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The 𝑛-dimensional hypercube𝑄
𝑛
is bipancyclic; that is, it contains a cycle of every even length from 4 to 2𝑛. In this paper, we prove

that 𝑄
𝑛
(𝑛 ≥ 3) contains a 3-regular, 3-connected, bipancyclic subgraph with 𝑙 vertices for every even 𝑙 from 8 to 2𝑛 except 10.

1. Introduction

The cartesian product 𝐺
1
× 𝐺
2
of two graphs 𝐺

1
and 𝐺

2
is a

graph with the vertex set𝑉(𝐺
1
)×𝑉(𝐺

2
), and any two vertices

(𝑢
1
, 𝑢
2
) and (V

1
, V
2
) are adjacent in𝐺

1
×𝐺
2
if and only if either

𝑢
1
= V
1
and 𝑢

2
is adjacent to V

2
in 𝐺
2
or 𝑢
2
= V
2
and 𝑢

1
is

adjacent to V
1
in𝐺
1
. A graph𝐺with evennumber of vertices is

bipancyclic if it contains a cycle of every even length from 4 to
|𝑉(𝐺)|. The hypercube 𝑄

𝑛
of dimension 𝑛 is a graph obtained

by taking cartesian product of the complete graph𝐾
2
on two

vertices with itself 𝑛 times; that is, 𝑄
𝑛
= 𝐾
2
× 𝐾
2
× ⋅ ⋅ ⋅ × 𝐾

2

(𝑛 times). The hypercube 𝑄
𝑛
is an 𝑛-regular, 𝑛-connected,

bipartite, and bipancyclic graph with 2
𝑛 vertices. It is one

of the most popular interconnection network topologies [1].
The bipancyclicity of a given network is an important factor
in determining whether the network topology can simulate
rings of various lengths. The connectivity of a network gives
theminimumcost to disrupt the network. Regular subgraphs,
bipancyclicity, and connectivity properties of hypercubes are
well studied in the literature [2–6].

Since 𝑄
𝑛
(𝑛 ≥ 2) is bipancyclic, it contains a 2-regular,

2-connected subgraph (cycle) with 𝑙 vertices for every even
integer 𝑙 from 4 to 2

𝑛. Suppose 3 ≤ 𝑘 ≤ 𝑛. Mane and
Waphare [4] proved that 𝑄

𝑛
contains a spanning 𝑘-regular,

𝑘-connected, bipancyclic subgraph. So the natural question
arises; what are the other possible orders existing for 𝑘-
regular, 𝑘-connected and bipancyclic subgraphs of 𝑄

𝑛
? As

𝑄
𝑛
= 𝑄
𝑛−𝑘

× 𝑄
𝑘
, 𝑄
𝑘
can be regarded as a subgraph of 𝑄

𝑛
.

Hence𝑄
𝑛
has a 𝑘-regular, 𝑘-connected, bipancyclic subgraph

with 2
𝑘 vertices. In this paper, we answer the question for

𝑘 = 3. We prove that 𝑄
𝑛
(𝑛 ≥ 3) contains a 3-regular, 3-

connected, and bipancyclic subgraph with 𝑙 vertices for every
even integer 𝑙 from 8 to 2𝑛 except 10.

2. Proof

The cartesian product of a nontrivial path with the complete
graph𝐾

2
is a ladder graph. Let𝐹 be the graph obtained from a

path𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
(𝑚 ≥ 4) by adding one extra edge𝐴

1
𝐴
4
.

We call the graph 𝐹 × 𝐾
2
a ladder type graph on 2𝑚 vertices

(see Figure 1).

Lemma 1. A ladder graph is bipancyclic.

Proof. Let 𝐿 be a ladder graph with 2𝑚 vertices. Label the
vertices of 𝐿 by𝐴

𝑖
’s and 𝐵

𝑖
’s so that 𝐿 is the union of the paths

𝑃
1
= 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
and𝑃
2
= 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑚
and the𝑚 edges

𝐴
𝑖
𝐵
𝑖
for 𝑖 = 1, 2, . . . , 𝑚. Suppose 2 ≤ 𝑙 ≤ 𝑚. Let 𝑃

1
be the

subpath of 𝑃
1
from 𝐴

1
to 𝐴
𝑙
and let 𝑃

2
be the subpath of 𝑃

2

from 𝐵
1
to 𝐵
𝑙
. Then 𝑃

1
∪𝑃


2
∪ {𝐴
1
𝐵
1
, 𝐴
𝑙
𝐵
𝑙
} is a cycle of length

2𝑙 in 𝐿. Hence 𝐿 has a cycle of every even length from 4 to
|𝑉(𝐿)|.

The vertices of the hypercube 𝑄
𝑛
can be labeled by the

binary strings of length 𝑛 so that two vertices are adjacent
in 𝑄
𝑛
if and only if their binary strings differ in exactly one

coordinate. Denote by 𝑄𝑗
𝑛−1

the subgraph of 𝑄
𝑛
induced by

the set of all vertices of 𝑄
𝑛
each having first coordinate 𝑗 for

𝑗 = 0, 1. Then 𝑄0
𝑛−1

and 𝑄1
𝑛−1

are vertex-disjoint and each of
them is isomorphic to𝑄

𝑛−1
.We can express𝑄

𝑛
as𝑄
𝑛
= 𝑄
0

𝑛−1
∪
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A ladder type graphA ladder graph

Figure 1

𝑄
1

𝑛−1
∪𝐷, where𝐷 = {𝑋𝑌 | 𝑋 ∈ 𝑉(𝑄

0

𝑛−1
) and 𝑌 ∈ 𝑉(𝑄

1

𝑛−1
)}.

Note that𝐷 is a perfect matching in 𝑄
𝑛
.

Lemma 2. For every 𝑚 with 4 ≤ 𝑚 ≤ 2
𝑛−1, there exists a

ladder type subgraph in 𝑄
𝑛
(𝑛 ≥ 3) with 2𝑚 vertices.

Proof. We first prove that 𝑄
𝑛
contains a Hamiltonian cycle

𝐶 with a chord 𝑒 which forms a 4-cycle with three edges of
𝐶. This is obvious for 𝑛 = 3. Suppose 𝑛 ≥ 4. Write 𝑄

𝑛
as

𝑄
𝑛
= 𝑄
0

𝑛−1
∪𝑄
1

𝑛−1
∪𝐷. By induction, there exists aHamiltonian

cycle𝐶
0
in𝑄0
𝑛−1

with a chord 𝑒which forms a 4-cycle𝑍
0
with

three edges of 𝐶
0
. Let 𝐶

1
be the corresponding Hamiltonian

cycle in 𝑄1
𝑛−1

. Let 𝑋𝑌 be any edge on 𝐶
0
which is not on 𝑍

0

and let𝑋𝑌 be the corresponding edge on𝐶
1
.Then𝑋𝑋 and

𝑌𝑌
 belong to𝐷. Let𝐶 = (𝐶

0
−𝑋𝑌)∪(𝐶

1
−𝑋


𝑌


)∪{𝑋𝑋


, 𝑌𝑌


}.
Then 𝐶 is a Hamiltonian cycle in 𝑄

𝑛
such that 𝑒 is its chord

which forms the 4-cycle 𝑍
0
with three edges of 𝐶.

Now, we prove that 𝑄
𝑛
contains a ladder type graph with

2𝑚 vertices. Obviously, 𝑄
3
itself is a ladder type graph on 8

vertices. Suppose 𝑛 ≥ 4. By the above part, 𝑄
𝑛−1

contains a
Hamiltonian cycle 𝐶 with a chord 𝑒 which forms a 4-cycle
with three edges of 𝐶. Label the vertices of 𝐶 by 𝐴

𝑖
’s so that

𝐶 = 𝐴
1
, 𝐴
2
, 𝐴
3
, . . . , 𝐴

2
𝑛−1 , 𝐴
1
and 𝑒 = 𝐴

1
𝐴
4
. Let 𝐹 be the

subgraph of𝑄
𝑛−1

obtained by taking the union of the subpath
𝐴
1
, 𝐴
2
, 𝐴
3
, . . . , 𝐴

𝑚
of 𝐶 and the edge𝐴

1
𝐴
4
. Then 𝐹×𝐾

2
is a

ladder type subgraph of𝑄
𝑛−1

×𝐾
2
= 𝑄
𝑛
with 2𝑚 vertices.

As a consequence of a result of [7], we get the following
lemma.

Lemma 3. Let 𝐺
𝑖
be an 𝑛

𝑖
-regular, 𝑛

𝑖
-connected graph for 𝑖 =

1, 2. Then the graph 𝐺
1
× 𝐺
2
is (𝑛
1
+ 𝑛
2
)-regular, (𝑛

1
+ 𝑛
2
)-

connected.

It is well known that the hypercube 𝑄
𝑛
does not contain

the complete bipartite graph𝐾
2,3

as a subgraph.The following
result is the main theorem of this paper.

Theorem 4. Let 𝑛 be an integer such that 𝑛 ≥ 3. Then there
exists a 3-regular, 3-connected, and bipancyclic subgraph of𝑄

𝑛

on 𝑙 vertices if and only if 𝑙 is an even integer with 8 ≤ 𝑙 ≤ 2
𝑛

and 𝑙 ̸= 10.

Proof. Suppose 𝑄
𝑛
contains a 3-regular subgraph 𝐻 with 𝑙

vertices. By Handshaking Lemma, the sum of the degrees of
all vertices of a graph is even. Hence 3𝑙 is even. Consequently,
𝑙 is even. The minimum degree of 𝐻 is three. Therefore 𝐻

contains an even cycle. Since𝐻 is simple, 𝑙 ≥ 4. If 𝑙 = 4, then
𝐻 contains a triangle, a contradiction. Thus 𝑙 ≥ 6. Suppose
𝑙 = 6. Then𝐻must contain a cycle 𝑍 of length four. A vertex
of 𝐻 outside 𝑍 has at least two neighbours in 𝑍 giving a
triangle or a 𝐾

2,3
in 𝑄
𝑛
, which is a contradiction. Suppose

𝑙 = 10. Let 𝑒 be an edge of 𝐻. Without loss of generality,
we may assume that the end vertices of 𝑒 differ in the first
coordinate. Write 𝑄

𝑛
as 𝑄
𝑛
= 𝑄
0

𝑛−1
∪ 𝑄
1

𝑛−1
∪ 𝐷. Then 𝑒 ∈ 𝐷.

Therefore𝐻 intersects with both 𝑄0
𝑛−1

and 𝑄1
𝑛−1

. Let𝐻
𝑗
be a

component of𝐻∩𝑄
𝑗

𝑛−1
for 𝑗 = 0, 1. Then𝐻

𝑗
is a subgraph of

𝑄
𝑗

𝑛−1
withminimumdegree two and hence it contains a cycle.

As 𝑄
𝑛
is simple bipartite, 𝐻

𝑗
has at least four vertices. Since

|𝑉(𝐻)| = 10, 𝐻
𝑗
is the only component of 𝐻 in 𝐻 ∩ 𝑄

𝑗

𝑛−1
.

We may assume that |𝑉(𝐻
0
)| ≤ |𝑉(𝐻

1
)|. Then |𝑉(𝐻

0
)| = 4 or

|𝑉(𝐻
0
)| = 5. Let 𝐶

0
be an even cycle in 𝐻

0
. Then |𝐶

0
| = 4.

If𝐻
0
has 5 vertices, then the vertex of𝐻

0
which is not on 𝐶

0

is adjacent to at least two vertices of 𝐶
0
giving a triangle or a

𝐾
2,3

in𝑄0
𝑛−1

, a contradiction. Consequently,𝐻
0
has 4 vertices.

Thus 𝐻
0
= 𝐶
0
. Let 𝐶

1
be the cycle in 𝑄1

𝑛−1
corresponding to

𝐶
0
. Since𝐻 is 3-regular, each vertex of 𝐶

0
has one neighbour

in𝐻
1
along an edge of𝐷.Therefore all vertices of𝐶

1
belong to

𝐻
1
. As𝐻

1
has six vertices, it has a vertex𝑋which is not on𝐶

1
.

Then𝑋 has no neighbour in𝐻
0
.Thus𝑋 has three neighbours

in𝐻
1
. Therefore𝑋 has at least two neighbours in the 4-cycle

𝐶
1
giving a triangle or a 𝐾

2,3
in 𝑄1
𝑛−1

, a contradiction. Hence
𝑙 ̸= 10. Thus 𝑙 is an even integer with 8 ≤ 𝑙 ≤ 2𝑛 and 𝑙 ̸= 10.

Now, we construct a 3-regular, 3-connected, bipancyclic
subgraph of 𝑄

𝑛
with 𝑙 vertices for every even integer 𝑙 with

8 ≤ 𝑙 ≤ 2
𝑛 and 𝑙 ̸= 10. Suppose 𝑙 = 4𝑚 for some integer

𝑚 with 2 ≤ 𝑚 ≤ 2
𝑛−2. Write 𝑄

𝑛
as 𝑄
𝑛
= 𝑄
𝑛−1

× 𝐾
2
. Since

𝑄
𝑛−1

is a bipancyclic graph and 𝑙/2 is even, there is a cycle 𝐶
of length 𝑙/2 in 𝑄

𝑛−1
. By Lemma 3, 𝐶 × 𝐾

2
is a 3-regular, 3-

connected subgraph of 𝑄
𝑛
with 𝑙 vertices. Let 𝑒 be an edge of

𝐶. Then (𝐶 − 𝑒) × 𝐾
2
is a ladder graph which spans 𝐶 × 𝐾

2
.

By Lemma 1, 𝐶 × 𝐾
2
is bipancyclic.

Suppose 𝑙 = 4𝑚 + 2 with 3 ≤ 𝑚 ≤ 2
𝑛−2

− 1. Write 𝑄
𝑛

as 𝑄
𝑛
= 𝑄
0

𝑛−1
∪ 𝑄
1

𝑛−1
∪ 𝐷. As 4 ≤ 𝑚 + 1 ≤ 2

𝑛−2, there
exists a ladder type subgraph 𝐿

1
in 𝑄0
𝑛−1

on 2𝑚 + 2 vertices
by Lemma 2. Label the vertices of 𝐿

1
by 𝐴
𝑖
’s and 𝐵

𝑖
’s so that

𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚+1
and 𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑚+1
are paths and 𝐴

𝑖
𝐵
𝑖
is

an edge of 𝐿
1
for 𝑖 = 1, 2, . . . , 𝑚 + 1. Let 𝐿

2
be the ladder

type subgraph of 𝑄1
𝑛−1

on 2𝑚 + 2 vertices corresponding
to 𝐿
1
. Label the vertices of 𝐿

2
by 𝐴


1
, 𝐴


2
, . . . , 𝐴



𝑚+1
and

𝐵


1
, 𝐵


2
, . . . , 𝐵



𝑚+1
, where the vertex 𝐴

𝑖
corresponds to 𝐴

𝑖
, and

the vertex𝐵
𝑖
corresponds to𝐵

𝑖
for every 𝑖 = 1, 2, . . . , 𝑚+1. Let

𝐿


1
be the graph obtained from 𝐿

1
by deleting the edges𝐴

2
𝐵
2

and 𝐴
4
𝐵
4
. Let 𝐿

2
be the graph obtained from 𝐿

2
by deleting

two vertices 𝐴
1
and 𝐵

1
. Then 𝐿

1
is a subgraph of 𝑄0

𝑛−1
with

2𝑚 + 2 vertices and 𝐿
2
is a ladder subgraph of 𝑄1

𝑛−1
with 2𝑚

vertices.
Let 𝐻 = 𝐿



1
∪ 𝐿


2
∪ 𝐷
2
, where 𝐷

2
= {𝐴

2
𝐴


2
, 𝐵
2
𝐵


2
,

𝐴
𝑚+1

𝐴


𝑚+1
, 𝐵
𝑚+1

𝐵


𝑚+1
} ⊂ 𝐷 (see Figure 2). Then 𝐻 is a 3-

regular subgraph of 𝑄
𝑛
with 4𝑚 + 2 = 𝑙 vertices. We claim

that𝐻 is bipancyclic and 3-connected.

Claim 1.𝐻 is bipancyclic.
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5

B


m
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L


1

L


2
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Figure 2

Clearly, 𝐶 = 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚+1
, 𝐴


𝑚+1
, 𝐴


𝑚
, . . . , 𝐴



2
, 𝐵


2
, 𝐵
3
,

. . . , 𝐵


𝑚+1
, 𝐵
𝑚+1

, 𝐵
𝑚
, . . . , 𝐵

1
, 𝐴
1
is a Hamiltonian cycle in 𝐻.

By deleting two vertices 𝐴
2
and 𝐵

2
and then adding the edge

𝐴


3
𝐵


3
to 𝐶, we get a cycle of length 4𝑚 in 𝐻. Similarly, we

obtain a cycle of length 4𝑚 − 2 in𝐻 from 𝐶 by deleting four
vertices 𝐴

2
, 𝐴


3
, 𝐵


2
, 𝐵


3
and then adding the edge 𝐴

4
𝐵


4
. Now,

by deleting six vertices 𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐴


2
, 𝐵


2
from 𝐶 adding

the edges𝐴
3
𝐵
3
and𝐴

3
𝐵


3
gives a cycle of length 4𝑚− 4 in𝐻.

Suppose 𝑚 = 3. Then 𝐻 has 4𝑚 + 2 = 14 vertices. We get a
cycle of length 4 and a cycle of length 6 in the ladder 𝐿

2
as,

by Lemma 1, it is a bipancyclic graph on six vertices. Thus𝐻
contains a cycle of every even length from 4 to 14. Suppose
𝑚 ≥ 4. Then 𝐿

1
has at least 10 vertices. Let 𝐿 be the ladder in

𝐻 formed by two paths 𝐴
5
, 𝐴
6
, . . . , 𝐴

𝑚+1
, 𝐴


𝑚+1
, 𝐴


𝑚
, . . . , 𝐴



2

and 𝐵
5
, 𝐵
6
, . . . , 𝐵

𝑚+1
, 𝐵


𝑚+1
, 𝐵


𝑚
, . . . , 𝐵



2
and thematching𝐴

𝑖
𝐵
𝑖

and 𝐴
𝑗
𝐵


𝑗
for 𝑖 = 5, 6, . . . , 𝑚 + 1 and 𝑗 = 2, 3, . . . , 𝑚 + 1. By

Lemma 1, 𝐿 is bipancyclic. Hence 𝐿 contains a cycle of every
even length from 4 to |𝑉(𝐿)| = 4𝑚 − 6. Thus 𝐻 contains a
cycle of every even length from 4 to |𝑉(𝐻)| = 4𝑚 + 2 = 𝑙.
Therefore𝐻 is bipancyclic.

Claim 2.𝐻 is 3-connected.

Since 𝐻 contains a Hamiltonian cycle, it is 2-connected.
It suffices to prove that deletion of any two vertices from
𝐻 leaves a connected graph. Let 𝑆 ⊂ 𝑉(𝐻) with |𝑆| = 2.
We prove that 𝐻 − 𝑆 is connected. Let 𝑆 = {𝑋, 𝑌}. Suppose
𝑆 intersects both 𝑉(𝐿



1
) and 𝑉(𝐿



2
). We may assume that

𝑋 ∈ 𝑉(𝐿


1
) and 𝑌 ∈ 𝑉(𝐿



2
). Being Hamiltonian graphs, both

𝐿


1
and 𝐿

2
are 2-connected. Hence 𝐿

1
− 𝑋 and 𝐿

2
− 𝑌 are

connected.There are at least two edges from the set𝐷
2
which

connects𝐿
1
−𝑋 to𝐿

2
−𝑌 in𝐻−𝑆.Therefore𝐻−𝑆 is connected.

Suppose 𝑆 ⊂ 𝑉(𝐿


2
). Then 𝑆 ∩ 𝑉(𝐿



1
) = 𝜙 and

{𝐴


2
, 𝐵


2
, 𝐴


𝑚+1
, 𝐵


𝑚+1
} \ 𝑆 ̸= 𝜙. Obviously, 𝐿

1
is connected.

Suppose 𝐿


2
− 𝑆 is connected. Then it is joined to 𝐿



1

through at least two edges from the set 𝐷
2
. This implies

that 𝐻 − 𝑆 is connected. Suppose 𝐿
2
− 𝑆 is not connected.

Then one vertex of 𝑆 belongs the path 𝐴
2
, 𝐴


3
, . . . , 𝐴



𝑚+1
and

the other vertex belongs to the path 𝐵


2
, 𝐵


3
, . . . , 𝐵



𝑚+1
. Let

𝐶 = 𝐴


2
, 𝐴


3
, . . . , 𝐴



𝑚+1
, 𝐵


𝑚+1
, 𝐵


𝑚
, . . . , 𝐵



2
, 𝐴


2
be a Hamilto-

nian cycle of 𝐿
2
. Then 𝐶 − 𝑆 has exactly two components,

say, 𝑇
1
and 𝑇

2
with vertex set 𝑉(𝑇

1
) and 𝑉(𝑇

2
). Note that

𝑇
1
or 𝑇
2
may have a single vertex. Therefore 𝐿

2
− 𝑆 has two

components one with vertex set 𝑉(𝑇
1
) and the other with

vertex set𝑉(𝑇
2
). It is easy to see that𝑇

𝑖
contains a vertex from

the set {𝐴
2
, 𝐵


2
, 𝐴


𝑚+1
, 𝐵


𝑚+1
} \ 𝑆 and hence has a neighbour in

𝐿


1
along an edge of the set𝐷

2
for 𝑖 = 1, 2. Consequently, each

component of 𝐿
2
−𝑆 has a neighbour in 𝐿

1
in the graph𝐻−𝑆.

This implies that𝐻 − 𝑆 is connected.
Suppose 𝑆 ⊂ 𝑉(𝐿



1
). Then 𝐿



2
is connected. Let F =

{𝐴
2
, 𝐵
2
, 𝐴
𝑚+1

, 𝐵
𝑚+1

} \ 𝑆. Then F ̸= 𝜙 and F ⊂ 𝑉(𝐿


1
− 𝑆).

If each component of 𝐿
1
− 𝑆 contains a vertex of the set F,

then all the components of 𝐿
1
− 𝑆 are connected to 𝐿

2
by

the edges of the set 𝐷
2
giving 𝐻 − 𝑆 connected. Therefore

it suffices to prove that each component of 𝐿
1
− 𝑆 contains

a vertex of the set F. If 𝐿
1
− 𝑆 is connected, then we are

done. Suppose 𝐿
1
− 𝑆 is not connected. Consider the case

when 𝑚 = 3. Then 𝐿


1
is the union of the two 4-cycles

𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
1
and 𝐵

1
, 𝐵
2
, 𝐵
3
, 𝐵
4
, 𝐵
1
, and the two

edges 𝐴
1
𝐵
1
, 𝐴
3
𝐵
3
. Each of the vertices 𝐴

2
, 𝐵
2
, 𝐴
4
, 𝐵
4
has

degree two in 𝐿
1
. If 𝑆 ∩ {𝐴

2
, 𝐵
2
, 𝐴
4
, 𝐵
4
} ̸= 𝜙, then 𝐿

1
− 𝑆 is

connected.Therefore 𝑆 ⊂ {𝐴
1
, 𝐴
3
, 𝐵
1
, 𝐵
3
}.Thus 𝑆 = {𝐴

1
, 𝐴
3
},

{𝐴
1
, 𝐵
1
}, {𝐴
1
, 𝐵
3
}, {𝐴
3
, 𝐵
1
}, {𝐴
3
, 𝐵
3
} or {𝐵

1
, 𝐵
3
}. In any case,

each component of 𝐿
1
− 𝑆 contains a vertex of the set F.

Suppose𝑚 ≥ 4. Then 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚+1
, 𝐵
𝑚+1

, 𝐵
𝑚
, . . . , 𝐵

1
, 𝐴
1

is a Hamiltonian cycle in 𝐿
1
. Therefore 𝐿

1
− 𝑆 has only two

components. It follows that one component of 𝐿
1
−𝑆 contains

a vertex from {𝐴
2
, 𝐵
2
} \ 𝑆 and the other component contains

a vertex from the set {𝐴
𝑚+1

, 𝐵
𝑚+1

} \ 𝑆. Hence the vertex set of
each component of 𝐿

1
− 𝑆 intersectsF. Consequently,𝐻− 𝑆

is connected. Therefore𝐻 is 3-connected.
Thus, from Claims 1 and 2,𝐻 is a 3-regular, 3-connected,

bipancyclic subgraph of 𝑄
𝑛
with 𝑙 vertices.
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