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With modern global navigation satellite system (GNSS) signals, the FFT-based parallel code search acquisition must handle the
frequent sign transitions due to the data or the secondary code. There is a straightforward solution to this problem, which consists
in doubling the length of the FFTs, leading to a significant increase of the complexity. The authors already proposed a method
to reduce the complexity without impairing the probability of detection. In particular, this led to a 50% memory reduction for
an FPGA implementation. In this paper, the authors propose another approach, namely, the splitting of a large FFT into three or
five smaller FFTs, providing better performances and higher flexibility. For an FPGA implementation, compared to the previously
proposed approach, at the expense of a slight increase of the logic and multiplier resources, the splitting into three and five allows,
respectively, a reduction of 40% and 64% of the memory, and of 25% and 37.5% of the processing time. Moreover, with the splitting
into three FFTs, the algorithm is applicable for sampling frequencies up to 24.576MHz for L5 band signals, against 21.846MHz
with the previously proposed algorithm. The algorithm is applied here to the GPS L5 and Galileo E5a, E5b, and E1 signals.

1. Introduction

The question of computing a circular correlation between a
local code replica and an incoming code having a bit sign
transition is a recurrent problem in global navigation satellite
system (GNSS) [1–9]. This problem, already present with the
GPS L1 C/A signal, is even more important with the modern
GPS and Galileo signals, because of the higher data rate and
the presence of the secondary code that imply a potential
bit sign transition in each consecutive period of the primary
code. This problem appears with the parallel code search
(PCS) acquisition method, where a circular correlation is
performed through fast Fourier transforms (FFTs) over one
period of the primary code [4].

The straightforward solution to this problem is to at least
double the length of the sequences, by using more samples
of the input signal (to observe at least two code periods and
thus to be sure to observe one code period that is free of sign
transition) and by zero-padding the local code replica [4, 9].

However, this method implies using longer FFTs, which
increases the processing complexity, and at least half of
the calculated samples are discarded, making this solution
suboptimal.

Note that this straightforward solution is also a solution
to other problems. (1) Still with the PCS, the length of the
sequences may need to be increased to satisfy a constraint
on the FFT length. For example, if the FFT length must be
a power of two and if one code period corresponds to 4000
samples, applying directly zero-padding on both incoming
and local sequences to get sequences of 4096 samples will
result in losses (in general, the zeros will not be inserted at
the same position inside the received and local codes; see
[10] for more details). To avoid these losses, at least two code
periods should be observed in the incoming or local signal.
In the previous example, the incoming sequence would thus
be composed of 8000 signal samples padded with 192 zeros,
whereas the local code would be composed of 4000 samples
padded with 4192 zeros. (2)With another acquisitionmethod
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known as double block zero padding (DBZP) [11, 12], the
incoming signal and the local code are cut in small portions
and the correlations are computed on these small portions.
However, in order to compute correctly the correlation, each
portion of the local code is padded with zeros and correlated
with two consecutive portions of the incoming signal, as in
the straightforward solution.

In this paper, we propose the use of a method to reduce
the zero-padding in order to improve the efficiency. The
method is based on the fact that an 𝑁-point FFT can be
computed using 𝐾 𝑁/𝐾-point FFTs [13, Section 13.47]. In
particular, we focus on the computation of an 𝑁-point FFT
using three 𝑁/3-point FFTs or five 𝑁/5-point FFTs. This
method is applied in other areas (this is used, e.g., in new
mobile phone long term evolution technology, where 512-
point FFTs are used to compute a 1536-point FFT [14]), but
it has not yet been applied to the acquisition of GNSS signals.

The rest of the paper is organized as follows. Section 2
only briefly recalls the problem and the current solutions,
since these were already detailed in [4]. Section 3 describes
the FFT splitting algorithm. Section 4 evaluates the perfor-
mance of the proposed algorithm for the acquisition of the L5,
E5a, E5b, and E1 signals, in terms of complexity and resources
for an FPGA implementation. Finally, Section 5 concludes
this paper.

2. Problem and Current Solutions

The signal received from a GNSS satellite contains a spread-
ing code, whose beginning is unknown, and an unknown
residual carrier frequency due to the Doppler effect. The aim
of the acquisition is to determine the code delay and the
carrier frequency for all visible satellites [15]. Among different
methods, there is the basic serial search (SS) [16], there
are one-dimensional parallel searches such as the parallel
frequency search (PFS) and the PCS [16], [17, Chap. 2],
and there are two-dimensional parallel searches such as the
DBZP method [11, 12] (which is an extension of the PFS) or
the methods proposed in [18, 19]. The parallel code search
method seems to be among the most attractive methods for
the acquisition of modern signals, because it can compensate
the code Doppler (especially important with signals having
a high chipping rate and with weak signals requiring a long
integration) whereas some other methods (such as those
based on the PFS) cannot compensate it [20], and one-
dimensional parallel methods are less complex to implement
than two-dimensional parallel methods.

As mentioned in the introduction, the PCS performs
a circular correlation between a local code replica of the
satellite searched and the received signal using FFTs, usually
over the primary code period. Then, extra coherent integra-
tion or noncoherent integration can be performed, as shown
in Figure 1 (note that the FFT of the local code could be
precomputed and stored in a memory to use only 2 FFTs in
real time). If the Doppler frequency is correctly eliminated
and if there is no sign transition, a peak will appear at the
correct code delay, as illustrated in Figure 2(a). However, in
the presence of a sign transition between two consecutive
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Figure 1: Illustration of the parallel code search (PCS) acquisition.
The ∗ denotes the complex conjugate operation.

code periods (due to the data or the secondary code), there
may be a loss depending on the position of this sign transition
in the received signal, as shown in Figures 2(b) and 2(c).
Nevertheless, note that when the correlation peak decreases
at the correct Doppler frequency bin due to a sign transition,
other peaks will appear with a lower amplitude at incorrect
Doppler frequency bins [8].

2.1. Straightforward Solution (3-FFT Solution). Asmentioned
in the introduction, the straightforward solution to this
problem is to at least double the length of the sequences,
by using more samples of the input signal and by zero-
padding the local code [9], as shown in Figure 3. In this
case, we are sure to observe a complete period of the code
in the received signal and thus to obtain a peak that is not
attenuated. This peak is in the first half of the correlation
output, while the second half contains a peak potentially
attenuated (depending on the bit sign transitions).Therefore,
the second half is usually discarded, which is not optimal.
For the rest of this paper, this solution will be called the 3-
FFT solution. As mentioned earlier, it would be possible to
use only 2 FFTs in real time by precomputing the FFT of the
local code and storing it in a memory, but this case is not
studied here. However, it is relatively easy to adapt the results
of Section 4 to this case.

The L5, E5a, and E5b signals have a spreading code
period of 1ms, and the usual minimum sampling frequency
considered is 20.46MHz (assuming a complex sampling
since the signal bandwidth is 20.46MHz) [4], which is twice
the chipping rate (note that in practice this exact frequency
is never used because of accuracy problems in tracking and
positioning [21]). Therefore, in one code period there are at
least 20 460 samples, and in two periods there are at least
40 920 samples. The E1 signal has a code period of 4ms,
and when this signal is processed as a BOC(1,1) signal with
the PCS, the usual minimum sampling frequency considered
is 6.138MHz (still assuming a complex sampling since the
signal bandwidth is 4.092MHz) [4], which is six times the
chipping rate (the ratio between the sampling frequency and
the chipping rate is higher for BOC than BPSK modulation
because the autocorrelation functions are different [22]).
Therefore, in one period of the code there are at least 24 552
samples, and in two periods there are at least 49 104 samples.
Thus, for all these signals, if the FFT length must be a power
of two, the 3-FFT solution will use 65 536-point FFTs, for
sampling frequencies between 20.46 and 32.768MHz for the
L5, E5a, and E5b signals and between 6.138 and 8.192MHz
for the E1 signal processed as BOC(1,1). If the sampling



International Journal of Navigation and Observation 3

+1

–1
+1

–1

0 1

1
0
2
2
9

0

1
0
2
2
9

Direction of shifting of the local code

1

0

Received
code

Local
code

Correlation
result

Secondary code or data

· · ·

· · ·

· · ·

10 230

(a)

0 1

1
0
2
2
9

1
7
2
9

1
0
2
2
9

0
1
7
2
8

Direction of shifting of the local code

Secondary code or data

1
7
3
0

1· · ·

· · ·

· · ·

· · · · · ·

(b)

0 1

1
0
2
2
9

5
1
1
4

1
0
2
2
9

0
5
1
1
3

Direction of shifting of the local code

Secondary code or data

5
1
1
5

· · ·

· · · · · ·

· · · · · ·

(c)

Figure 2: Illustration of the problem due to a transition coming from the secondary code or the data.The values in the boxes indicate the chip
number. (a)The incoming primary code starts with the first chip; the correlation at the correct alignment is maximum, as it would be without
data or secondary code. (b) The incoming primary code does not start at the first chip (usual case); the correlation at the correct alignment
is reduced. (c) In the worst case, the incoming primary code starts at the middle of a period; the correlation at the correct alignment is very
close to 0.

0 1
1
0
2
2
9

1
7
2
9

1
0
2
2
9

0
1
7
2
8

Direction of shifting of the local code

Secondary code or data

1
7
2
9

1
0
2
2
9

0
1
7
2
8

Zeros

+1

–1
+1

–1

1
7
3
0

1
1
7
3
0

1

0

Received
code

Local
code

Correlation
result

· · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

−10 230

10 230

Figure 3: Straightforward solution to the bit sign transition prob-
lem. The magnitude of the first peak is always maximum, whereas
the second peak can be reduced because of the sign transitions.

frequency is in the lower part of these ranges, this solution is
not computationally efficient because it implies a lot of zero-
padding and discarded samples.

Note that the sampling frequencies given here are those
required for the acquisition. These frequencies can be the
ones used by theRF front-end, but it is also possible to have an
RF front-end using a higher sampling frequency and to have a
resampling performed before the acquisition block (see [13],
Chapter 10).

2.2. Other Solutions in the Literature. In the literature, there
are different propositions to overcome this problem other
than the straightforward solution. For example, some authors
proposed performing averaging in the Doppler search space

[8]; having two steps to first find the code delay and then the
Doppler frequency [6]; or generating two local codes, with
and without a transition, requiring the computation of five
FFTs instead of the usual three [1, 5]. However, since these
methods change the essential correlation operation (the result
is not only a usual correlation between the incoming and local
signals), there is a negative impact on the signal-to-noise ratio
(SNR) and thus on the probability of detection compared
to the 3-FFT solution. Another approach was developed in
[3], where it is proposed to perform bit synchronization
collectively using several satellites.

In a recent paper [4], the authors proposed an algorithm
that reduces the complexity by computing less samples that
are further discarded, while not affecting the SNR (because
the required correlation samples are computed accurately).
With this proposed algorithm, the zero-padding could be
reduced, and it was shown that it was possible to compute
five FFTs of 32 768 points instead of three FFTs of 65 536
points. Later, a slightly different algorithm was found (still
computing five FFTs of 32 768 points but removing the need
of a memory to store an intermediate result), using slightly
less memory resources for an FPGA-based receiver (see [17,
Chap. 5]). Next, this solutionwill be called the 5-FFT solution
(as for the 3-FFT solution, the FFT of the local code could be
precomputed, but we do not consider this case here). Note
that this solution has a complexity similar to the algorithms
proposed in [1, 5], since they all compute five FFTs of same
length. The difference is that our algorithm computes exactly
the correlation and thus the detection performance is not
affected but the algorithm can be applied only for a certain
range of sampling frequencies, whereas the algorithms in [1,
5] affect the detection performance but they can be applied for
any sampling frequency; therefore, the best solution depends
on the context.
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In summary, with the 5-FFT solution proposed in [17,
Chap. 5], the number of operations is reduced by about
20% compared to the 3-FFT solution, which is potentially
interesting for digital signal processor based receivers; and
the required memory is reduced by about 50% for the same
processing time for FPGA-based receivers. However, this
algorithm can be used only for sampling frequencies between
20.46 and 21.846MHz for the L5, E5a, and E5b signals and
at most of 5.4615MHz for the E1 signal (this low sampling
frequency implies additional losses due to the higher code
step in the acquisition) [17, Chap. 5].

In the next section, a different approach is presented, still
with the same goal, namely, computing exactly the correlation
and reducing the complexity by decreasing the amount of
zero-padding.

3. New Solution Based on Smaller Size FFTs

It is known that an FFT can be computed by combining the
results of several smaller FFTs, at the expense of an increase
in the number of operations (see [13], Section 13.47).This can
be useful for our problem because the zero-padding can be
reduced, as shown in this section.

3.1. Computing an FFTUsingThree Smaller FFTs. Thediscrete
Fourier transform (DFT) of a sequence 𝑥

𝑛
of 𝑁 points is

defined as

𝑋
𝑘
=

𝑁−1

∑

𝑛=0

𝑥
𝑛
𝑒
−𝑗2𝜋𝑘𝑛/𝑁

, (1)

with 𝑘 = 0, 1, . . . , 𝑁 − 1. If we divide the input sequence 𝑥
𝑛

into three consecutive sections of𝑁/3 points (assuming that
𝑁 is a multiple of three), we have
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Finally, we can group again the terms in the same sum to
obtain
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Then, if we divide the output sequence 𝑋
𝑘
into three

sequences of 𝑁/3 points with a downsampling by a factor
three (as done in polyphase decomposition), we obtain
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(5)

with 𝑘 = 0, 1, . . . , 𝑁/3 − 1. Therefore an 𝑁-point DFT (or
FFT) can be computed using three 𝑁/3-point DFTs (FFTs),
as shown in Figure 4, where the combination block includes
the elements to compute the operation in parentheses in
(5). There are different ways to compute these operations,
discussed inAppendix A.The same development can be done
for an inverse DFT, providing a symmetric schematic.

A similar development can be done for the computation
of an𝑁-point FFT using five𝑁/5-point FFTs (assuming that
𝑁 is a multiple of five).The computation of the combinations
for this case is discussed in Appendix B.

3.2. Application to the GNSS Signal Acquisition Problem.
Using the developments of the previous section to compute
one FFT using three FFTs, it is thus possible to compute a
49 152-point FFT using three 16 384-point FFTs. Thus, using
this approach for the acquisition of the L5, E5a, E5b, and E1
signals, the sequences would need to be zero-padded only up
to 49 152 (much less than 65 536). The reduction of the zero-
padding directly reduces the complexity of the acquisition,
as shown in the next section, with great benefits for its
implementation. Next, this solution will be called the 9-FFT
solution.

This method works if the initial length of the sequence
is lower than or equal to 49 152, which corresponds to a
maximum sampling frequency of 24.576MHz for the L5, E5a,
and E5b signals and to 6.144MHz for the E1 signal.Therefore,
the range of applicability of this solution is larger than that
of the 5-FFT solution (21.846MHz for the L5, E5a, and E5b
signals, 5.4615MHz for the E1 signal [4], [17, Chap. 5]), and
the proposed algorithm does not introduce any loss with the
E1 signal.

Similarly, it would be possible to compute a 40 960-point
FFT using five 8192-point FFTs. The sequences would need
to be zero-padded only up to 40 960; that is, only 20 zeros
would be padded. However, this method works if the initial
length of the sequence is lower than or equal to 40 960,
which corresponds to a maximum sampling frequency of
20.48MHz for the L5, E5a, and E5b signals and to 5.120MHz
for the E1 signal. Therefore, the range of applicability in this

case is very small, and it implies a loss for the E1 signal. Next,
this solution will be called the 15-FFT solution.

Remember that the sampling frequencies given are at the
acquisition stage. The actual sampling frequency used by the
RF front-end can be higher if a resampling is performed
before the acquisition.

It is clear that it is not interesting to use higher splitting in
our case. Indeed, an FFT can also be split into seven smaller
FFTs; however, with seven 4096-point FFTs we can compute
a 28 672-point FFT, which is much below the length of our
signal (40 960 or 49 104); and with seven 8192-point FFTs we
can compute a 57344-point FFT, which is much higher than
the length of our signal; therefore, such a solution would be
less efficient (because there would be more zero-padding and
because the combinations of the FFTs inputs would become
much more complex), and the only advantage is that such
solution could be used for higher sampling frequency, for
example, up to 28.672MHz for the L5, E5a, and E5b signals.

4. Comparison of the Solutions

In this section, we compare the 3-FFT solution, the 5-FFT
solution (proposed in [17, Chap. 5]), and the two solutions
proposed in this paper: the 9-FFT and 15-FFT solutions. The
schematics of these solutions are given in Figure 5, except for
the 15-FFT solution, which can be easily obtained looking
at the 9-FFT implementation. As mentioned previously, for
each solution, the FFTs of the local code could be precom-
puted and stored in a memory to reduce the actual number
of FFTs; however, in this paperwe do not consider these cases,
although the reader can transpose the results easily to these
cases.

First, we review the sampling frequency range applicable
to the different solutions. Then, we compare the complexity
by evaluating the number of operations, which can be inter-
esting for a digital signal processor based receiver. Finally,
we compare the resources for an FPGA-based receiver.
Remember that the 5-FFT solution has a complexity similar
to the algorithms proposed in [1, 5] (since they all compute
five FFTs of same length); thus, the following results regarding
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Figure 4: Computation of an FFT of 𝑁 points using three FFTs of
𝑁/3 points.

the complexity and the FPGA implementations for the 5-FFT
solution are valid for these algorithms too.

4.1. Sampling Frequency. As mentioned in the previous sec-
tions, each algorithm can be applied for a certain range of
sampling frequency.These ranges are summarized in Table 1.

Note however that these ranges are for an exact com-
putation of the code correlation, and it is possible to use
a higher sampling frequency at the cost of a potential
loss. For example, it would be possible to use a sampling
frequency of 26MHz with the 9-FFT solution. In this case,
two code periodswould correspond to 52 000 samples, and by
removing the last 2848 samples the circular correlation can be
performed on the 49 152 remaining samples. This can lead to
a little loss, depending on the received code delay. If the delay
of the code is between 0 and 23 152 (49 152–26 000), there
will be no loss. If the delay is higher, a portion of the local
code will not be aligned with the received code, introducing
a loss. In the worst case of this example, 2848 samples will
not be aligned, leading to a loss of about 1 dB. Of course, the
higher the sampling frequency is, the higher the potential loss
becomes.

4.2. Complexity Analysis. To evaluate the implementations’
complexity, the number of complex multiplications and
additions is computed. For this, we consider that an 𝑁-
point FFT requires𝑁/2log

2
(𝑁) complex multiplications and

𝑁log
2
(𝑁) complex additions [13].

The summary of the complexity analysis is given in
Table 2. For the 9-FFT solution, one complex multiplier and
seven complex adders are considered for each combination
(see Appendix A), and, for the 15-FFT solution, four complex
multipliers and 24 complex adders are considered for each
combination (see Appendix B).

Therefore, for a digital signal processor based receiver,
the 9-FFT solution is not significantly better than the 5-FFT
solution, but the 15-FFT is (20% less multiplications and 11%
less additions).

4.3. FPGA Implementation and Analysis. To compare the
implementations on an FPGA, we compare the resources in
terms of logic elements, memory size, and number of multi-
pliers, when the implementations provide approximately the

same processing time. For this evaluation, we consider the
Altera Stratix V FPGA family [23] and the FFT core provided
by Altera [24], with the streaming data flow and 16 bits of
resolution for the input, output, and twiddle factor [24].

The resources of the different elements of the implemen-
tations have been evaluated separately. The FFTs resources
have been estimated after place and route of a design
containing one FFT with the Quartus II software 14.0, the
adders and multipliers are estimated using models given in
[20] (adapting the models from the Stratix III to the Stratix V
FPGA family), and the control signals have been neglected.
Note that this analysis is an estimation, which can slightly
fluctuate depending on the FPGA family, on the complete
design inside the FPGA, and on the FFT parameters.

For the 3-FFT solution, we consider the implementation
given by Figure 5(a). For the other solutions, the direct FPGA
implementation of Figures 5(b) and 5(c) would lead to an
increase of the resources and to a decrease of the processing
time by factors 2 and 4, respectively (which is the ratio in the
FFTs length) [17, Chap. 4 and 5]. Therefore, we will consider
time multiplexing for the implementations to use fewer FFTs
and to obtain approximately the same processing time as the
3-FFT FPGA implementation of Figure 5(a).

For the 5-FFT solution, the time-multiplexing implemen-
tation is given in Figure 6, where 𝑦

𝑀0,𝑛
is computed first and

𝑦
𝑀1,𝑛

is computed next. Since the FFTs length is half the FFT
length of the 3-FFT solution and that the FFTs are used twice
to get a complete correlation result, the processing time is the
same as with Figure 5(a) (see [17, Chap. 4 and 5] for more
details).

For the 9-FFT solution, the time-multiplexing implemen-
tation is given in Figure 7. First, the three sections of ℎ

𝑛
and

𝑥
𝑛
are accessed in parallel and combined to obtain ℎ

0,𝑛
and

𝑥
0,𝑛
, respectively; their circular correlation is computed with

the FFTs; and the result 𝑦
0,𝑛

is stored in a memory. Then,
this is repeated with ℎ

1,𝑛
and 𝑥

1,𝑛
, which are multiplied by a

complex exponential before the FFTs; the IFFT output is also
multiplied by a complex exponential to obtain𝑦

1,𝑛
, also stored

in memory. Finally, this operation is repeated with ℎ
2,𝑛

and
𝑥
2,𝑛
; when 𝑦

2,𝑛
is available, the memories are read, and 𝑦

0,𝑛
,

𝑦
1,𝑛
, and 𝑦

2,𝑛
are combined to obtain the three sections of the

correlation output. With this implementation, since the FFTs
length is divided by four compared to the 3-FFT solution and
the FFTs are used three times to get a complete correlation
result, the processing time is 75% the one of Figures 5(a) and
6.

The same approach is considered for the 15-FFT solution.
In this case, the FFTs length is divided by eight compared to
the 3-FFT solution, and the FFTs are used five times to get a
complete correlation result; therefore, the processing time is
62.5% the one of Figures 5 and 6.

The resources used by each implementation are given in
Table 3, in terms of adaptive logic module (ALM, element
containing a bit of logic and four registers), memory blocks
of 20 Kibit (i.e., of 20 × 1024 bits, denoted M20K), and
digital signal processing (DSP) blocks (containing two 18-
bit hardware multipliers); see [23] for more details about the
elements inside Stratix V FPGAs.The details of the resource’s
estimation can be found in Table 4.
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Figure 5: Schematic of the different solutions: (a) 3-FFT solution (straightforward solution), (b) 5-FFT solution (proposed in [17, Chap. 5]),
and (c) 9-FFT solution (proposed in this paper).

Table 1: Range of applicability of the different solutions.

Solution FFT length Sampling frequency range Sampling frequency range
for L5, E5a, and E5b signals for the E1 signal

3-FFT solution 65 536 20.46MHz–32.768MHz 6.138MHz–8.192MHz
5-FFT solution 32 768 20.46MHz–21.846MHz 5.4615MHz∗

9-FFT solution 16 384 20.46MHz–24.576MHz 6.138MHz–6.144MHz
15-FFT solution 8192 20.46MHz–20.480MHz 5.120MHz∗

A ∗ indicates that there is a loss due to a higher code step during the acquisition.
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Figure 6: FPGA implementation of the solution proposed in [17],
Chapter 5. 𝑖 ∈ 0,1.

In Table 3, which summarizes the resources, it can be ver-
ified that the implementation of the 5-FFT solution uses less

than half the memory of the 3-FFT solution (the reduction
is 56.6% whereas it was about 50% in [17] because of the
different FPGA families considered) and slightly less logic.

With the proposed 9-FFT solution, the memory is again
reduced, by 39.8% compared to the 5-FFT solution; however,
the logic is slightly higher (+6.4%, in part because the
16 384-point FFT requires more logic than the 32 768-point
FFT), and the DSP blocks is also higher (+21.1%, because
of the multiplication with the complex exponentials and the
product between the FFTs outputs). However, the memory
saving is more valuable than the increase of the DSP blocks
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Figure 7: FPGA implementation of the proposed solution.

(except in the cases where the overall system implemented
into the FPGA strongly limits the number of DSP blocks
available). Indeed, the minimum number of DSP blocks in a
Stratix V FPGA is 256 [23]; therefore, the 8 additional DSP
blocks represent 3.13% of the total available. For the same
FPGA, the memory can be between 957 and 2560M20K
blocks. Therefore, the 308M20K blocks saved (equivalent to
about 6Mbit) represent between 32.2% and 12.0% of the total
available. As for the logic, the 531 additional ALMs represent
less than 1% of the total available (minimum of 128 300
ALMs). Thus, it can be concluded that the gain of memory
is much more valuable than the loss of other elements.

With the proposed 15-FFT solution, the memory is
further reduced, by 63.9% compared to the 5-FFT solution,
but the number of DSP blocks is again increased. However,
the number of additional DSP blocks represents at most 5.5%
of the total available in a StratixV FPGA,whereas the number
ofM20K blocks saved represents between 20% and 53%of the
total available.

It can be noted that, compared to the 3-FFT algorithm,
the memory used by the 9-FFT and 15-FFT algorithms is,
respectively, 3.8 and 6.4 times smaller, which represents a
huge amount of memory saved, and allows the implementa-
tion of the algorithm in the smallest of the Stratix V FPGAs.

5. Conclusions

This paper discussed the problem of the complexity of
a circular correlation computed by FFTs when two code
periods are used. This problem appears in the parallel code
search acquisition of GNSS signals, when we want to manage
the sign transitions due to data or secondary code or when
we need to zero-pad the signals to reach a specific FFT length
(e.g., a power of two).

With the structure of new GPS L5 and Galileo E5a, E5b,
and E1 BOC(1,1) signals, the straightforward solution to this
problem uses three 65 536-point FFTs (3-FFT solution) for
sampling frequencies between 20.46 and 32.768MHz for the
L5, E5a, and E5b signals and between 6.138 and 8.192MHz for
the E1 signal processed as BOC(1,1). However, for sampling
frequencies in the lower part of these ranges, this solution is

Table 2: Number of operations of the different solutions.

Solution Number of complex Number of complex
multiplications additions

3-FFT solution 1 638 400 3 145 728

5-FFT solution 1 294 336 2 457 600
(−21%) (−21.9%)

9-FFT solution 1 228 800 2 408 448
(−25%) (−23.4%)

15-FFT solution 1 036 288 2 187 264
(−36.8%) (−30.5%)

The percentage is the reduction compared to the 3-FFT solution.

not computationally efficient because it implies a lot of zero-
padding.

Previously, in [4, 17], we proposed an alternative algo-
rithm that computes exactly the output samples (i.e., without
any approximation), but using five 32 768-point FFTs (5-FFT
solution). The main benefits were a reduction of the number
of operations of about 20% and a reduction of the mem-
ory resources of about 50% for an FPGA implementation
compared to the 3-FFT solution, without increasing other
resources (logic and multipliers) nor the processing time.
However, the 5-FFT solution can be used only for sampling
frequencies between 20.46 and 21.846MHz for the L5, E5a,
and E5b signals and at most of 5.4615MHz for the E1 signal
(this low sampling frequency implying additional losses due
to the higher code step in the acquisition).

In this paper, we proposed two algorithms that still com-
pute exactly the output samples, one using nine 16 384-point
FFTs (9-FFT solution) and one using fifteen 8192-point FFTs
(15-FFT solution), respectively. These algorithms exploit the
fact that an FFT can be computed using 𝐾 FFTs of length
𝐾 times smaller. Therefore, using three 16 384-point FFTs,
it is possible to compute a 49 152-point FFT and thus to
reduce the zero-padding necessary compared to the previous
algorithms. Likewise, with five 8192-point FFTs, it is possible
to compute a 40 960-point FFT.

Compared to the 5-FFT solution, the 9-FFT solution has
a slightly lower number of operations, and for an FPGA
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Table 3: Comparison of the resources for the different algorithms using the Altera FFT for the L5, E5a, E5b, and E1 signals, considering time
multiplexing.

Implementation Logic usage Memory usage Multipliers usage
(ALM) (M20K) (DSP blocks)

3-FFT solution (Figure 5(a))
Total 8760 1824 38

5-FFT solution (Figure 6)
Total 8274 792 38

Difference with 3-FFT solution −486
(−5.5%)

−1032
(−56.6%) 0

Proposed 9-FFT solution (Figure 7)
Total 8805 484 46

Difference with 3-FFT solution +45
(+0.5%)

−1340
(−73.5%)

+8
(+21.1%)

Difference with 5-FFT solution +531
(+6.4%)

−308
(−38.9%)

+8
(+21.1%)

Proposed 15-FFT solution
Total 8645 286 52

Difference with 3-FFT solution −115
(−1.3%)

−1538
(−84.3%)

+14
(+36.8%)

Difference with 5-FFT solution +371
(+4.5%)

−506
(−63.9%)

+14
(+36.8%)

Table 4: Details of the resources for the different algorithms using the Altera FFT for the L5, E5a, E5b, and E1 signals, considering time
multiplexing.

Implementation Function Logic usage Memory usage Multipliers usage
(ALM) (M20K) (DSP blocks)

3-FFT solution
(Figure 5(a))

3 FFTs (65 536 points) 3 × 2920 3 × 608 3 × 12
1 multiplier 0 0 2

Total 8760 1824 38

5-FFT solution
(Figure 6)

3 FFTs (32 768 points) 3 × 2758 3 × 264 3 × 12
1 multiplier 0 0 2

Total 8274 792 38

Proposed 9-FFT solution
(Figure 7)

3 FFTs (16 384 points) 3 × 2883 3 × 140 3 × 12
4 multipliers 0 0 4 × 2

Combinations for ℎ
𝑛

28 0 0
Combinations for 𝑥

𝑛
64 0 1

Combinations for 𝑦
𝑛

64 0 1
2 memories (32 768 points) 0 2 × 32 0

Total 8805 484 46

Proposed 15-FFT solution

3 FFTs (8192 points) 3 × 2695 3 × 74 3 × 12
4 multipliers 0 0 4 × 2

Combinations for ℎ
𝑛

112 0 0
Combinations for 𝑥

𝑛
224 0 4

Combinations for 𝑦
𝑛

224 0 4
4 memories (16 384 points) 0 4 × 16 0

Total 8645 286 52
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implementation the processing time is reduced by 25%,
and the memory is reduced by about 40% (which means
a reduction of about 75% compared to the straightforward
algorithm). In return, there is a small increase of the logic
and DSP blocks (+6% and +21%, resp.) but, compared to the
resources available in an FPGA, thememory saved represents
more than the DSP blocks lost. Moreover, this algorithm
can be used for sampling frequencies between 20.46 and
24.576MHz for the L5, E5a, and E5b signals and between
6.138 and 6.144MHz for the E1 signal, that is, larger ranges
compared to the 5-FFT solution. Therefore, this algorithm
is overall more efficient and more versatile than the 5-FFT
solution.

Regarding the 15-FFT algorithm, compared to the 5-FFT
solution, the number of operations is reduced (20% less
multiplications and 11% less additions), which is interesting
for software defined DSP based receivers. For an FPGA
implementation, the processing time is reduced by 37.5% and
the memory is reduced by about 64%, for an increase of
the logic and DSP blocks, but again this increase is small
compared to the resource available in an FPGA. However, the
sampling frequency range is more limited since it should be
between 20.46 and 20.48MHz for the L5, E5a, andE5b signals
and at most of 5.12MHz for the E1 signal, implying additional
losses due to the higher code step in the acquisition.

In conclusion, two algorithms were proposed that reduce
significantly the processing time and the memory resources
compared to previously proposed algorithms, one providing
better performance than the other but for a limited range
of sampling frequency. Therefore, the context will indicate
which one is the most interesting. Note also that the men-
tioned sampling frequencies are those at the acquisition stage;
the actual sampling frequency used by the RF front-end can
be higher if a sample rate conversion is performed before the
acquisition.

Appendices

A. Combinations of the FFT Inputs for
the 9-FFT Algorithm

When computing an FFT of 𝑁 points using three FFTs of
𝑁/3 points, we need to perform the following combinations
between the sections of the input:

𝑥
0,𝑛
= 𝑥
𝑛
+ 𝑥
𝑛+𝑁/3

+ 𝑥
𝑛+2𝑁/3

,

𝑥
1,𝑛
= 𝑥
𝑛
+ 𝑥
𝑛+𝑁/3

𝑒
−𝑗2𝜋/3

+ 𝑥
𝑛+2𝑁/3

𝑒
𝑗2𝜋/3

,

𝑥
2,𝑛
= 𝑥
𝑛
+ 𝑥
𝑛+𝑁/3

𝑒
𝑗2𝜋/3

+ 𝑥
𝑛+2𝑁/3

𝑒
−𝑗2𝜋/3

(A.1)

with 𝑛 = 0, 1, . . . , 𝑁/3 − 1. Using a matrix notation, this gives

[
[

[

𝑥
0,𝑛

𝑥
1,𝑛

𝑥
2,𝑛

]
]

]

=
[
[
[

[

1 1 1

1 𝑒
−𝑗2𝜋/3

𝑒
𝑗2𝜋/3

1 𝑒
𝑗2𝜋/3

𝑒
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]
]
]

]

[
[

[

𝑥
𝑛

𝑥
𝑛+𝑁/3

𝑥
𝑛+2𝑁/3

]
]

]

. (A.2)

This section details different ways to compute these combina-
tions and discusses their FPGA implementation.

A.1. Methods to Reduce the Number of Multipliers. The direct
computation of these combinations implies 4 complex multi-
pliers and 6 complex adders, that is, 16 real multipliers and 20
real adders (assuming that a complex multiplication requires
4 real multiplications and 2 additions).

However, it is possible to exploit the fact that 𝑥
𝑛+𝑁/3

and
𝑥
𝑛+2𝑁/3

are multiplied by a complex number and its conju-
gate. Indeed, denoting 𝑥

𝑟,𝑛
and 𝑥

𝑖,𝑛
, the real and imaginary

part of 𝑥
𝑛
, respectively, we have

𝑥
𝑛+𝑁/3

𝑒
−𝑗2𝜋/3

= (𝑥
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1
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− 𝑗
√3

2
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2
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2
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(A.3)

Therefore, these two complex products can be computed
using only 4 real multipliers (counting the multiplication by
−1/2) and 4 real adders. Thus (A.1) can be computed with 8
real multipliers and 20 real adders.

There is a third option to reduce the complexity, by
exploiting the fact that𝑥

𝑛+𝑁/3
and𝑥
𝑛+2𝑁/3

are bothmultiplied
by the same complex number and its conjugate. It is well
known that the following operation

[

𝑎 𝑏

𝑏 𝑎
] [

𝑦

𝑧
] = [

𝑎𝑦 + 𝑏𝑧

𝑏𝑦 + 𝑎𝑧
] (A.4)

can be computed as

1

2
[

1 1

1 −1
] [

(𝑎 + 𝑏) (𝑦 + 𝑧)

(𝑎 − 𝑏) (𝑦 − 𝑧)
]

=
1

2
[

1 1

1 −1
] [

𝑎𝑦 + 𝑏𝑧 + 𝑏𝑦 + 𝑎𝑧

𝑎𝑦 + 𝑏𝑧 − 𝑏𝑦 − 𝑎𝑧
] ,

(A.5)

requiring 2 multiplications and 6 additions (not counting
the factor 1/2) instead of 4 multiplications and 2 additions.
Applying this to our combination, we have

[

𝑒
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𝑒
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𝑒
𝑗2𝜋/3

𝑒
−𝑗2𝜋/3

][

𝑥
𝑛+𝑁/3
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]
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]
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]
]

]
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1 1

1 −1
] [

𝑥
𝑛+𝑁/3

𝑥
𝑛+2𝑁/3

]

(A.6)
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which requires only 4 real multiplications (counting the
multiplication by −1/2) and 8 real additions. Thus, (A.1) can
be computed with 4 real multipliers and 16 real adders.

A.2. FPGA Implementation. First, implementing (A.6) in an
FPGA requires only 2 real multipliers instead of 4, because
the multiplication by 1/2 can be performed by a right shift of
the bits of the signal.Thus, the combinations of the sections of
𝑥
𝑛
can be implemented with two real multipliers and 16 real

adders.
For the local code replica ℎ

𝑛
, two properties can be used

to further reduce the resources; it is binary and real. Since
ℎ
𝑛
is binary, the first sum and difference in (A.6) can be

neglected, and the multiplication by√3/2 can be replaced by
a simple change of sign according to the value of the sample
(which is equivalent to an adder in terms of resources). Since
ℎ
𝑛
is real, only 3 real adders are thus needed to compute

(A.6). Therefore, the combinations of the sections of ℎ
𝑛
can

be implemented with 7 real adders only. Note that this is a
basic evaluation; for example, the adders used to compute ℎ

0,𝑛

have amuch lower resolution than the others since the signals
added together are binary, so they will not consume the
same amount of resources. Anyway, these adders represent
a very little percentage of the total resources used as shown
in Table 4.

It is also possible to exploit more the characteristics of the
signals, although this would not allow a significant reduction
of the resources. Indeed, if the second half of ℎ

𝑛
contains only

zeros, ℎ
𝑛+2𝑁/3

contains only zeros, and therefore the first sum
and difference in (A.6) (neglected in the previous paragraph)
are not needed, and the combinations could be simplified
by removing one adder for the computation of ℎ

0,𝑛
. Then, if

we do not care about the second half of the output 𝑦
𝑛
, it is

not necessary to compute 𝑦
𝑛+2𝑁/3

, which would remove four
adders.

B. Combinations of the FFT Inputs for
the 15-FFT Algorithm

When computing an FFT of 𝑁 points using five FFTs of
𝑁/5 points, we need to perform the following combinations
between the sections of the input:

[
[
[
[
[
[
[
[

[

𝑥
0,𝑛

𝑥
1,𝑛

𝑥
2,𝑛

𝑥
3,𝑛

𝑥
4,𝑛

]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

1 1 1 1 1

1 𝑒
−𝑗2𝜋/5

𝑒
−𝑗4𝜋/5

𝑒
𝑗4𝜋/5

𝑒
𝑗2𝜋/5

1 𝑒
−𝑗4𝜋/5

𝑒
𝑗2𝜋/5

𝑒
−𝑗2𝜋/5

𝑒
𝑗4𝜋/5

1 𝑒
𝑗4𝜋/5

𝑒
−𝑗2𝜋/5

𝑒
𝑗2𝜋/5

𝑒
−𝑗4𝜋/5

1 𝑒
𝑗2𝜋/5

𝑒
𝑗4𝜋/5

𝑒
−𝑗4𝜋/5

𝑒
−𝑗2𝜋/5

]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[

[

𝑥
𝑛

𝑥
𝑛+𝑁/5

𝑥
𝑛+2𝑁/5

𝑥
𝑛+3𝑁/5

𝑥
𝑛+4𝑁/5

]
]
]
]
]
]
]
]

]

,

(B.1)

with 𝑛 = 0, 1, . . . , 𝑁/5 − 1. The direct computation of this
equation implies 16 complex multipliers and 20 complex
adders, that is, 64 real multipliers and 72 real adders.
However, rewriting the equation as follows

[
[
[
[
[
[
[
[

[

𝑥
0,𝑛

𝑥
1,𝑛

𝑥
4,𝑛

𝑥
2,𝑛

𝑥
3,𝑛

]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

1 1 1 1 1

1 𝑒
−𝑗2𝜋/5

𝑒
𝑗2𝜋/5

𝑒
−𝑗4𝜋/5

𝑒
𝑗4𝜋/5

1 𝑒
𝑗2𝜋/5

𝑒
−𝑗2𝜋/5

𝑒
𝑗4𝜋/5

𝑒
−𝑗4𝜋/5

1 𝑒
−𝑗4𝜋/5

𝑒
𝑗4𝜋/5

𝑒
𝑗2𝜋/5

𝑒
−𝑗2𝜋/5

1 𝑒
𝑗4𝜋/5

𝑒
−𝑗4𝜋/5

𝑒
−𝑗2𝜋/5

𝑒
𝑗2𝜋/5

]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[

[

𝑥
𝑛

𝑥
𝑛+𝑁/5

𝑥
𝑛+4𝑁/5

𝑥
𝑛+2𝑁/5

𝑥
𝑛+3𝑁/5

]
]
]
]
]
]
]
]

]

,

(B.2)

we find again the pattern present in (A.2). Applying the third
option described in Section A.1, (B.2) can be computed with
16 real multipliers and 52 real adders.

Regarding the FPGA implementation, now neither the
real nor the imaginary part of the complex exponentials
is a rational number. Therefore, 16 real multipliers and 52
real adders are needed for the combinations of sections 𝑥

𝑛
.

The same amount is needed for the combinations to get the
sections of 𝑦

𝑛
(although 8 real adders could be saved since the

last two sections of 𝑦
𝑛
are not wanted).

For ℎ
𝑛
, since it is binary and real, only 4 real adders are

needed to compute the operation similar as (A.6). Therefore,
the combinations of the sections of ℎ

𝑛
can be implemented

with 28 real adders only.

C. Details of the FPGA Resources

The details of the FPGA resources for the different solutions
are given in Table 4.
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