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Abstract. 
A mixed dual to the Nash equilibrium is defined for -person games in strategic form. In a Nash equilibrium every player’s mixed strategy maximizes his own expected payoff for the other  players’ strategies. Conversely, in the dual equilibrium every  players have mixed strategies that maximize the remaining player’s expected payoff. Hence this dual equilibrium models mutual support and cooperation to extend the Berge equilibrium from pure to mixed strategies. This dual equilibrium is compared and related to the mixed Nash equilibrium, and both topological and algebraic conditions are given for the existence of the dual. Computational issues are discussed, and it is shown that for each  there exists a game for which no dual equilibrium exists.



1. Introduction
The mathematical analysis of both competition and cooperation falls within the realm of game theory, whose systematic development began with von Neumann and Morgenstern [1]. For a game with  players, Nash [2] later assumed that the players are rational and hence selfish. He then defined an equilibrium in which every player’s strategy maximizes his payoff for the other  players’ strategies. Modern game theory [3–5] has long required that any rational solution concept for a game should be a Nash equilibrium. However, in games known as social dilemmas [6, 7] selfish behavior conflicts with group interests; and individual players do better by cooperating. The less well-known Berge equilibrium was introduced for pure strategies in [8] and formalized in [9]. A Berge equilibrium is a pure strategy profile in which every  players have strategies that maximize the remaining player’s payoff. It has been increasingly studied as a model of mutual support and cooperation as in [10–15].
In this paper we consider -person games in strategic form and extend the Berge equilibrium from pure to mixed strategies to provide a dual to the Nash equilibrium. In this dual equilibrium, every  players have strategies that maximize the remaining player’s expected payoff. The Nash equilibrium and the dual equilibrium thus model opposite decision criteria for choosing the  player’s actions, regardless of whether these actions are independently selected by the players, are coordinated by the players, or are even prescribed. For example, the results here are valid if an arbiter assigns actions to the players as in [16].
In Section 2 the dual equilibrium is formally defined and related to the Nash equilibrium. In Section 3 topological and algebraic conditions are established for the existence of a dual equilibrium. In Section 4 computation complexity issues are discussed. In Section 5 it is shown that for each  there exists a game for which no dual equilibrium exists. Conclusions are stated in Section 6.
2. Relationships between the Dual and Nash Equilibria
The following definitions and notation are used. Let  be an -person game in strategic form, where  is the index set for the  players,  is the finite set of  actions for player , and  is the von Neumann-Morgenstern utility of player  for a pure strategy profile . Write  for  and denote the set of mixed strategies for player  by . A mixed-strategy profile  is an -tuple of individual randomized strategies, where  is the probability that player  uses the pure strategy . For any , abbreviate the strategy profile  by . Similarly write , , and . For , extend  from  to  by defining the expected utility function . Writing , , and noting that a pure strategy is a special case of a mixed strategy, we can derive the following useful identities:The Nash equilibrium is now formally defined for comparison with the dual equilibrium.


Definition 1 (NE). The strategy profile  is a Nash equilibrium (NE) of  if and only if 
Definition 2 (DE). The strategy profile  is a dual equilibrium (DE) of  if and only if Designating a strategy profile  satisfying (6) as a dual equilibrium may be justified as follows. Equations (5) and (6) involve systems of optimization problems defining NEs and DEs. These systems may be regarded as symmetric dual systems in the sense that Definition 1 becomes Definition 2 and vice versa when the subscripts  and  are interchanged on the right (but not left) sides of (5) and (6). Thus if (5) is considered the primal system and (6) the dual system, then the dual system of the dual system is the primal system. This duality is manifested in the fact that in Definition 1 every player’s NE strategy selfishly maximizes his own payoff for the other  players’ NE strategies, while the opposite situation occurs in Definition 2. For a DE, every  players have DE strategies that maximize the remaining player’s payoff. Thus a DE exhibits the musketeer property in [17] of “all for one, one for all.” Alternately, in an NE no individual player can improve his expected payoff with a unilateral change in strategy, while in a DE no individual player’s payoff can be improved by any change in the remaining players’ DE strategies.
The DE is the mixed extension of the Berge equilibrium (BE) of [11–14] and the mutual-max outcome of [18]. For a BE, which involves only pure strategies, mutual cooperation occurs in a single game. For a mixed-strategy DE, the probability  can be interpreted in two ways [19]. The first interpretation is the fraction of time in the long run that player  would choose to play pure strategy  in a series of repeated games in which the  mutually cooperative players invoke decision criterion (6). The second interpretation of  considers a mixed-strategy equilibrium as a steady state in a large population with  subpopulations. In this case  is the fraction of subpopulation  preferring pure strategy  according to decision criteria (6).
Some results relating DE and NE are now established. Let the function  be one-to-one on the index set . Then  is a derangement of  if and only if , . Thus associated with  is the deranged game , where . In other words, for  the expected utility function of any player  is . In addition, for a strategy profile  of , let  be its deranged strategy profile , where  is the unique  for which . Obviously if  is a DE of , then the deranged strategy profile  is also a DE of the deranged game .
Theorem 3.  If  is a dual equilibrium for any -person game , then  is a Nash equilibrium for  for any derangement  of .
Proof. It is first proved that if  is a DE of a game , then  is an NE of  for any derangement  of . Let  and  be an arbitrary derangement such that . From (6)Expanding (7) gives that In (8) set  for , . Hence, for ,From (9), for  and any derangement  of , Thus from (10) and (5),  is an NE for . It follows that if  is a DE of any -person game , then  is an NE of  for any derangement  of .
We next use the fact that if  is a DE of , the deranged strategy profile  is also a DE of the deranged game . Then from the first part of the proof,  is an NE of the original game  obtained by applying the inverse derangement  of  to .
Corollary 4.   has at least as many NEs as DEs.
Proof. Let  be the cyclic derangement given by , , and . Since  is one-to-one, it follows from Theorem 3 that there is a one-to-one correspondence between the DEs of  and a subset of the NEs for . Hence there are at least as many NEs as DEs.
In Section 5 it is shown that there can be more NEs than DEs. The converse of Theorem 3 is true in general only for two-person games, in which case an argument similar to that for Theorem 3 yields the following result of [20], where the zero-sum case is also considered.
Corollary 5.  A strategy profile  is a DE for the two-person game where Player 1 has utility function  and Player 2 has utility function  if and only if  is an NE for the dual two-person game where Player 1 has utility function  and Player 2 has utility function .
Example 6. Consider , with the payoff matrix of Table 1, where Player 1 has pure strategies  and Player 2 has pure strategies . For simplicity, write ,  for Player 1 and ,  for Player 2. We apply Corollary 5. Using standard procedures for finding all NEs of two-person games [3], we obtain all DEs of  by determining all NEs associated with the payoff matrix obtained by interchanging the payoffs in Table 1. The unique DE has ,  and , , with expected payoffs (2.75, 5.60) with respect to the original payoff matrix of Table 1. By comparison, the unique NE of  has ,  and , , with expected payoffs (2.75, 5.65). Thus, the expected payoff vector for the NE dominates that of the DE in a Pareto sense. In general, the expected DE payoff  for any player  in  may be larger than, smaller than, or equal to the expected NE payoff for . In this regard, neither mutual cooperation nor selfishness is necessarily better than the other.
Table 1: Payoff matrix for .
	

	 	 	Player 2
	 	 		
	

	Player 1		(3, 5)	(2, 8)
		(2, 6)	(5, 4)
	



3. Existence Conditions for Dual Equilibria
In this section sufficient conditions are presented for the existence of a DE for . For any two-person game, Corollary 5 implies that a DE exists since an NE exists [2]. For , however, the existence of a DE is more complicated. The following preliminaries are needed.
Definition 7. A correspondence  is a set-valued mapping  such that  is a subset of , . The domain of  is , the range is , and the graph is .
Definition 8. Let  and  be topological vector spaces. The correspondence  is upper semicontinuous at  if and only if whenever the sequence  in  has , then .
Definition 9. Let  be a topological vector space, and let  be a nonempty convex set in . The function  is quasiconcave on  if and only if the level set  is a convex set for all real .
Result 1 (Kakutani fixed point theorem [21]). Let  be a nonempty compact convex set in a finite-dimensional topological vector space , and let . If  is upper semicontinuous at  and if  is a nonempty convex subset of , then  for which . The point  is called a fixed point of  on .
Topological conditions for the existence of a dual equilibrium are now derived. For each player  and each , denote the best support correspondence  by  From [3] the sets , , and  can be identified, respectively, with nonempty, convex, and compact subsets of the finite-dimensional Euclidean spaces  for , , and  for . For each ,  is continuous with respect to  and , so the sets  and  are nonempty. Hence the correspondence  given by  is nonempty if and only if  satisfies (6). The following lemma has thus been established.
Lemma 10.  A strategy profile  is a DE for the game  if and only if  is a fixed point of   on .
Result 1 and Lemma 10 are next used to prove a topological sufficient condition.
Theorem 11.  If   is a nonempty convex set, , then there exists a DE  for the game .
Proof. We show that  is upper semicontinuous on the nonempty, compact, and convex set . Consider convergent sequences  and  in , where , , and , . For  it follows from the definition of  that , . But the expected utility function  is continuous on , so , . Hence , , and so . Thus  is upper semicontinuous on . By assumption  is also a nonempty convex set of , . Hence from Result 1 there exists  for which , and so  is a DE by Lemma 10.
More restrictive sufficient conditions are given as a corollary.
Corollary 12.  If , , is a quasiconcave function of  for each fixed  and if   is nonempty, , then there exists a DE  for the game .
Proof. Fix  and . Since  is a quasiconcave on , it follows that the level set  is a convex set in  for all real . In particular, setting  implies that , , ,  Thus , and  is a nonempty convex set, , . Hence, for ,  is convex in addition to being nonempty by assumption, so Theorem 11 applies.
4. Computational Complexity
For the DE to be useful as a solution concept, it must be computable. Since NEs can be difficult to obtain [22, 23], we briefly discuss the computational complexity of DEs as compared to NEs. Let  (# players) (# all possible joint actions) denote the size of the input data for the game . It is shown in [22] that  is the computational complexity on a deterministic Turing machine for checking whether a pure NE exists for  and then computing all such NEs. An algorithm described in [20] uses a regret matrix to compute all pure NEs of  and readily extends to . A similar algorithm to compute all Berge equilibria (pure DEs) was proposed for  in [24] using a disappointment matrix. Both algorithms have computational complexity . The general problem of finding a mixed NE for , which is well known to exist, involves solving the following algebraic equivalence for (5), which is proved in [25] using (1) and (2).
Result 2. The strategy profile  is an NE of  if and only if For a given  and , (11) can be checked by total enumeration in  to determine if  is an NE. The problem of computing an NE for  is thus a member of the complexity class NP, yet obtaining an NE  from (11) by solving for  may not be feasible for large . Indeed, it is shown in [23] that this problem is PPAD-complete. In other words, this problem is believed to be computationally very difficult but may not be NP-complete. The next theorem gives an algebraic equivalence for (6) similar to (11) for DEs.
Theorem 13.  The strategy profile  is a DE of  if and only if 
Proof. From (3) and (6),  is a DE if and only ifFix  and let  maximize  over . This maximum exists since  is continuous in  on the closed and bounded set . Then by inspection,  on the right side of (13) is maximized over  when  for  and  for . Hence and (12) follows from (4) and (14).
For a given  and , (12) can also be checked by total enumeration in  to determine if  is a DE. Hence the problem of computing a DE for  is also a member of the complexity class NP. Nonetheless, for , using (12) to obtain a DE or else determine that one does not exist is computationally harder than using (11) to find an NE. For DEs, the maximization for each  on the right side of (12) is over , as opposed to being over  in (11) for NEs. This increased difficulty results from the fact that determining a DE  from (6) requires that the  components  for each of the  maximizations of (6) must match, whereas in (5) only the single component  for all the  maximizations of (5) must match. Thus it appears more likely for the DE computational problem to be NP-complete than the NE computational problem. Theorem 11 further suggests this fact since stringent conditions are required there to guarantee the existence of a DE, whereas an NE always exists. Indeed, it is next shown that a DE may not exist.
5. Mutual Cooperation Impossibility Theorem
The following result establishes that mutual cooperation in the form of a DE may be impossible when the number of players is greater than two. As noted above, a DE always exists when . For , however, existence depends on the payoff matrix.
Theorem 14.  For every  there exists a game  with no DE.
Proof. The result is first proved for . Consider a game  with the payoff matrix  of Table 2, where Player 1 has pure strategies , Player 2 has pure strategies , and Player 3 has pure strategies . For simplicity, write  and  for Player 1,  and  for Player 2, and  and  for Player 3.
Assume that  has a DE . Then it follows from (6) that there exist , , , , such thatSolving the maximization in (15) yields the only possible solutions , , , for (15) as follows.
If , the solution isIf , the solution isIf , the two solutions areas well asEquations (18)–(21) therefore require that any DE in (6) must satisfyNext utilizing (22) to solve the maximization in (16) yields the only two possible solutions , , , for (16) as follows. If  and , the solution isIf  and , the solution isHence (22)–(24) require that Thus from (18)–(25), the only two possible solutions , , jointly solving the maximizations in (15) and (16) areas well asBut using (25) to solve the maximization in (17) gives the only two possible solutions , solving the maximization in (17) to beas well asIt now follows that the only possible solutions (26) and (27) for (15) and (16) differ from the only possible solutions (28) and (29) for (17), in contradiction to the assumption that  has a DE. Hence  does not have a DE, and the theorem is true for .
For  we generalize  to a game  with no DE. Let , , and let the von Neumann-Morgenstern utility vector  on  beAssume that  has a DE . In a manner similar to that giving equations (26) and (27) for , it can be shown from (30) that the joint maximizations for Players  in (6) yield the only possible two solutions for , andfor . However, in a manner similar to that giving (28) and (29) for , it can also be shown from (30) that the maximization for Player  in (6) yields the only possible two solutionsas well asSince (31) and (32) contradict (33) and (34),  has no DE, and the proof is complete.
Table 2: Payoff matrix for .
	

	 	Player 3
	Player 1	 	 
	Player 2	                 Player 2
				
	

		(1, 1, 0) 	(0, 0, 0)	(0, 0, 1)	(0, 0, 0)
		    (0, 0, 0)	(0, 0, 1)	(0, 0, 0)	(1, 1, 0) 
	



Theorem 14 states that mutually cooperative behavior as defined by the DE cannot always be achieved for three or more players, no matter how the strategies are selected by the players or for the players. The result is quite intuitive. Depending on the payoff matrix, it is not always possible for every player to accommodate every other player when .
6. Conclusions
The Berge equilibrium has been extended to a mixed dual equilibrium for the Nash equilibrium. In this duality, NEs embody selfishness for all players, as opposed to selflessness for DEs. The two concepts are closely related mathematically, however. Relabeling each player in a DE yields an NE for the original payoff matrix, from which it follows that a game has at least as many NEs as DEs. But an NE always exists for any , while for  a DE may not exist—even on the average in the long run, even if the players try to be selfless. Mutual cooperation thus differs from the notion of compromise as defined in [16], which exists for any . In particular, for a given payoff matrix, mutual cooperation is not always possible for strictly mathematical reasons as a consequence of sociological information about the players reflected in their joint von Neumann-Morgenstern utilities. Because of such issues, the DE computational problem appears more difficult than the NE one.
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