On 3-Regular Bipancyclic Subgraphs of Hypercubes

Y. M. Borse and S. R. Shaikh
Department of Mathematics, University of Pune, Pune 411 007, India
Correspondence should be addressed to Y. M. Borse; ymborse@math.unipune.ac.in

Received 31 July 2014; Accepted 15 April 2015
Academic Editor: Chris A. Rodger
Copyright © 2015 Y. M. Borse and S. R. Shaikh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The n-dimensional hypercube Q_{n} is bipancyclic; that is, it contains a cycle of every even length from 4 to 2^{n}. In this paper, we prove that $Q_{n}(n \geq 3)$ contains a 3-regular, 3-connected, bipancyclic subgraph with l vertices for every even l from 8 to 2^{n} except 10 .

1. Introduction

The cartesian product $G_{1} \times G_{2}$ of two graphs G_{1} and G_{2} is a graph with the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, and any two vertices (u_{1}, u_{2}) and (v_{1}, v_{2}) are adjacent in $G_{1} \times G_{2}$ if and only if either $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} in G_{2} or $u_{2}=v_{2}$ and u_{1} is adjacent to v_{1} in G_{1}. A graph G with even number of vertices is bipancyclic if it contains a cycle of every even length from 4 to $|V(G)|$. The hypercube Q_{n} of dimension n is a graph obtained by taking cartesian product of the complete graph K_{2} on two vertices with itself n times; that is, $Q_{n}=K_{2} \times K_{2} \times \cdots \times K_{2}$ (n times). The hypercube Q_{n} is an n-regular, n-connected, bipartite, and bipancyclic graph with 2^{n} vertices. It is one of the most popular interconnection network topologies [1]. The bipancyclicity of a given network is an important factor in determining whether the network topology can simulate rings of various lengths. The connectivity of a network gives the minimum cost to disrupt the network. Regular subgraphs, bipancyclicity, and connectivity properties of hypercubes are well studied in the literature [2-6].

Since $Q_{n}(n \geq 2)$ is bipancyclic, it contains a 2-regular, 2-connected subgraph (cycle) with l vertices for every even integer l from 4 to 2^{n}. Suppose $3 \leq k \leq n$. Mane and Waphare [4] proved that Q_{n} contains a spanning k-regular, k-connected, bipancyclic subgraph. So the natural question arises; what are the other possible orders existing for k regular, k-connected and bipancyclic subgraphs of Q_{n} ? As $Q_{n}=Q_{n-k} \times Q_{k}, Q_{k}$ can be regarded as a subgraph of Q_{n}. Hence Q_{n} has a k-regular, k-connected, bipancyclic subgraph with 2^{k} vertices. In this paper, we answer the question for
$k=3$. We prove that $Q_{n}(n \geq 3)$ contains a 3-regular, 3connected, and bipancyclic subgraph with l vertices for every even integer l from 8 to 2^{n} except 10 .

2. Proof

The cartesian product of a nontrivial path with the complete graph K_{2} is a ladder graph. Let F be the graph obtained from a path $A_{1}, A_{2}, \ldots, A_{m}(m \geq 4)$ by adding one extra edge $A_{1} A_{4}$. We call the graph $F \times K_{2}$ a ladder type graph on $2 m$ vertices (see Figure 1).

Lemma 1. A ladder graph is bipancyclic.

Proof. Let L be a ladder graph with $2 m$ vertices. Label the vertices of L by A_{i} 's and B_{i} 's so that L is the union of the paths $P_{1}=A_{1}, A_{2}, \ldots, A_{m}$ and $P_{2}=B_{1}, B_{2}, \ldots, B_{m}$ and the m edges $A_{i} B_{i}$ for $i=1,2, \ldots, m$. Suppose $2 \leq l \leq m$. Let P_{1}^{\prime} be the subpath of P_{1} from A_{1} to A_{l} and let P_{2}^{\prime} be the subpath of P_{2} from B_{1} to B_{l}. Then $P_{1}^{\prime} \cup P_{2}^{\prime} \cup\left\{A_{1} B_{1}, A_{l} B_{l}\right\}$ is a cycle of length $2 l$ in L. Hence L has a cycle of every even length from 4 to $|V(L)|$.

The vertices of the hypercube Q_{n} can be labeled by the binary strings of length n so that two vertices are adjacent in Q_{n} if and only if their binary strings differ in exactly one coordinate. Denote by Q_{n-1}^{j} the subgraph of Q_{n} induced by the set of all vertices of Q_{n} each having first coordinate j for $j=0,1$. Then Q_{n-1}^{0} and Q_{n-1}^{1} are vertex-disjoint and each of them is isomorphic to Q_{n-1}. We can express Q_{n} as $Q_{n}=Q_{n-1}^{0} U$

Figure 1
$Q_{n-1}^{1} \cup D$, where $D=\left\{X Y \mid X \in V\left(Q_{n-1}^{0}\right)\right.$ and $\left.Y \in V\left(Q_{n-1}^{1}\right)\right\}$. Note that D is a perfect matching in Q_{n}.

Lemma 2. For every m with $4 \leq m \leq 2^{n-1}$, there exists a ladder type subgraph in $Q_{n}(n \geq 3)$ with $2 m$ vertices.

Proof. We first prove that Q_{n} contains a Hamiltonian cycle C with a chord e which forms a 4 -cycle with three edges of C. This is obvious for $n=3$. Suppose $n \geq 4$. Write Q_{n} as $Q_{n}=Q_{n-1}^{0} \cup Q_{n-1}^{1} \cup D$. By induction, there exists a Hamiltonian cycle C_{0} in Q_{n-1}^{0} with a chord e which forms a 4-cycle Z_{0} with three edges of C_{0}. Let C_{1} be the corresponding Hamiltonian cycle in Q_{n-1}^{1}. Let $X Y$ be any edge on C_{0} which is not on Z_{0} and let $X^{\prime} Y^{\prime}$ be the corresponding edge on C_{1}. Then $X X^{\prime}$ and $Y Y^{\prime}$ belong to D. Let $C=\left(C_{0}-X Y\right) \cup\left(C_{1}-X^{\prime} Y^{\prime}\right) \cup\left\{X X^{\prime}, Y Y^{\prime}\right\}$. Then C is a Hamiltonian cycle in Q_{n} such that e is its chord which forms the 4-cycle Z_{0} with three edges of C.

Now, we prove that Q_{n} contains a ladder type graph with $2 m$ vertices. Obviously, Q_{3} itself is a ladder type graph on 8 vertices. Suppose $n \geq 4$. By the above part, Q_{n-1} contains a Hamiltonian cycle C with a chord e which forms a 4-cycle with three edges of C. Label the vertices of C by A_{i} 's so that $C=A_{1}, A_{2}, A_{3}, \ldots, A_{2^{n-1}}, A_{1}$ and $e=A_{1} A_{4}$. Let F be the subgraph of Q_{n-1} obtained by taking the union of the subpath $A_{1}, A_{2}, A_{3}, \ldots, A_{m}$ of C and the edge $A_{1} A_{4}$. Then $F \times K_{2}$ is a ladder type subgraph of $Q_{n-1} \times K_{2}=Q_{n}$ with $2 m$ vertices.

As a consequence of a result of [7], we get the following lemma.

Lemma 3. Let G_{i} be an n_{i}-regular, n_{i}-connected graph for $i=$ 1,2 . Then the graph $G_{1} \times G_{2}$ is $\left(n_{1}+n_{2}\right)$-regular, $\left(n_{1}+n_{2}\right)$ connected.

It is well known that the hypercube Q_{n} does not contain the complete bipartite graph $K_{2,3}$ as a subgraph. The following result is the main theorem of this paper.

Theorem 4. Let n be an integer such that $n \geq 3$. Then there exists a 3-regular, 3-connected, and bipancyclic subgraph of Q_{n} on l vertices if and only if l is an even integer with $8 \leq l \leq 2^{n}$ and $l \neq 10$.

Proof. Suppose Q_{n} contains a 3-regular subgraph H with l vertices. By Handshaking Lemma, the sum of the degrees of all vertices of a graph is even. Hence $3 l$ is even. Consequently, l is even. The minimum degree of H is three. Therefore H
contains an even cycle. Since H is simple, $l \geq 4$. If $l=4$, then H contains a triangle, a contradiction. Thus $l \geq 6$. Suppose $l=6$. Then H must contain a cycle Z of length four. A vertex of H outside Z has at least two neighbours in Z giving a triangle or a $K_{2,3}$ in Q_{n}, which is a contradiction. Suppose $l=10$. Let e be an edge of H. Without loss of generality, we may assume that the end vertices of e differ in the first coordinate. Write Q_{n} as $Q_{n}=Q_{n-1}^{0} \cup Q_{n-1}^{1} \cup D$. Then $e \in D$. Therefore H intersects with both Q_{n-1}^{0} and Q_{n-1}^{1}. Let H_{j} be a component of $H \cap Q_{n-1}^{j}$ for $j=0,1$. Then H_{j} is a subgraph of Q_{n-1}^{j} with minimum degree two and hence it contains a cycle. As Q_{n} is simple bipartite, H_{j} has at least four vertices. Since $|V(H)|=10, H_{j}$ is the only component of H in $H \cap Q_{n-1}^{j}$. We may assume that $\left|V\left(H_{0}\right)\right| \leq\left|V\left(H_{1}\right)\right|$. Then $\left|V\left(H_{0}\right)\right|=4$ or $\left|V\left(H_{0}\right)\right|=5$. Let C_{0} be an even cycle in H_{0}. Then $\left|C_{0}\right|=4$. If H_{0} has 5 vertices, then the vertex of H_{0} which is not on C_{0} is adjacent to at least two vertices of C_{0} giving a triangle or a $K_{2,3}$ in Q_{n-1}^{0}, a contradiction. Consequently, H_{0} has 4 vertices. Thus $H_{0}=C_{0}$. Let C_{1} be the cycle in Q_{n-1}^{1} corresponding to C_{0}. Since H is 3-regular, each vertex of C_{0} has one neighbour in H_{1} along an edge of D. Therefore all vertices of C_{1} belong to H_{1}. As H_{1} has six vertices, it has a vertex X which is not on C_{1}. Then X has no neighbour in H_{0}. Thus X has three neighbours in H_{1}. Therefore X has at least two neighbours in the 4 -cycle C_{1} giving a triangle or a $K_{2,3}$ in Q_{n-1}^{1}, a contradiction. Hence $l \neq 10$. Thus l is an even integer with $8 \leq l \leq 2^{n}$ and $l \neq 10$.

Now, we construct a 3-regular, 3-connected, bipancyclic subgraph of Q_{n} with l vertices for every even integer l with $8 \leq l \leq 2^{n}$ and $l \neq 10$. Suppose $l=4 m$ for some integer m with $2 \leq m \leq 2^{n-2}$. Write Q_{n} as $Q_{n}=Q_{n-1} \times K_{2}$. Since Q_{n-1} is a bipancyclic graph and $l / 2$ is even, there is a cycle C of length $l / 2$ in Q_{n-1}. By Lemma 3, $C \times K_{2}$ is a 3-regular, 3connected subgraph of Q_{n} with l vertices. Let e be an edge of C. Then $(C-e) \times K_{2}$ is a ladder graph which spans $C \times K_{2}$. By Lemma $1, C \times K_{2}$ is bipancyclic.

Suppose $l=4 m+2$ with $3 \leq m \leq 2^{n-2}-1$. Write Q_{n} as $Q_{n}=Q_{n-1}^{0} \cup Q_{n-1}^{1} \cup D$. As $4 \leq m+1 \leq 2^{n-2}$, there exists a ladder type subgraph L_{1} in Q_{n-1}^{0} on $2 m+2$ vertices by Lemma 2 . Label the vertices of L_{1} by A_{i} 's and B_{i} 's so that $A_{1}, A_{2}, \ldots, A_{m+1}$ and $B_{1}, B_{2}, \ldots, B_{m+1}$ are paths and $A_{i} B_{i}$ is an edge of L_{1} for $i=1,2, \ldots, m+1$. Let L_{2} be the ladder type subgraph of Q_{n-1}^{1} on $2 m+2$ vertices corresponding to L_{1}. Label the vertices of L_{2} by $A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{m+1}^{\prime}$ and $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{m+1}^{\prime}$, where the vertex A_{i}^{\prime} corresponds to A_{i}, and the vertex B_{i}^{\prime} corresponds to B_{i} for every $i=1,2, \ldots, m+1$. Let L_{1}^{\prime} be the graph obtained from L_{1} by deleting the edges $A_{2} B_{2}$ and $A_{4} B_{4}$. Let L_{2}^{\prime} be the graph obtained from L_{2} by deleting two vertices A_{1}^{\prime} and B_{1}^{\prime}. Then L_{1}^{\prime} is a subgraph of Q_{n-1}^{0} with $2 m+2$ vertices and L_{2}^{\prime} is a ladder subgraph of Q_{n-1}^{1} with $2 m$ vertices.

Let $H=L_{1}^{\prime} \cup L_{2}^{\prime} \cup D_{2}$, where $D_{2}=\left\{A_{2} A_{2}^{\prime}, B_{2} B_{2}^{\prime}\right.$, $\left.A_{m+1} A_{m+1}^{\prime}, B_{m+1} B_{m+1}^{\prime}\right\} \subset D$ (see Figure 2). Then H is a 3regular subgraph of Q_{n} with $4 m+2=l$ vertices. We claim that H is bipancyclic and 3 -connected.

Claim 1. H is bipancyclic.

Figure 2

Clearly, $C=A_{1}, A_{2}, \ldots, A_{m+1}, A_{m+1}^{\prime}, A_{m}^{\prime}, \ldots, A_{2}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$, $\ldots, B_{m+1}^{\prime}, B_{m+1}, B_{m}, \ldots, B_{1}, A_{1}$ is a Hamiltonian cycle in H. By deleting two vertices A_{2}^{\prime} and B_{2}^{\prime} and then adding the edge $A_{3}^{\prime} B_{3}^{\prime}$ to C, we get a cycle of length $4 m$ in H. Similarly, we obtain a cycle of length $4 m-2$ in H from C by deleting four vertices $A_{2}^{\prime}, A_{3}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ and then adding the edge $A_{4}^{\prime} B_{4}^{\prime}$. Now, by deleting six vertices $A_{1}, A_{2}, B_{1}, B_{2}, A_{2}^{\prime}, B_{2}^{\prime}$ from C adding the edges $A_{3} B_{3}$ and $A_{3}^{\prime} B_{3}^{\prime}$ gives a cycle of length $4 m-4$ in H. Suppose $m=3$. Then H has $4 m+2=14$ vertices. We get a cycle of length 4 and a cycle of length 6 in the ladder L_{2}^{\prime} as, by Lemma 1, it is a bipancyclic graph on six vertices. Thus H contains a cycle of every even length from 4 to 14 . Suppose $m \geq 4$. Then L_{1}^{\prime} has at least 10 vertices. Let L be the ladder in H formed by two paths $A_{5}, A_{6}, \ldots, A_{m+1}, A_{m+1}^{\prime}, A_{m}^{\prime}, \ldots, A_{2}^{\prime}$ and $B_{5}, B_{6}, \ldots, B_{m+1}, B_{m+1}^{\prime}, B_{m}^{\prime}, \ldots, B_{2}^{\prime}$ and the matching $A_{i} B_{i}$ and $A_{j}^{\prime} B_{j}^{\prime}$ for $i=5,6, \ldots, m+1$ and $j=2,3, \ldots, m+1$. By Lemma 1, L is bipancyclic. Hence L contains a cycle of every even length from 4 to $|V(L)|=4 m-6$. Thus H contains a cycle of every even length from 4 to $|V(H)|=4 m+2=l$. Therefore H is bipancyclic.

Claim 2. H is 3-connected.

Since H contains a Hamiltonian cycle, it is 2-connected. It suffices to prove that deletion of any two vertices from H leaves a connected graph. Let $S \subset V(H)$ with $|S|=2$. We prove that $H-S$ is connected. Let $S=\{X, Y\}$. Suppose S intersects both $V\left(L_{1}^{\prime}\right)$ and $V\left(L_{2}^{\prime}\right)$. We may assume that $X \in V\left(L_{1}^{\prime}\right)$ and $Y \in V\left(L_{2}^{\prime}\right)$. Being Hamiltonian graphs, both L_{1}^{\prime} and L_{2}^{\prime} are 2-connected. Hence $L_{1}^{\prime}-X$ and $L_{2}^{\prime}-Y$ are connected. There are at least two edges from the set D_{2} which connects $L_{1}^{\prime}-X$ to $L_{2}^{\prime}-Y$ in $H-S$. Therefore $H-S$ is connected.

Suppose $S \subset V\left(L_{2}^{\prime}\right)$. Then $S \cap V\left(L_{1}^{\prime}\right)=\phi$ and $\left\{A_{2}^{\prime}, B_{2}^{\prime}, A_{m+1}^{\prime}, B_{m+1}^{\prime}\right\} \backslash S \neq \phi$. Obviously, L_{1}^{\prime} is connected. Suppose $L_{2}^{\prime}-S$ is connected. Then it is joined to L_{1}^{\prime} through at least two edges from the set D_{2}. This implies that $H-S$ is connected. Suppose $L_{2}^{\prime}-S$ is not connected. Then one vertex of S belongs the path $A_{2}^{\prime}, A_{3}^{\prime}, \ldots, A_{m+1}^{\prime}$ and the other vertex belongs to the path $B_{2}^{\prime}, B_{3}^{\prime}, \ldots, B_{m+1}^{\prime}$. Let
$C=A_{2}^{\prime}, A_{3}^{\prime}, \ldots, A_{m+1}^{\prime}, B_{m+1}^{\prime}, B_{m}^{\prime}, \ldots, B_{2}^{\prime}, A_{2}^{\prime}$ be a Hamiltonian cycle of L_{2}^{\prime}. Then $C-S$ has exactly two components, say, T_{1} and T_{2} with vertex set $V\left(T_{1}\right)$ and $V\left(T_{2}\right)$. Note that T_{1} or T_{2} may have a single vertex. Therefore $L_{2}^{\prime}-S$ has two components one with vertex set $V\left(T_{1}\right)$ and the other with vertex set $V\left(T_{2}\right)$. It is easy to see that T_{i} contains a vertex from the set $\left\{A_{2}^{\prime}, B_{2}^{\prime}, A_{m+1}^{\prime}, B_{m+1}^{\prime}\right\} \backslash S$ and hence has a neighbour in L_{1}^{\prime} along an edge of the set D_{2} for $i=1,2$. Consequently, each component of $L_{2}^{\prime}-S$ has a neighbour in L_{1}^{\prime} in the graph $H-S$. This implies that $H-S$ is connected.

Suppose $S \subset V\left(L_{1}^{\prime}\right)$. Then L_{2}^{\prime} is connected. Let $\mathscr{F}=$ $\left\{A_{2}, B_{2}, A_{m+1}, B_{m+1}\right\} \backslash S$. Then $\mathscr{F} \neq \phi$ and $\mathscr{F} \subset V\left(L_{1}^{\prime}-S\right)$. If each component of $L_{1}^{\prime}-S$ contains a vertex of the set \mathscr{F}, then all the components of $L_{1}^{\prime}-S$ are connected to L_{2}^{\prime} by the edges of the set D_{2} giving $H-S$ connected. Therefore it suffices to prove that each component of $L_{1}^{\prime}-S$ contains a vertex of the set \mathscr{F}. If $L_{1}^{\prime}-S$ is connected, then we are done. Suppose $L_{1}^{\prime}-S$ is not connected. Consider the case when $m=3$. Then L_{1}^{\prime} is the union of the two 4 -cycles $A_{1}, A_{2}, A_{3}, A_{4}, A_{1}$ and $B_{1}, B_{2}, B_{3}, B_{4}, B_{1}$, and the two edges $A_{1} B_{1}, A_{3} B_{3}$. Each of the vertices $A_{2}, B_{2}, A_{4}, B_{4}$ has degree two in L_{1}^{\prime}. If $S \cap\left\{A_{2}, B_{2}, A_{4}, B_{4}\right\} \neq \phi$, then $L_{1}^{\prime}-S$ is connected. Therefore $S \subset\left\{A_{1}, A_{3}, B_{1}, B_{3}\right\}$. Thus $S=\left\{A_{1}, A_{3}\right\}$, $\left\{A_{1}, B_{1}\right\},\left\{A_{1}, B_{3}\right\},\left\{A_{3}, B_{1}\right\},\left\{A_{3}, B_{3}\right\}$ or $\left\{B_{1}, B_{3}\right\}$. In any case, each component of $L_{1}^{\prime}-S$ contains a vertex of the set \mathscr{F}. Suppose $m \geq 4$. Then $A_{1}, A_{2}, \ldots, A_{m+1}, B_{m+1}, B_{m}, \ldots, B_{1}, A_{1}$ is a Hamiltonian cycle in L_{1}^{\prime}. Therefore $L_{1}^{\prime \prime}-S$ has only two components. It follows that one component of $L_{1}^{\prime}-S$ contains a vertex from $\left\{A_{2}, B_{2}\right\} \backslash S$ and the other component contains a vertex from the set $\left\{A_{m+1}, B_{m+1}\right\} \backslash S$. Hence the vertex set of each component of $L_{1}^{\prime}-S$ intersects \mathscr{F}. Consequently, $H-S$ is connected. Therefore H is 3-connected.

Thus, from Claims 1 and 2, H is a 3-regular, 3-connected, bipancyclic subgraph of Q_{n} with l vertices.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors would like to thank anonymous referees for their valuable suggestions. The first author is supported by the Department of Science and Technology, Government of India via Project no. SR/S4/MS: 750/12.

References

[1] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercube, Morgan Kaufmann, San Mateo, Calif, USA, 1992.
[2] S.-Y. Hsieh and T.-H. Shen, "Edge-bipancyclicity of a hypercube with faulty vertices and edges," Discrete Applied Mathematics, vol. 156, no. 10, pp. 1802-1808, 2008.
[3] T.-K. Li, C.-H. Tsai, J. J. Tan, and L.-H. Hsu, "Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes," Information Processing Letters, vol. 87, no. 2, pp. 107-110, 2003.
[4] S. A. Mane and B. N. Waphare, "Regular connected bipancyclic spanning subgraphs of hypercubes," Computers and Mathematics with Applications, vol. 62, no. 9, pp. 3551-3554, 2011.
[5] M. Ramras, "Regular subgraphs of hypercubes," Ars Combinatoria, vol. 52, pp. 21-32, 1999.
[6] L.-M. Shih, C.-F. Chiang, L.-H. Hsu, and J. J. Tan, "Strong Menger connectivity with conditional faults on the class of hypercube-like networks," Information Processing Letters, vol. 106, no. 2, pp. 64-69, 2008.
[7] S. Spacapan, "Connectivity of cartesian products of graphs," Applied Mathematics Letters, vol. 21, no. 7, pp. 682-685, 2008.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

