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Let 𝑁,𝑀 be unbounded normal operators in a Hilbert space and let 𝑇 be a closed operator whose domain D(𝑇) contains the
domain of𝑁, and the domainD(𝑇∗) contains the domain of𝑀. It is shown that if 𝑇𝑁 ⊆ 𝑀𝑇, then 𝑇𝑁∗ ⊆ 𝑀∗𝑇.

1. Introduction

In this note we prove a generalization of the classical Fuglede-
Putnam theorem to unbounded operators. A special case
of this generalization is given in [1]. We begin with some
preliminary results.

Let H be a complex Hilbert space and let 𝐵(H) be the
algebra of bounded linear operators inH. Let𝑂𝑝(H) denote
the set of unbounded densely defined linear operators inH.
For 𝐴 ∈ 𝑂𝑝(H) we denote the domain of 𝐴 byD(𝐴). Given
𝐴, 𝐵 ∈ 𝑂𝑝(H), the operator 𝐵 is called an extension of 𝐴,
denoted by 𝐴 ⊆ 𝐵, ifD(𝐴) ⊆ D(𝐵) and 𝐴𝑥 = 𝐵𝑥 for all 𝑥 ∈
D(𝐴). An operator 𝐴 ∈ 𝑂𝑝(H) is called closed if 𝐴 = 𝐴 (the
closure of 𝐴). A closed densely defined operator 𝐴 ∈ 𝑂𝑝(H)
is said to commute with the bounded operator 𝑇 ∈ 𝐵(H), if
𝑇𝐴 ⊆ 𝐴𝑇. This means that for each 𝑥 ∈ D(𝐴), we have 𝑇𝑥 ∈
D(𝐴) and 𝑇𝐴𝑥 = 𝐴𝑇𝑥. Let {𝐴}󸀠 = {𝑇 ∈ 𝐵(H) : 𝑇𝐴 ⊆ 𝐴𝑇}.
If 𝐴 ∈ 𝐵(H) this notion agrees with the usual notion of com-
mutant. One sees {𝐴}󸀠 is a strogly closed subalgebra of 𝐵(H),
and 𝑇 ∈ {𝐴}󸀠 if and only if 𝑇∗ ∈ {𝐴∗}󸀠. Hence, {𝐴}󸀠 ∩ {𝐴∗}󸀠 is
a von Neumann algebra.

Definition 1. Let 𝐴 ∈ 𝑂𝑝(H) be closed and A a von
Neumann algebra. If A󸀠 ⊆ {𝐴}󸀠, the operator 𝐴 is said to be
affiliated withA, denoted by 𝐴𝜂A.

The algebra𝑊∗(𝐴) = {{𝐴}󸀠 ∩ {𝐴∗}󸀠}󸀠 is the smallest von
Neumann algebra with which𝐴 is affiliated, and is referred to
it as the von Neumann algebra generated by 𝐴.

Definition 2. Let 𝐴 ∈ 𝑂𝑝(H). A bounding sequence for 𝐴 is
a non-decreasing sequence {𝐹

𝑛
}
𝑛∈N of projections onH such

that⋁∞
𝑛=1
𝐹
𝑛
= 𝐼, 𝐹

𝑛
𝐴 ⊆ 𝐴𝐹

𝑛
and 𝐴𝐹

𝑛
∈ 𝐵(H) for all 𝑛 ∈ N.

Lemma 3 (see [1]). If A is an abelian von Neumann algebra
and 𝐴𝜂A, then there is a bounding sequence {𝐹

𝑛
} for 𝐴 such

that 𝐹
𝑛
∈ A and 𝐴𝐹

𝑛
∈ A for all 𝑛 ∈ N.

A closed operator𝑁 ∈ 𝑂𝑝(H) is normal if𝑁∗𝑁 = 𝑁𝑁∗.
This implies that D(𝑁) = D(𝑁∗) and ‖𝑁𝑥‖ = ‖𝑁∗𝑥‖
for every 𝑥 ∈ D(𝑁) [2, page 51]. It turns out that the von
Neumann algebra𝑊∗(𝑁) is abelian, and𝑊∗(𝑁) = {𝑁}󸀠󸀠 [3].
Hence, from Lemma 3, there is a bounding sequence {𝐹

𝑛
} for

𝑁 in𝑊∗(𝑁). In fact, 𝐹
𝑛
= 𝐸
𝑛
− 𝐸
−𝑛

for each 𝑛 ∈ N, where
{𝐸
𝜆
}
𝜆∈R is the spectral family of the selfadjoint operator𝑁∗𝑁

[1].

2. Results

The Fuglede-Putnam theorem [4] in its classical form states
the following.

Theorem4 (Fuglede-Putnam). Let𝑁 and𝑀 be normal oper-
ators in a Hilbert space. If 𝑇 is any bounded operator satisfying
𝑇𝑁 ⊆ 𝑀𝑇, then 𝑇𝑁∗ ⊆ 𝑀∗𝑇.

The following result from [2, page 97] is essential to our
proof of the generalization of the Fuglede-Putnam theorem.
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Lemma 5. Let 𝐴
1
, 𝐴
2
∈ 𝑂𝑝(H) be self-adjoint operators and

let𝑇 ∈ 𝐵(H).Then𝑇𝐴
1
⊆ 𝐴
2
𝑇 if and only if𝑇𝐸

𝜆
= 𝑃
𝜆
𝑇 for all

𝜆 ∈ R, where {𝐸
𝜆
}
𝜆∈R and {𝑃

𝜆
}
𝜆∈R are the spectral families of

𝐴
1
and 𝐴

2
, respectively.

Theorem 6. Let𝑁,𝑀 ∈ 𝑂𝑝(H) be normal operators and let
𝑇 ∈ 𝑂𝑝(H) be a closed operator such thatD(𝑁) ⊆ D(𝑇) and
D(𝑀) ⊆ D(𝑇∗). If 𝑇𝑁 ⊆ 𝑀𝑇, then 𝑇𝑁∗ ⊆ 𝑀∗𝑇.

Proof. Let {𝐸
𝜆
}
𝜆∈R and {𝑃

𝜆
}
𝜆∈R be the spectral families of

the self-adjoint operators 𝑁∗𝑁 and𝑀∗𝑀, respectively. For
𝑚, 𝑛 ∈ N, consider the bounding sequences 𝐹

𝑛
= 𝐸
𝑛
− 𝐸
−𝑛

and𝐺
𝑚
= 𝑃
𝑚
−𝑃
−𝑚

for𝑁 and𝑀, respectively. SinceD(𝑁) ⊆
D(𝑇), it followsH = D(𝑁𝐹

𝑛
) ⊆ D(𝑇𝐹

𝑛
). Since𝑇𝐹

𝑛
is closed,

the closed graph theorem implies 𝑇𝐹
𝑛
∈ 𝐵(H). Similarly,

by the hypothesis on the domain of𝑀 and the closed graph
theorem, we see 𝑇∗𝐺

𝑚
∈ 𝐵(H).

From the hypothesis 𝑇𝑁 ⊆ 𝑀𝑇, we have 𝑇𝑁𝐹
𝑛
⊆ 𝑀𝑇𝐹

𝑛
.

Moreover, since 𝐹
𝑛
𝑁 ⊆ 𝑁𝐹

𝑛
, we also have 𝑇𝐹

𝑛
𝑁 ⊆ 𝑇𝑁𝐹

𝑛
.

Hence,

(𝑇𝐹
𝑛
)𝑁 ⊆ 𝑀(𝑇𝐹

𝑛
) , ∀𝑛 ∈ N. (1)

Since 𝑇𝐹
𝑛
is bounded, the Fuglede-Putnam theorem implies

(𝑇𝐹
𝑛
)𝑁
∗

⊆ 𝑀
∗

(𝑇𝐹
𝑛
) , ∀𝑛 ∈ N. (2)

From (1), (2), we have (𝑇𝐹
𝑛
)𝑁
∗

𝑁 ⊆ 𝑀
∗

(𝑇𝐹
𝑛
)𝑁 ⊆

𝑀
∗

𝑀(𝑇𝐹
𝑛
). That is,

(𝑇𝐹
𝑛
)𝑁
∗

𝑁 ⊆ 𝑀
∗

𝑀(𝑇𝐹
𝑛
) , ∀𝑛 ∈ N. (3)

Consequently, from Lemma 5,

(𝑇𝐹
𝑛
) 𝐸
𝜆
= 𝑃
𝜆
(𝑇𝐹
𝑛
) , ∀𝜆 ∈ R. (4)

Therefore

(𝑇𝐹
𝑛
) 𝐹
𝑘
= 𝐺
𝑚
(𝑇𝐹
𝑛
) , ∀𝑘, 𝑛,𝑚 ∈ N. (5)

Taking adjoints in (5) we have

[𝐺
𝑚
(𝑇𝐹
𝑛
)]
∗

= [(𝑇𝐹
𝑛
) 𝐹
𝑘
]
∗

= 𝐹
𝑘
(𝑇𝐹
𝑛
)
∗

⊇ 𝐹
𝑘
𝐹
𝑛
𝑇
∗

. (6)

But

[𝐺
𝑚
(𝑇𝐹
𝑛
)]
∗

= (𝑇𝐹
𝑛
)
∗

𝐺
𝑚
⊇ 𝐹
𝑛
𝑇
∗

𝐺
𝑚
. (7)

As 𝐹
𝑛
𝑇
∗

𝐺
𝑚
∈ 𝐵(H), we get

𝐹
𝑘
𝐹
𝑛
𝑇
∗

⊆ 𝐹
𝑛
𝑇
∗

𝐺
𝑚
. (8)

Furthermore, since 𝐹
𝑛
and 𝐹

𝑘
commute,

𝐹
𝑛
𝐹
𝑘
𝑇
∗

⊆ 𝐹
𝑛
𝑇
∗

𝐺
𝑚
; (9)

that is, for every 𝑥 ∈ D(𝑇∗), we have 𝐺
𝑚
𝑥 ∈ D(𝑇∗) and

𝐹
𝑛
𝐹
𝑘
𝑇
∗

𝑥 = 𝐹
𝑛
𝑇
∗

𝐺
𝑚
𝑥. (10)

Let𝑥 ∈ D(𝑇∗) andfix 𝑘,𝑚 < 𝑛.Then since𝐹
𝑛
→ 𝐼 (strongly)

as 𝑛 → ∞, it follows

𝐹
𝑘
𝑇
∗

⊆ 𝑇
∗

𝐺
𝑚
, ∀𝑘,𝑚 ∈ N. (11)

Taking adjoints in (11) and using the closeness of 𝑇,

(𝐹
𝑘
𝑇
∗

)
∗

⊇ (𝑇
∗

𝐺
𝑚
)
∗

⊇ 𝐺
𝑚
𝑇
∗∗

= 𝐺
𝑚
𝑇 = 𝐺

𝑚
𝑇. (12)

But (𝐹
𝑘
𝑇
∗

)
∗

= 𝑇
∗∗

𝐹
𝑘
= 𝑇𝐹
𝑘
= 𝑇𝐹
𝑛
. Hence,

𝐺
𝑚
𝑇 ⊆ 𝑇𝐹

𝑘
, ∀𝑘,𝑚 ∈ N. (13)

Multiplying (2) by 𝐹
𝑛
, we get (𝑇𝐹

𝑛
)𝑁
∗

𝐹
𝑛
⊆ 𝑀
∗

(𝑇𝐹
𝑛
)𝐹
𝑛
=

𝑀
∗

𝑇𝐹
𝑛
. Since (𝑇𝐹

𝑛
)(𝑁
∗

𝐹
𝑛
) = 𝑇𝑁

∗

𝐹
𝑛
and (𝑇𝐹

𝑛
)(𝑁
∗

𝐹
𝑛
) ∈

𝐵(H), we obtain

𝑇𝑁
∗

𝐹
𝑛
= 𝑀
∗

𝑇𝐹
𝑛
∀𝑛 ∈ N. (14)

Now let 𝑥 ∈ D(𝑇𝑁∗); that is, 𝑥 ∈ D(𝑁∗) and 𝑁∗𝑥 ∈
D(𝑇). Fix 𝑚 > 𝑘, and let 𝑚 → ∞. Then using (13) and the
fact 𝐺

𝑚
→ 𝐼 (strongly), we have

𝑇𝐹
𝑘
𝑥 = 𝐺

𝑚
𝑇𝑥 󳨀→ 𝑇𝑥. (15)

Moreover, from (14), the fact𝐹
𝑛
𝑁
∗

⊆ 𝑁
∗

𝐹
𝑛
, and (13), we have

𝑀
∗

𝑇𝐹
𝑘
𝑥 = 𝑇𝑁

∗

𝐹
𝑘
𝑥 = 𝑇𝐹

𝑘
𝑁
∗

𝑥 = 𝐺
𝑚
𝑇𝑁
∗

𝑥 󳨀→ 𝑇𝑁
∗

𝑥.

(16)

Since 𝑀∗ is closed, it follows 𝑥 ∈ D(𝑀∗𝑇) and 𝑀∗𝑇𝑥 =
𝑇𝑁
∗

𝑥. Therefore, 𝑇𝑁∗ ⊆ 𝑀∗𝑇.

As a special case for 𝑀 = 𝑁, we obtain the following
generalization of Fuglede’s theorem [5].

Corollary 7. Let𝑁 ∈ 𝑂𝑝(H) be normal and let 𝑇 ∈ 𝑂𝑝(H)
be a closed operator such thatD(𝑁) ⊆ D(𝑇)∩D(𝑇∗). If 𝑇𝑁 ⊆
𝑁𝑇, then 𝑇𝑁∗ ⊆ 𝑁∗𝑇.

Corollary 8. Let 𝑁
1
, 𝑁
2
∈ 𝑂𝑝(H) be normal operators. If

D(𝑁
1
) ⊆ D(𝑁

2
), then𝑁

2
𝑁
1
⊆ 𝑁
1
𝑁
2
⇔ 𝑁
2
𝑁
∗

1
⊆ 𝑁
∗

1
𝑁
2
.

Corollary 9. Let𝑁,𝑁
1
, 𝑁
2
∈ 𝑂𝑝(H) be normal operators. If

D(𝑁
𝑖
) ⊆ D(𝑁), for 𝑖 = 1, 2, then 𝑁𝑁

1
⊆ 𝑁
2
𝑁 ⇔ 𝑁𝑁

∗

1
⊆

𝑁
∗

2
𝑁.

Remark 10. Recently in the article “An All-Unbounded-
Operator Version of the Fuglede-Putnam Theorem,” Com-
plex Analysis and Operator Theory (2012) [6: 1269–1273],
a similar result was offered, but its proof is incorrect. In
fact, on the last page of this paper [page 1273] the proof is
wrong; note that from the equality 𝑃

𝐵
𝑚

(𝑀)𝐴𝑁
∗

𝑃
𝐵
𝑛

(𝑁)𝑥 =

𝑃
𝐵
𝑚

(𝑀)𝑀
∗

𝐴𝑃
𝐵
𝑛

(𝑁)𝑥, the fact 𝑃
𝐵
𝑚

(𝑀) → 𝐼 (strongly)
gives 𝐴𝑁∗𝑃

𝐵
𝑛

(𝑁)𝑥 = 𝑀
∗

𝐴𝑃
𝐵
𝑛

(𝑁)𝑥; however, (dealing with
unbounded operators, as is the case here) the fact (alone) that
𝑃
𝐵
𝑛

(𝑁) → 𝐼 (strongly) does not give the equality 𝐴𝑁∗𝑥 =
𝑀
∗

𝐴𝑥.
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