. The 1H NMR spectrum of 2f showed that the major
diastereomer had its C-5 methine signal (quartet) at a lower
frequency (4.10 ppm, 𝐽H-5,CH3-6 = 7.0Hz) than the signal
of the minor component (4.21 ppm, qd, 𝐽H-5,CH3-6 = 7.0Hz
𝐽H-5,H-2: 1.96Hz). The signal of C-2 proton of compound
2f was observed as two separate signals (Δ𝛿: 0.04 ppm)
corresponding to two diastereomers: a singlet at 6.26 ppm for
themajor diastereomer and a doublet at 6.22 ppm (4𝐽H-2,H-5 =

1.96Hz) for the minor diastereomer. The observed long-
range coupling constant (4𝐽) of the doublet, which is char-
acteristic of trans protons [41], was consistent with that of
the higher frequency quartet ofminor diastereomer. Based on
these results, the stereochemistry of the minor diastereomer
was assigned as 2S, 5S or 2R, 5R, in which C-2 and C-5
methine protons are trans to each other (Figure 4).

NOESY spectrum for compound 2f was taken in order
to further prove that the stereochemistry of the minor and
the major diastereomers was 2S, 5S/2R, 5R and 2S, 5R/2R,
5S, respectively (Figure 7). Observation of the cross peaks at
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Table 2: The configurations of C-2 and C-5 centers of major and
minor diastereomers.

Compounds Diastereomer
ratio, %

Configurations of C-2 and C-5
Major

stereoisomer
Minor

stereoisomer
2a 54 : 46 2S, 5S or 2R, 5R 2S, 5R or 2R, 5S
2b 60 : 40 2S, 5R or 2R, 5S 2S, 5S or 2R, 5R
2c 53 : 47 2S, 5R or 2R, 5S 2S, 5S or 2R, 5R
2d 80 : 20 2S, 5S or 2R, 5R 2S, 5R or 2R, 5S
2e 73 : 27 2S, 5R or 2R, 5S 2S, 5S or 2R, 5R
2f 52 : 48 2S, 5R or 2R, 5S 2S, 5S or 2R, 5R

6.26 ppm and 4.10 ppm in 2D NOESY spectrum indicated
the spatial proximity of C-2 and C-5 methine hydrogens of
themajor diastereomer (Figure 7(a)). Cross peaks at 1.52 ppm
and 7.86 ppmalso revealed thatC-6methyl and the hydrogens
of the aryl ring [42, 43] of the major diastereomer are
in close proximity (Figure 7(b)). These observations were
consistent with the 2R, 5S or 2S, 5R configurations. Similarly,
for the minor diastereomer cross peaks between the signals
of C-6 methyl and C-2 methine hydrogens were observed
(Figure 7(c)). A NOESY correlation between C-5 methine
and aromatic protons (Figure 7(d)) further confirmed that
the configurations of C-2 and C-5 positions of the minor
diastereomer were 2S, 5S or 2R, 5R. Since the spectra of
2a–2f have the feature in common, by analogy, it could be
concluded that all the deshielded signals of C-5 methine
belong to 2S, 5S or 2R, 5R stereoisomer (Table 1). Based on
these results, the configurations of C-2 and C-5 centers of the
major and minor diastereomers are given in Table 2.

The diastereomeric isomer ratios of compounds 2b and
2c obtained by the integration of the 1H NMR signals have
been found identical with those obtained by HPLC analysis.
Therefore, with the knowledge of the configurations of the C-
2 and C-5 centers of the major and minor diastereomers of
2b and 2c, the HPLC peaks (Figures 6(a) and 6(b)) marked
by “♣” could be assigned to 2S, 5R or 2R, 5S (major) and the
others to 2S, 5S or 2R, 5R (minor).

In order to determine the reason of the diastereoselectiv-
ity of the synthesis, samples of 2d and 2e were recrystallized
once again from ethanol and the composition of crystals
precipitated first was analyzed by NMR. We have found a
different composition for 2d and 2e. Therefore, the different
isomer ratios showed that the obvious diastereoselectivity
upon recrystallization from ethanol was due to different
solubilities of the diastereomeric isomers in ethanol which
was observed previously [29, 30, 39, 40] and not related to any
remarkable favorable attack during ring closure. Nevertheless
fractional crystallization of the product from ethanol allowed
for an easy access to diastereomerically enriched 2b, 2d, and
2e (Table 2).

4. Conclusions

The reaction of aryl 𝑁󸀠-(substituted benzylidene)pyridine-
3-carbohydrazide with 2-mercaptopropanoic acid produced

mixtures of unequal composition of two diastereomeric
𝑁-[2-(aryl)-5-methyl-4-oxo-1,3-thiazolidine-3-yl]-pyridine-
3-carboxamide derivatives which were differentiated by 1H
NMR spectra. The configurations of C-2 and C-5 stereogenic
centers of thiazolidin-4-one ring for the major and the
minor diastereomers have been found via one- and two-
dimensional NMR spectroscopy. Four stereoisomers of
compounds 2b and 2c were resolved by chiral HPLC.
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[18] F. Göktaş, E. Vanderlinden, L. Naesens, N. Cesur, and Z. Cesur,
“Microwave assisted synthesis and anti-influenza virus activity
of 1-adamantyl substituted N-(1-thia-4-azaspiro[4.5]decan-4-
yl)carboxamide derivatives,” Bioorganic and Medicinal Chem-
istry, vol. 20, no. 24, pp. 7155–7159, 2012.

[19] D. Kini andM.Ghate, “Synthesis and oral hypoglycemic activity
of3-[5󸀠-Methyl-2󸀠-aryl-3󸀠-(thiazol-2󸀠󸀠-yl amino)thiazolidin-4’-
one]coumarin derivatives,” European Journal of Chemistry, vol.
8, no. 1, pp. 386–390, 2011.

[20] R. MacCari, A. D. Corso, M. Giglio, R. Moschini, U. Mura,
and R. Ottan, “In vitro evaluation of 5-arylidene-2-thioxo-4-
thiazolidinones active as aldose reductase inhibitors,” Bioor-
ganic and Medicinal Chemistry Letters, vol. 21, no. 1, pp. 200–
203, 2011.

[21] J. M. Beale and J. H. Block, Wilson and Gisvold’s Textbook of
Organic Medicinal and Pharmaceutical Chemistry, Lippincott
Williams &Wilkins, Philadelphia, Pa, USA, 2011.
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and H. Duddeck, “Atropisomeric 3-aryl-2-oxo-4-oxazolidino-
nes and some thione analogues—enantiodifferentiation and lig-
and competition in applying the dirhodiummethod,” Chirality,
vol. 20, no. 3-4, pp. 344–350, 2008.
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