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We obtain new generalized Hua’s inequality corresponding to Yy, (N, n; K), where Y1, (N, n; K) denotes the fourth Cartan-Hartogs
domain in CN*". Furthermore, we introduce the weighted Bloch spaces on Y, (N,#; K) and apply our inequality to study the
boundedness and compactness of composition operator Cy, from 7 (Yy (N, n; K)) to (Y1 (N, n; K)) for p > 0 and g > 0.

1. Introduction

The study of composition operators on various Banach spaces
of analytic functions has been a long active field in complex
and functional analysis. The composition operators as well
as related operators known as the weighted composition
operators between the Bloch space and Lipschitz space were
investigated in [1, 2] in the case of the unit disk. The study of
the composition operators on the Bloch space was given in
[3] for the polydisc, in [4, 5] for the unit ball, and in [6-9] for
the bounded symmetric domains.

In 1930s, all irreducible bounded symmetric domains
were divided into six types by E. Cartan. The first four types of
irreducible domains are called the classical bounded symmet-
ric domains. The other two types, called exceptional domains,
consist of one domain each (a 16- and 27-dimensional
domain). In 2000, Yin constructed four kinds of domains
corresponding to the classical bounded symmetric domains,
called the Cartan-Hartogs domains [10]. It is known that
the Cartan-Hartogs domains are nonhomogeneous domains
except the unit ball. So it is different from the bounded
symmetric domains. The fourth Cartan-Hartogs domains,
denoted by Yy (N, #; K), can be expressed as

Yy (N, 1K) = {w eCN, zeRy () : wX <1
¢))

+ |zzT|2 -2zz", K> 0} ,

where Ry (n) = {z z € C" 1+ |zzT) - 2z >
0, 1—|zzT|> > 0} is the fourth classical bounded symmetric
domains [11] and z” is the transpose of z.

For simplicity, we will write Y}y for Yy (N,n; K) if no
ambiguity can arise.

Let ¢ = (¢;)ns+n e a holomorphic self-map of Yyy.
The class of all holomorphic functions on Y}y is denoted by
H(Y}y). The composition operator Cy on H(Yy) is defined by
(Co )z, w) = f(P(z,w)) forall (z,w) € Yiyand f € H(Yy).

In 1955, Hua in [12] proved an inequality: if Z,, Z, are

— =T
n x n complex matrices and I - Z,Z, ,I - Z,Z, are both
Hermitian positive definite matrices, then

det (I - ZIZ_1T> det (I - ZZZ_ZT)
, 2
< 'det(I—ZlZ_zT)| .

Equality holds if and only if Z, = Z,.

In 2015, Su et al. obtained generalized Hua’s inequality
corresponding to the first Cartan-Hartogs domain Y; (see
Theorem 1 in [13]). From Theorem 1 in [13], it is easy to
get more precise inequality (see Lemma 4). Furthermore, we
obtain new generalized Hua’s inequality corresponding to Yy,
(see Lemma 5).



In this paper, we define the p-Bloch space 7 (Y}y) as the
space that consists of all f € H(Y}y) such that

1 lge

=[£(0,0)|

(3)
+ sup (1 —2zz" + |zzT|2 - |w|2K>P VS (z,w)|

(zw)€eYry

< +00,

where

F ew) o Gw o Gw
oz, 7 0z, = ow,

e

Vf (=

n

Y e,

owy

(4)

2

of (z,w)
0z

of (z,w)
aw/;

2

)

1<B<N

Vf @w)|’ = Y

I<asn o

It is clear that 7 (Y}y) is a set of constant functions when
p < 0,50 we assume that p > 0.

In this paper, we will obtain some results about the
composition operators for the case of the weighted Bloch
space on the fourth Cartan-Hartogs domain. In Section 2, we
state several auxiliary results most of which will be used in
the proofs of the main results. In Sections 3 and 4, we establish
the main results of the paper. We give the sufficient conditions
and necessary conditions for the boundedness (in Section 3)
and the compactness (in Section 4) of composition operator
C, from pP(Yyy) to B1(Yyy), where p > 0, g > 0.

2. Some Lemmas

In order to obtain our main results, we need the following
lemmas.

Lemmal. If

(14 |e="] - 212 - |w|2K)q

2K)P

| zw)|=0@), ©)

(1 + |22Z2T|2 -2 |zzl2 = |w,|
((z,w) €Yy, (2pw,) = ¢ (z,w) — 0Ypy), (6)
then

(1 + 'zzT'Z -2 |z|2 - |w|2K>q

(1 + |ZzzzT|2 -2 |Zzl2 - |w2|2K)

5 |¢' (z, w)| <oo ((7)
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for all (z,w) € Yy, and (z,,w,) = ¢(z,w). Where ¢ =

(1525 P> i),
¢ (z,w)
O . % 9 9
0z, 0z,  Ow, owy
o0, . o, M, 2%
B 0z, 0z,  Ow, owy
a¢n+1 . a(/5n+1 a¢n+1 . aﬁbn+1 ’
0z, 0z, ow, owy (8)
a¢n+N . a¢n+N a(/5n+N . a¢’n+N
0z, 0z,  Ow, owy
2
¢z w)
) 2
-y Y &%), ¥y 9|
1<asn 1<k<N+n 0z, 1<B<N 1<k<N+n awﬁ

Proof. From (5), there exists a constant § > 0 such that

(14 =" 212 - |w|2K)q

(1 + |ZzzzT|2 -2 |22|2 - |w2|2K)

s |¢' @w)|<c,

whenever dist((z,, w,),0Yy) < 6, where C, is a positive
number.

Set E5 = {(z,, w,) € Yyy : dist((z,, w,),0Yy) = 6}. Itis
easy to know that E; is a compact subset of Y}.. Thus, there
existsa constant M € (0, 1) such that M < 1+|zzz2T|2—2|22|2—
|w2|2K < 1.So

1

(1 + |Z2Z2T|2 -2 |22|2 - |w2|2K)

1
P < W < +00. (10)

Therefore, there exists a constant C such that

(14 |e="] - 212 - |w|2K)q

2K)P

¢ (zw|<C W)
(1 + |zzz2T|2 -2 |zz|2 = |w,|

for all (z,w) € Yy and (2, w,) = ¢(z,w). The proof is
completed. O

Lemma 2. Let H be a compact subset of Y. Then, there exists
a constant C > 0 such that

Jl Iz, w) dt < C (12)

0 (1414 |22 - 262 |2 - JewX)’

forall (z,w) € H.
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Proof. When p = 0, we have

[ [z w)] "

0 (1 +t4 |zzT|2 —22|z)* - |tw|2K)P

13)
1

- j (2, w)l dt.
0

Since |w|™ < 1+ |zz"* - 2z]> < 1and |(z,w)| < 2,
[} 1z w)lde < 2.

When p > 0, denote Eg = {(z,w) € Yyy : 1+ |z2"|* -
2lz|* — |w** > 8}, 8 € (0,1). For any compact subset H C
Yy, there exists a constant § € (0, 1) such that H ¢ Es.

For any (z,w) € H, t € [0, 1], we have

2
[tw™ < w <1+ |zzT' — 2]z

, (14)
<1+t 'ZZT' -2 |z|2.
Furthermore,
2
1+ 'zzT' -2 |z|2 - |1‘w|2K
, (15)
>1+|zz"| =20z - [wl* > 8 > 0.
Thus,
1
0<
1+t lzzT|2 =212 |z* - |tw]**
(16)
< ! < 1
T4z - 20 - X TS
So we have
! (2, w)l 2
J 5 3 s Pdt < 5_1’ (17)
0 (144 |22T|" = 26 |2 - |tw]¥)

Letting C = max{2, 2/}, we can get

11 |(z, w)| dt<C  (18)

0 (1 +t4 |zzT|2 —212 |z)* - |tw|2K)P

for all (z,w) € H. The proof is completed. O

Lemma3. Let f € P (Yyy,) and H be a compact subset of Yy
Then, there exists a constant C > 0 such that

few <Clfly YeweH )

Proof. By Lemma 2, there exists a constant C > 0 such that

1
|f (zw)| = ‘f(O, 0) + L (Vf (tz,tw), (z,w)) dt

1
<|f 0,0+ L IV (t2, tw)| |z, )| dt

<|f(0,0)| (20)
1
|(z, w)]
o|f J dt
" “ﬁp 0 (1 + 1t |;>:zT|2 - 212 |z)* - |tw|2K)p
<Clflge-
The proof is completed. O

Lemma 4. Let Z,,Z, € C™", W;,W, € C", and K > 0. If
—T —T —T
IL,-7,Z, >0,1,-2,Z, >0,|W,[* <det(I,,—2,Z, ),
—T
and [W,|*X < det(I,, - Z,Z, ), then

[det (1,, - 2,2,") - w,[¥]

- [det(1,, - ZZZ_ZT) - Wy (1)
< [Jaet (1, - 2.2")| - (Wil wal)*]
Proof. Set r; = |W,|, r, = |[W,|. Obviously, r;,r, € R. So

we can get (21) by the process of the proof on Theorem 1 in
(13]. O

The following conclusion of Lemma 5 is new generalized
Hua’s inequality corresponding to Yiy.

Lemma 5. Let z,u € Ry (n), w,v € CV, and K > 0. If 1 +
lzzT 12 = 212> = |w*X > 0 and 1 + [uu™)? = 2[ul* = |v|** > 0,
then

(1+ |e"|" - 212 - )
. (1 + |uuT|2 —2u) - |v|2K> (22)
< Hl +zz uuT - Zzu_Tl - (Jw| |v|)K]2.

Proof. When z,u € Ry (n), there exists an orthogonal matrix
I (see [11]) such that

% * % %
z=(z],25,23,24,0,...,0) T,
(23)
5 % 5 %
u = (uy,uy,u;,uy,0,...,0)T,
* * * * * * * *
where z{, z,, 25,2, Uy, uy, uy,uy €C.
Set
# . s .
z{ +iz, zy —iz;
Z= >
*_- * * .k
zy —izy z; +iz,
(24)

* Y * .k
u, +m, u, —1u
1 2 1 2

U = * * * * *
-1 +iu
U — 1y U 4



Then,
1+ 'zzT'Z —2|z)* = det (12 - Zﬁ) >0

1+ 'uuT|2 — 2 |uf* = det (12 - Uﬁ) > 0, (25)

1+ 22w - 220" = det (I, - Z7U ) # 0.
From Lemma 4, we can get
(14 [e"| ~ 2128 - ™)
(1 " - 2 - ) (26)

P J— 2
< ['1 +zz uuT - 2zuT| - (Jw| |v|)K] .
The proof is completed. 0

Lemma 6. The composition operator C, from BF(Yy,) to
B(Yyy) is compact if and only if [Cy f,llgg — Oasv — oo
for every bounded sequence { f,} in Bf(Yyy,) such that f, — 0
uniformly on every compact subset of Ypy,.

Proof. Assume that Cy from BP(Yyy) to BU(Yyy) is com-
pact. Let {f,} be a bounded sequence in f#(Y}y) such that
f, — 0 uniformly on every compact subset of Y. Suppose
ICy £l g1 = 0asv — oo. Then, there exists a subsequence
{fv } of { f,} such that inf ||C¢fv "ﬁq > 0. Since Cy is compact,
there exists a subsequence of the bound subsequence fv
still denoted as {fV }, such that hmjﬁoollf C¢fv IIﬁq = 0
f € PUY;y). For any compact set H C Y}y, there exists a
constant C depending only on H such that

(7-Ca. )| <clr-cun ], s

(27)
j — oo.

Thus, {f - C, fvj} — 0 uniformly on compact subset H. For
Ve > 0, there exists a constant J; such that

few-f, (#Ew)| < (28)

whenever j > ], and (z,w) € H.
Note that { fv].} — 0 uniformly on compact subset H;

then, for the above ¢, there exists a constant J, such that

£, Gw)| <e (29)

whenever j > ], and (z,w) € H. Let J] = max{J,, J,}; from
(28) and (29), we get

|f zw)| <

whenever j > Jand (z,w) € E := HN¢(H). So f(z,w) =0
furthermore, f = 0 on Yjy. This is a contradiction and we
have lim]‘*}oollc(l)fvj”ﬁq =0.

1, (¢ (2, w))l +e<2e (30)
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Conversely, let {f,} be a bounded sequence in S7(Yyy)
with || f, | p < C. Then, there exists a subsequence { fv]_} of

{f}and {f,} — fasj — +co.Thus,

lim ”C¢ (fV/' B f) g fim ”C‘l’fvj -

j—o00 j— 00

g 0. (31)

Therefore, C,, : BF(Yyy) — p1(Yry) is compact. The proof is
completed. O

3. The Boundedness of Composition Operators

Theorem 7. If
(14 =" - 212 - |w|2K)q

(1 + |z2z2T|2 -2 |z2|2 - |w2|2K)

5 ¢/ @w|=0), -

(Z2> wz) — Yy,

then Cy : B (Yy) — BU(Yyy) is bounded.
Conversely, if C : B (Yy,) — BU(Yyy) is bounded, then

(14 =" 212 - |w|2K)q G (zw)

2 2 2K\P = O(l)>
(1+ ]2zl - 2 |z,|" - Jw ™) (33)
(23 w,) — Yy,
where (z,,w,) = ¢(z,w), (z,w) € Yy, ¢ = (1, ¢pn- ..
G Dr1s - - > Oran)> and K > 1.

(/)'(z, w) and I(/)'(z, w)|* see Lemmal. G(z,w) = |A(z,
w)¢' (z, w)|

A(z,w) = (2z_21— Zzzlg,...,Zz_zn
o (34)
- 22, 2,8, K |w, | @, K, ).
Proof. Let f € P (Yyy). Then,
V(f ) @w)
2
of oy
= = (¢ (zw)) = (z,w)
lglxzsn lsk;\Hn Vi (¢ ) 0z, .
2
of Oy
+ = (@ zw) 5= (zw)| <(n
15%@ lsk;\T-W Vi ow Wg
+ N)
, , (35)
9 99
130251 <lsk;\l+n oV (¢ (2 w) oz, (z,w) )
+(n+N)
(¢ (2, — (2, )’ >
13;3N <1Sk;\l+n aVk ) Wwp

< (n+N) |[Vf (¢ (zw)|' ¢ (= w)|2 .
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By Lemma 1 and condition (32), there exists a constant C > 0 Thus,

such that
2
(1 + |zzT|2 -2z -2 |w|2K) [V i (2w)]
; 7 ¢ Gw|sc (66 — o
(1+]z21] -2 |2, - [w,|* ) ) Y 1<acn 24T - Zz“uuT| + X 1<peN |K (w, v) vﬁ| (42)
for all (z, w) € Yyy. So ‘l +z2Tuu” - 2zuT — (w, V)K'4P

[1 * |ZZT|2 -2z -2 |w|2K]q 'V (C¢f) &2 w)| On one hand, we have

N1+ 22" =202 - 2 wP<]”
n+ [ + |ZZ ' Izl [l ] (37) (1+|zzT|2—2|z|2—IwIZK)PWf(u,v) (= w)|
: |¢' (z,w)| [Vf (¢ (z,w))| < Vn+ NC W

(1+]e - 212 - |w|2K)p (1+ Jud" 21w - |v|2K)P
<

! =
=C £l Hl +zzTW72zIT| ~(Jwl |v|)K‘2P
By Lemma 3, we have f(¢(0,0)) < C"||f||/3p. Thus, {Z i 2 W'Z = |K (o %lz}llz (43)
1<a<n (3 o 1<B<N 4
ol = Sl (38) | (14 st = 2 u? = <)

So we get that Cy BE(Yy) — PAUYyy) is bounded. |2ﬁ - Zzﬁ| + K w/ X
For the conversion, assume that C;, : f#(Yry) — p4(Yry) =
is a bounded operator with

N (1 + quT|2 —2u)? - |v|2K)p.

"C¢f " pa <C|f] P (39) It is easy to know that

forall f € BP(Yyy).

I T T
If p # 1/2, we use a family of test functions {f,, : ‘214 - 2zuu l <2ul+2 'Zuu l <4,

. L. 44
(u,v) € Yy} in BP(Yyy) which is defined by K lwl< v < K (44)
f(u)v) (Z) w)
Obviously, 0,0) = 0. So
bviously, f(,,,)(0,0)
1 1
= _ 2p-1
2p-1 (1 + zzTuu® - 2zuT — (w, v) ) (40) | feum ";;p = | fum) (0,0)]
+ sup (1+'zzT| —2z)* - ) |Vf (2, w)|
—-1]. (zw)€eYy 45)
< <
Then, - (1 + |uuT|2 —2ul* - |v|2K)p’
afuv
a(z’) 5 _1( -2p) where C, =4 + K.
® P On the other hand, we can get
(1 +zz u® - 2zuT — (w, v) )_ZP
’ T|2 2 2k \1
— (1+]e2"] = 2128 = [wl™) " |V (Cy ) (2 w)| = (1
| 2z uut - 2u,
( ) T2 2122 2k\1
- i (41) +lez"| =21l ~ Juwl )
T T T K p
:(1+zz uu' = 2zu' — (w,v) ) ,
o ) ¢ (46)
(27 - 22,008, {Z v, 5 B

) _ K (w,v)'v;
awﬁ

2p° +
(1 + zzTuu - 2zuT — (w, v) ) 1<BeN

)
Y 4[] (¢ (z,w)) i’; (z,w)

1<k<N+n aVk

2}1/2



lekgn <2ﬁ - 2zzkﬁ)

(1 + zy2lun — 2zyuT — (wy, v) ) i

(1 + |zzT| -2 |z|

(1+ |z="|" ~ 21af - |w|2’<)q

(1 + zyzluu” - 2z,u” — (w,, v)

+ Z (K (w,, v)K_l k_n) % (z,w)
n+1<k<N+n «
_ oy
+ K (w,, (z,w)
n+1sstN+n ( <w2 V> ) aw o

(14|22 ~ 212 - |w|2’<)q

(1 + zy2lun — 2zyuT — (wy, v) ) i
+ Z (K (wy,v)™ k_n) % (z, w)
n+1<k<N+n «
_ oy
+ K 5 —n _( > )
nﬂgkzsmn( () Vo) ows

Furthermore, we have

(14 |e="] - 212 - |w|2’<)q

G(z,w) <C,.  (50)
(14|22 - 2|2 - o) ’
If p=1/2, set
1
f(u’v) (z,w) =1n (51)

(1+zzTuu —2zuT - (w, v) )

12

2
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f(u V)

v, (¢ (zw))

2

n+1<k<N+n

Zn+1$k<N+n (K <w2’ V>K71 Vk—n)

2p
(1 + 2,20 uuT - 2z,uT - (w,,v) )

2K) 'v C¢f(w) (z,w)|

(47)
Thus,
- —\ 0%
2ul =2z, uu™ ) == (z,w)
1<k<n ( ¢ ‘ ) aztx
(48)
Z Z (ZE— ZzzkuuT) O (z,w)
1<B<N |1<ksn ow Wg
2 } 1/2
Set (u,v) = (2,5, w,) = P(z, w); by (39), we have
Z (2@ - ZszuuT) P (z,w)
1<k<n o «
+ Z Z 2ul ZzzkuuT) P (z,w) (49)
1<B<N |1<k<n
12
G
} <C T2 2 2K\P~
(1 + |2222| - 2|zz| - |w2| )
Then,
U _ 2l - 2z, uul
0z, (1 + zz2TuuT - 2zuT — (w, )X
(52)
Of ) _ K (w,)< 75
owg (1 + zzTuu® — 2zuT — (w, v)K>

For the same reason, it can be proved that (33) holds. The
details are omitted here. The proof is completed. O
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4. The Compactness of Composition Operators

Theorem 8. If

(14 |e="] - 212 - |w|2K)q
5|6 @ w)| =0 (1),

(1 + |ZzzzT|2 -2 |Zzl2 - |w2|2 ) (53)
(23, wy) — OYpy,

then Cy : BP(Yyy) — P1(Yyy) is compact.
Conversely, if Cy : B (Yy,) — BU(Yyy) is compact, then

(1+ |2 - 212P - |w|2K>qG(z,w)

T2 2 2K\ P =o(1),
(1+|zzz2| =2|z,|" ~ |wy| ) (54)

(23w,) — Yy,

where (z,,w,) = ¢(z,w), (z,w) € Yy, ¢ = (P55
By Dss - s Pnan) K > 1, |9 (z,w)|, and G(z,w); see
Theorem 7.

Proof. Let {f,} be a bounded sequence in ff(Yyy) with
I fyllge < Cand f, — 0 uniformly on compact subsets of
Y}y . Furthermore, by Weierstrass Theorem, it is easy to show
that {Vf,} — 0 uniformly on compact subsets of Y}y. Thus,
for any € > 0, there exists 8 > 0 such that

(1 + 'zzT|2 -2z)* - |w|2k>q

(1+|220f - 2]z - |w2|2k)P |

¢ @w|<e (55

whenever dist((z,, w,), 0Yy) < 8. Then,

(1+|zzT| 2z - 2K) V(Cyf,) (z.w)

<Vn+N (1 + 'zle2 -2z - |w|2K)q (56)

|V, (¢ (zw))| |[¢' (2, w)| < Vn+ Ne 17l ge -

Write Es = {(2,,w,) € Yyy,dist((z,, w,), 0Yyy) > 6}, and then
Es is a compact subset of Y}y

Let (z,,w,) € Eg; then, there exists a constant M € (0, 1)
such that

1 1
< -
7S
2|Z2l2 _ lw2|2K) MP

< +00.
(1 +|z,2t | G7)

Therefore, there exists a constant C such that
2 q
(1 tlee| ~ 212 - |w|2K)

(1+ 2,21 = 2|2, = Jw, )’

¢’ zw)|<C. (58)
So

(1+|zz| —2z* - 2K) 'V C¢fv)zw|
(59)
< CVn+ N|Vf, (¢ (z,w))|.

Since f,(¢(0,0)) — O0asv — oo, from (56) and (59) we
obtain

"Cﬁl’fv pi = |fv ((/5 (0, 0))'
vsup (14 |27 - 212 - jwP*)’ (60)

V(fied)@w| —0,

D (V) - PYyy) is

v —> OO.

By Lemma 6, we know that C,
compact.

For the conversion, assume that (54) fails; then, there
exists a sequence {(z/,w’)} in Y}y with ¢(z/,w’) — 0Y;y as
j — ooand g; > 0 such that

(1 + |zjij|2 -2 'zj|2 - |wj|2K)qG(zj,wj)

o2 ) 12K\ P
i j j
<1+|z2z2| —2|zz| —|w2' )

forall j=1,2,....
We will construct a family of functions {f;(z, w)} satisfy-
ing the following three conditions:

>g  (61)

(D) {f;(z, w)} is a bounded sequence in B¥(Yyy);

(I {f i(z,w)} tends to zero uniformly on compact subsets
of Yiys

(1) [Cy f(zo w)ll g = 0, j — 0.

This contradicts with the compactness of C. Hence, we prove
that (54) is necessary for that Cy: BE(Yy) — PAYyy) being
compact.

If p#1/2,set

Ji(zw)

(1+
1

2p-1

def [ -2 f)f _|w2|2’<>" ()

Zzz2 <w, w2> )

T,
(1+zz z,2,

We have
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i i
2

2 12 2k \P
o[ 2felf o]
2 2 2

o\ 2K=2 |
2 ) J
+K leﬁsN ('(w, w2>| Wy,

(1 + |zzT| —2|z)* - 2K) 'Vf] (z, w)' (1 + 'zzT|2 —2|z* - |w|2K)P <1 + |z

T
J_ j it
2z, -2z zzz2

s

{Zl<o¢<n

T
1+2272)z) - 2z2] - (w,
(63)
12 ) »Kk\P i P iz kY
(1+'zz | =2 z|" - |w] ) 1+|22, —2|zz| —|w2'
< —
T . K
‘ 142272z 2220 | - (Jwl |wé|) l
T T 1K
-<2 o — 22l |+ K w< ! |w) )
It is easy to know that Combining with Lemma 5, we can get (1 + |zzT? - 2|z)* -
o o IwIZK)PIij(z, w)| < C,, where C; = 4 + K. Thus, {fj(z, w)}
;T T . . .
z) - ZZézé Z |+ ZZéZé <2, isa bounded sequence in BF(Y1y). This means that {fi(zw)}
(64)  satisfies condition ().
LK By Lemma 5,
K wl< || < K. Y
T 2k \P
<1+ zézé | —2|zé| —|w2' ) ‘
COIE
2P‘ 1 2 p-1/2 i T2 2K\ P71/
(1 + |zzT| -2 |z|2 - |w|2K) (1 + |zézé | -2 'zé' - 'w2| )
(65)
- 2 o\ V2
(et | 2 - )
Y 172
2p-1 (1 + |zzT|2 —2z* - IwIZK)p
When (zg,wg) — 0Yyasj — 00, then(1+|zgzgr|2—2|zé|2— as j — oo uniformly on compact subsets of Y. This means
Iwél2K ) — 0. Since (z,w) € H and H is a compact subset of that {f j (2, w)} satisfies condition (II)
Yy, then inf(1 + lzzT > = 2|z)* = |[w|*) > 0. So fj(z, w) — 0
..T2 .12 12K q . .
(1= [ =20 = ) 7 (Cos) (220
o2 12 2k\1
(1+]72"] - 22 - ) _ o6
- > <2zék - 22] 2)z] ) = (2, w)
(1 + | | -2 'ZZ' - ' 2| ) 1<asn | 1<k<n 0z,
s g ) B " (66)
V) Yk () _ j k (]
D (™I A R M D) <z.7.2 2] 22] ) P (&)
n+l<k<n+N o 1<B<N |1<ks<n B

2K-2 0 S
COX (Kl ) g ) -

n+1<k<n+N
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Condition (61) shows that ||C¢fj|| -+ 0asj — +oo and

{fj(z, w)} satisfies condition (III).
When p =1/2, set

o2
j i
232,

oK 1/2
= [ur]

-In (1 +22' 2z - 2222 (w,w]) )

fj(z,w) = <1+

9
forall j =1,2,.... Then,
i}
0z,
i k|2 T
(1+ zéz] —2|z§| —|w2| ) <2z 2z —ZZQ“)
(1 + zszézé - 222:; - <w, wé>K)
68
o o
aLUﬁ

. .T
ji
2

(1+ Z,

1/2
_2|Zé| _|w2|2K) K<w w2> wzﬂ)

(1 + zszézé - 2zz - (w, w2> )

(67) It is not difficult to prove that {f;} is a bounded sequence

in P (Y}y) and tends to zero uniformly on compact subsets of
Yiy. By (68),

(1+]2 2| [ ) v (Caf;) (2. )

. oT)2 a2 12K \1
<1+|z]zf| —2|z]| —|w]| )

. 2K /
(1|2 [ -2l - i) L
L 2K-2 T a
+ Z K |wJ| w) ﬂ
2 2 a ]
n+1<k<n+N Za
. Z < | ]|2K 2 o >8¢k
Wy j
n+1<k<n+N awﬁ

From the assumption, we get (1 + |z/2 |2

condition (III). The proof is completed.
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