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The inverse problem of image restoration to remove noise and blur in an observed image was extensively studied in the last
two decades. For the case of a known blurring kernel (or a known blurring type such as out of focus or Gaussian blur), many
effective models and efficient solvers exist. However when the underlying blur is unknown, there have been fewer developments for
modelling the so-called blind deblurring since the early works of You and Kaveh (1996) and Chan and Wong (1998). A major
challenge is how to impose the extra constraints to ensure quality of restoration. This paper proposes a new transform based
method to impose the positivity constraints automatically and then two numerical solution algorithms. Test results demonstrate
the effectiveness and robustness of the proposed method in restoring blurred images.

1. Introduction

Among image preprocessing problems is the reconstruction
of an image from a given degraded image, such as images
corrupted by noise [1, 2] or blur [3, 4] or images with missing
or damaged portions [5]. Such tasks have been widely studied
in the last few decades; see [6] for decoupling noise and blur
modeling, [7] for imposing box constraints, [8] for a fast
iterative solver for noise and blur modeling, and [9, 10] for
general surveys. However there are still many outstanding
issues to be addressed, especially when both the noise type
and the blur type are unknown. Image restoration is closely
related to higher level tasks such as segmentation [11] and
registration [12,13]. It should be remarked that models for the
latter tasks often become ineffective if the underlying image
is blurred.

Adopting the usual notation from the literature, assume
an observed image function z = z(x, y) in domain Q has been
contaminated with additive noise # and convolution (blur)
operator h(x, y):

z=hs*u+mn, 1)

where 7 is an unknown Gaussian white noise with zero mean
and u is the image to be restored. When /4 is known, there exist
many effective studies to reconstruct the restoration; see, for
example, [14, 15] for fixed point methods, [16] for a Krylov
conjugate gradient method, and [17] for a multilevel method.
However when h is unknown, simultaneous restoration of
u, h is of great interest.

A model for blind deblurring by recovering both the
kernel and the image simultaneously with no a priori infor-
mation was given by You and Kaveh [18] and later improved
by Chan and Wong [3]. In the latter paper, they proposed
an energy minimising model, derived partial differential
equations by minimising with respect to the image u and the
kernel h, and presented an alternate minimisation scheme
for solving the model. The model has extra constraints,
including nonnegativity constraints, which were crucial but
not exactly implemented. It is fair to say that the model
by [3] is not yet reliable for general use (as remarked by
[19, 20]) and there are no substantial improvements of it
since 1998. There are several works trying to adapt for and
extend to specific applications; see, for example, [20, 21] for
using multichannel images to restore a single image, [22]



for using two blurred images to restore an image, [23] for
a nonvariational method, and [24] for implementing [3] by
a splitting method. The particular ideas of leaving out the
constraints altogether and trusting that the model will give
a good result are unfortunately unreliable since they do not
lead to good results.

However it is known [19, 20] that the general model [3]
can only deal with very special images where the kernel h
can be accurately estimated. Recognizing the importance of
nonnegativity constraints, Miura [25] generalized a one
dimensional idea of using square functions from [26] to
image deblurring and attempted to solve blind deconvolution
in Fourier domain (but without any regularization). Sroubek
and Milanfar [20] generalized the model [3] to the case of
having multichannel blurred images of the same true image
and incorporated nonnegativity into an minimization energy.

In this paper, we focus on image deblurring in the blind
case where the blur operator is unknown. In this case, we are
aiming to reconstruct the true image and the cause of the
degradation with no prior information. Of course, if extra
information of the blur operator is available, it should be used
to derive the so-called semiblind models [27, 28]. Although
there exist other approaches [23, 29-31] for deblurring,
we shall focus on the variational framework to model the
single channel image deconvolution through satisfying the
nonnegativity constraints exactly and implicitly. The end
product is a robust image deblurring model; we also present
two methods of solving it.

The rest of this paper is organised as follows. Section 2
reviews four related variational models. Two test examples
are shown to illustrate and highlight the problems and
challenges faced by the first and earlier model by [3]. Section 3
first introduces our transformation approach where both
the image and the blurring function are reconstructed with
nonnegativity imposed implicitly and then describes the
numerical solution of the model. Section 4 presents some
experimental results. Section 5 concludes the paper.

2. The Inverse Problem of Deblurring and
Some Current Models

Here we review some blind deconvolution models before we
introduce our method in the next section. As seen shortly,
imposing the constraint of nonnegativity is crucial for such
models.

Before proceeding, we remark that for the traditional
image restoration applying a projection is the simplest idea of
imposing nonnegativity u* = max{u, 0}. The same projection
idea can be applied to impose a box constraint to ensure
Uiy < U < Uy, See [7, 32].

There have been several other related ideas for enforcing
nonnegativity in image processing [32-35]. One such exam-
ple was given by [32] where a model was proposed for image
reconstruction using nonnegative constraints for astronom-
ical imaging by minimising a regularised Poisson likelihood
functional while the idea of backprojection is similarly used
in [33, 35]. The case of a Tikhonov regularisation (a much
simpler regulariser than what we use here) was considered
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in [36]. The method of [34] ensured a positive kernel / by
considering a parametric model and optimizing a scalar ¢
which is the standard deviation of the point spread function.

A more sophisticated idea by Biraud [26] is to use the
transform u(x) = (E(x))% with x € [0,1], in restoring one
dimensional signal u from the model z(x) = h(x) * u(x) +
n(x), where h(x) is the known blur function and # the noise,
orz(s) = E(s)ﬁ(s) + 7(s) after Fourier transform. The central
idea here is that any E(x) or its Fourier transform E can lead
to nonnegative restoration u. For s € [0, s,] with some cut-oft

frequency sy, h(s) # 0 so #i(s) = 2(s)/h(s) — 7j(s)/h(s). Noting
that u(x) = (E(x))* leads to #i(s) = E(s) * E(s), the method of
Biraud [26] is

fuf-22

2
ds.
o) s (2)

_ 1
1 (s) = argmin — J
f Sedo

To solve (2), a parametric iterative approach is proposed by
fn = fu1tw,forn > 1.See[26]. Once a good approximation
E(s) is obtained, an inverse transform would yield E(x) and
then a nonnegative restoration u(x).

2.1. 'The Earlier Blind Deconvolution Work. You and Kaveh
[18] proposed a model for simultaneous recovery of both
the degradation function and the image in a variational
framework, by solving the problem

. 1
n;hanK (u,h) = 3 A *u— Z”iz(Q) +o,]; (u)+ o], (h),
(3)

where the fitting term is a common choice for (1) and there
is freedom to choose the regularisation terms J; and J,; You
and Kaveh used the H' seminorm for these two terms.

Chan and Wong [3] proposed an improvement to this
using the total variation (TV) seminorm for regularisation
given by J;(u) = [, [VuldQ and J,(h) = [ |VA|dQ, hence
solving

. 1 2
rinhnfcw (u,h) = 5 I u = zll2q)
(4)
+ 0y J [Vul dQ + «, J |Vh|dQ,
Q Q

where |Vu| = [u? + uf,. Minimising (4) with respect to

the image u and the kernel h, we obtain the coupled partial
differential equations given by

h(=x,=y) * (h =) (x,y) - z(x,5))
u(=x,-y) * (= h) (x, y) -z (x,))
ay. (M) o

[Vh(x, 7],

(5)
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(1) function cuan-wonG (K, 19, z, &, &,, max it)
(2)  for k — 1 to max it do
Vh(k)
(k+(1/4)) (k) (k) (k) _
(3) h «— SOLVE [ u (—x, —y) * (u * b — Z) - (XZV . <W =0
(4) h(k*(l/z)) - h(k+(1/4)) (x) }’) if h(k+(1/4))(x, }’) >0
0 otherwise
1
(5) h(k+(3/4)) o = (h(k+(1/2))(x’ )/) + h(k+<l/2))(—x, —)/))
(6) h(k+l) - h(k+(3/4))/ Zx Zy h(k+(3/4)) (x, y)
(k)
@) u* 02 SOLVE | W% (—x, —y) # (h**D 5 u® - 2) — 0,V - <—|§”(k)| ) = 0)
u
© e T T L T
0 otherwise
9) end for
(10) end function

ArGoriTHM 1: Chan-Wong [3] method for the solution of (4).

where [Vu(x, y)|g = \/ui(x, )+ ui(x, y) + 3 (similarly for

[Vh(x, y)| B also) with 8 a small positive parameter introduced

to avoid division by zero, which is set to 1072 for experimen-

tal results for both the image u and blur funcion h in order to
avoid overly smooth reconstructions resulting from too high
B and the staircasing effect arising from setting f3 too low.
It is worth noting that as alternatives to the total variation
seminorm we may also consider other regularisation terms
such as L, regularisation, given by J(u) = IQ |Vu|>dQ, the
nonlocal TV [37, 38], the total generalised variation (TGV)
[39-41], or the mean curvature [42, 43], as well as others
(44, 45].

In order to solve the system, an alternate minimisation
scheme was proposed to recover the kernel /i and the image
u, including the following constraints which aim to deal with
the lack of a unique solution since the system is not jointly
convex. This leads to imposing the constraints that the image
and kernel should both be positive, h(x, y) > 0 and u(x, y) >
0, the kernel should be symmetric (h(x,y) = h(-x,-y)),
and the kernel should have a unit integral JQ h(x, y)dQ = 1.
These constraints are imposed exactly but only after each
alternate minimisation step. The complete algorithm is given
in Algorithm 1.

Adding the above 4 constraints ensures a unique solu-
tion but not imposing them in the algorithm introduces
inconsistency which is problematic. To test this remark, the
algorithm yields a reasonable result for the example given in
Figure 1(c), but the same algorithm gives rise to poor results
such as Figures 2(c) and 2(d) due to this inconsistency. We
may attempt to improve the results by implementing a better
thresholding technique applied to the kernel. To do this, we
adjust the filter in step (4) of Algorithm 1 to be dependent on
a small positive parameter « as follows:

(6)

k12 R (), RS (x, y) 2 1,
0, otherwise.

This adjustment with a problem dependent parameter x may
offer some improvement (Figure 2(e)) but does not always
lead to a good solution. Such problems were reported in other
subsequent studies [19, 20].

Our aim is to satisfy exactly these constraints by achieving
the positivity on the kernel and the image in the functional in
an implicit manner.

2.2. The Blind Deconvolution Model by Miura [25]. Following
the work of Biraud [26], Miura [25] considered generalizing
it to the image case and more importantly to the blind
deconvolution problem by imposing nonnegativity for both
u and h. Starting from (1), that is, z(x,y) = h(x,y) *
u(x, y) + 1, with both h and u as unknowns, he defined
h(x, y) = (¢(x, y))z, u(x, y) = (y(x, y))z. Then after Fourier
transforms, one gets

2t ={p) *dOHT D = (s, D} +7(s.8). (7)

Further similar to (2), it is proposed to solve

min >[5, « s 075 ) « 95,0} - 2, o g
555

where the summations imply formulations after discretiza-
tion [25]. Further a conjugate gradient type solver is utilised
to compute ¢, { which will be used to yield the nonnegative
solutions A, u.

2.3. A Shock Filter Based Model by Money and Kang [19].
To improve the method of [3], in particular the algorithm
(5), an interesting idea was proposed in [19] to decouple
the equations so that edge information of the restoration is
ensured. Precisely u in the second equation of (5) is replaced
by a reference image u, which is obtained by using a shock
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(a) True data (b) Blurred image (c) Algorithm 1 result

FIGURE 1: Good restoration results for Example 1 (a) from a corrupted image (b) using Algorithm 1. This model is able to improve the edges
of the restored image (c), though the restoration is not excellent.

(a) Ex2 true image (b) Ex2 received data (c) Failed restoration using Algorithm 1

100 120
60 80
40

(d) Restored u with x = 1072 (e) Restored uwithx =1/3 (f) Restored h withx =1/3

FIGURE 2: Illustration of the failure of Algorithm 1 for a retinal image (Example 2). (a) True image; (b) corrupted image by out of focus blur;
(c) failed restoration u; (d) restored u with thresholding x = 1072; (e) restored u with thresholding x = 1/3; (f) restored h with thresholding
k=1/3.

filter to capture image edges in the blurred z. Then (5)  which is a decoupled system and can be solved directly in a
becomes noniterative way between h and u.

2.4. A Multichannel Blind Deconvolution Model by Sroubek

A, T * T * h > -z >
te (=, =)+ ((u ) (%) () and Milanfar [20]. To overcome the poor performance of [3],

Vh(x,y) it is suggested in [20] that there may be a better chance of

a,V - m =0, restoring the blurred image u if K blurred images z,, ..., zx
Ylg ) of the same object are available which is readily possible for

h(=x—y) % ((h * w) (x,9) - 2 (%, 7)) yldeo images in some situations. The minimization proposed

18

v Vu(x,y) \ 0 y & ,
-—oyV- —|Vu(x, )’)ll; =0, min <|Ek§1 [ = u—z ]+ Qw) + R({hk})} ,  (10)

”:{hk}
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where in a discrete setting

R = ShR b+ ¥ (), W)= Yy (),

(11)
t, if t >0,

+00, otherwise

o-|

with R, a Laplacian related operator, and y is a parameter.
Here Q denotes the total variation regularizer for u and the
crucial choice of y(t) ensures positivity of /.. However the
same treatment was not applied to u. The optimization prob-
lem was further solved by a splitting idea in an augmented
Lagrangian method (ALM).

3. A Refined Blind Model and Its
Numerical Solution Methods

We now consider the single image blind deconvolution
problem (1) and propose a way to improve the Algorithm 1
by Chan and Wong [3], through use of a related and different
idea from [25, 26]. The similarity to [25, 26] lies in that,
instead of treating negative components directly as in a pro-
jection method, we seek a transform that converts the original
model into a new one that can satisfy the nonnegativity
constraints. There are three clear differences: (i) we use
a different transform from previous choices; (ii) we apply
regularization to the restored quantities while previous work
use nonlinear least squares fitting without regularization; (iii)
we solve for u, h directly instead of solving for ﬁ,fl in the
Fourier domain.

3.1. Choice of Positivity Transforms. We aim to impose non-
negativity in the functional by representing the kernel and
the image as transformed quantities which do not permit
negative values. One such idea might be to represent the
image as the exponential function; that is u = exp(-y(x, y))
for some function y. Unfortunately this particular transform
does not work as it is not capable of dealing with dark regions
(where u = 0) in a stable way. Another choice could be
u="T(y) = (y(x, /’V))2 as in [25, 26]. This is valid for u = 0
but this T'(y) is unbounded.

Since our aim is to bound the function’s upper and
lower values, we consider a generalisation of a differentiable
approximation of the Heaviside step function. Thus, a suitable
and bounded transform can be given by

w+2a .
M:T(ll/):m—a, with
(12)
_ € a+u
:Tl u :—ln—,
v (®) 2 atw-u

where constants w,a,e > 0, maxu < w, and € is a small
tuning parameter which controls the spread of the function.
Clearly u = 0 poses no problems to the transform. For the

usual intensity range [0,255] for u, we may take w = 255,
a=1/10,¢ = 1/100:

255+1/5 1

u=T )=y ~ o7 Vit
(13)

u+1/10

- 1
=T ()= —In——"——.
v (w) 200 n255—u+1/10
Since T(y) for v € R and T ') for u € (-a,00) are
monotone functions, we can work out their lower and upper
bounds:

u=T(y) e (-a,w+a) foryeR;
€ a
=T € [0, , ify>-1 :
u=T(y)eO,w+a), ify Sin——
— 7! [fl 2 & a+_w] if
v (u)€2na+w2n a !
(14)
ue0,w] C(-aw+a);
W:T_l(u)e[sln 3a ,Elna+2w] if
2 a+2w 2 3a

a a
ue [——,w+ —] c(-a,w+a).
2 2

Note, for (13), (¢/2)In((a + w)/a) = In(2551)/200 = 0.039
and (¢/2) In((a + 2w)/3a) = In(5103)/200 = 0.043. It should
be noted that since our model assumes that the image is
represented by the function, the choice of parameters does
not have to be altered to take into account varying levels of
noise and blur with the exception of the scaling parameter of
the blur function.

3.2. Reformulation of the Blind Deblurring Model. In order to
apply the same transform to both the image v and the kernel
h, we introduce the 8 parameters with subscripts as follows:

_ _ 4 t+2a
u= Ta( ) - 1+ aze_ZW/a3 Ay
5 . (15)
+2
h = Ty (w) = ! - 4>

for the image and kernel, respectively; here all constants can
be fixed before proceeding (see Appendix A for more details).
In particular, a; and b, are the expected upper limits of
the image intensity values and kernel values; a, and b, are
introduced to control the values of the image and kernel at
v = 0and w = 0, and a; and b; control the spread of v
and w. To give one feasible set, for image u, we have a =
(a,ay,05,0a4) = (255,1,117.16,1) if u € [0,255] and for
kernel h we take b = (1,1,0.46,107%) if b € [0, 1]. That is
we use

257
u="T,(y) = 1+ e2v/11706 1

(16)

1+2-107*

-4
1 + e-20/0.46 -10 .

h=T, (w) =



Similar to the previous section, we need not vary the param-
eters to take into account varying noise or blur levels with
the exception of b; which may be chosen depending on the
perceived level of blur. We now reformulate our old problem
(4) as the new variational model:

) 1
minfr (v,0) = 5 [To(@) * ) = 2l

va, [ VI, W)]do+a, | VT, @) 0,
17)

letting the image and the kernel be represented by u = T, (y)
and h = T(w), respectively. Here from solving (17), the
nonnegativity constraints are exactly and implicitly enforced;
thatis u, h > 0, but the remaining symmetry and unit integral
constraints on the kernel are still required.

The advantage of realizing positivity u,/ > 0 (for any
Y, w) is accompanied by a new challenge (or disadvantage) of
having to deal with a nonlinear convolution kernel in (17). We
next present two methods for solving the model and below
show the solution method for v to illustrate the idea as the
solution for w is similar.

3.3. Solution I by a Fixed Point Method. Our first method
will deal with the nonlinearity in y directly. To construct an
iterative scheme, we consider a linear approximation of the
transform by the Taylor expansion given by u = T,(y) =
A, + B,y + O(y?). First, defining R, (y) = T,(y) — B,y, we
split the transform by

T,(v) = By + R, (), (18)

where R,(y) is nonlinear. Second, treating the above two
terms differently through lagging, we propose a fixed-point
lagging technique by substituting T, (v, ¥) = B;y+R,(y) into
(17) and get it linearised, leaving the remaining nonlinearity
in terms with known quantities. Similarly we also have
Ty (w, @) = B,w + R,(@) for h. Clearly T, (v, v) = T,(y) = u
and Ty (w, w) = Ty (w) = h. In alternating minimization, this
converts problem (17) to

1 -
mwini [T (w, @) * T, (y, 9) - z||iz(9) +oy J;; |VT, (v)|dQ,

1
min - [T, ) * Ty(@, @) - 2l + L VT, ()] .
(19)

Our idea is to repeat the iterations (v, o) — (y,w) —
(@, @)+ until |y - @l + o - @|3 is small. Here a key
observation is that residual functions R}, R, are lagged in
iterations, not approximated in any way.

Minimising the above functionals from (19) with respect
to v and w, given ¥ and @, yields the Euler Lagrange equations
(see Appendix B for the derivation):

BTy, (@) * (Ty, (@) * T, (v, ¥) — 2) + &, ], () y = 0, @

B, T, (¥) * (T, () * Ty (w, @) — 2) + &, ], (@) w = 0,
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which are linearised equations due to linear functions T, (v,
&)’ Tb ((U, ‘T))
B, Ty, (@) * (T, (@) * (Byy + R, (V) —2) + oy (F) y = 0,

B,T, (%) * (T, (¥) * (Byw + R, (@) - 2) + &, ], (@) @ = 0,
(21

or simplified as, after moving known terms to the right hand
sides,

BT, (@) * Ty (@) * y + &, () ¥ = BiZy, .
B;Ta (1,17) * T, (‘/7) * W+ ), (@) w=B)z,,
where B, = (3/0y)T, ()l > B, = (0/0w) Ty ()| g

Z, =Ty (@) * (2= Ty (@) * R, (¥)),
2 -T,()+ (-, (7) * R, @),
B 4E, (a, +2a,) (El - 1) |Vy

LWy = .
: (1+E1)3a§
—V'< 2(al~+22a4)17?1 Vl//),
(1+E1) a; |V
~ 4E, (b, +2b,) (E, - 1) [Va| (23)
I (@) w =

(1+J§2)3b32
-Vv- z(blj——fb“)gsz ,
(1+E,) b |Val
~ _ —2v
E1=E1(1//)=agexp<a—v/>,
3

E,=E,(®) = bzexp<_;—w>.

3

After estimating 1© and h® of the image and the kernel,
respectively, we apply the inverse transforms obtaining 1//(0)
and 0®. Then on convergence, u, h are finally obtained from

v, .

3.3.1. Constraints for h. Note that the previously mentioned
constraints h(x, y) = h(-x,—-y) and _[Q h(x, y)dQ = 1
take the new forms: Ty(w(x,y)) = Ty(w(-x,-y)) and
_[Q Ty (w(x, ¥))dQ = 1. We can satisfy the first condition by
imposing

w= % (@(x,y) +@(-x,-y)), (24)

where @ is the result of the previous step. For the second
constraint in the discrete setting, we interpret the integral
of a function over the domain Q as the sum of all values of
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(3) for k — 1 to max it do

2
(6) S — Z Z Tb (w(k+(2/3)))
x 'y

(10) end for

(12) end function

(1) function TrRANSFORM_METHOD_1 (A, 1
(2) w(O) — Tl:l (h(O))’ W(O) — Ta_l (u(O))

(4) w* B3  SOLVE  (20)
1
(5) w(k+(2/3)) - = (w(k+(1/3))(x’ )’) + w(k+(l/3))(_x’ —)’))

(7) Obtain w**" from solving (25) with @ = w**@/*)
(8) y**D  SOLVE  (20).
9) If [y* -y + 0™ — @®| < TOL, then exit or continue.

(11)  Accept the restored image u = y and the restored kernel h = w.

9z, «;, &, max it, TOL)

ALGORITHM 2: The first transform method for model (17) via (20).

the function in Q. LettingS =Y ¥ » Ty (@), our constraint is
satisfied by w from solving

Ty (w) = ST}, (@) (25)

and then IQ Ty (w(x, ¥))dQ = 1. The solution method is given
in Algorithm 2.

3.3.2. Numerical Discretisation. We shall briefly discuss the
discretisation of the linearised operators in (20) by a finite
difference method. We adopt the zero Dirichlet boundary
conditions for the original variables u|, = h|. = 0 which
become y|; = -a;/2 In((a, + a,)/a4a,) and w|; = -bs/
2 In((b,+b,)/b,b,). That is, we have nonzero Dirichlet bound-
ary conditions for the transformed variables v, w.

Discretisation of the Fitting (Integral) Term. We wish to dis-
cretise the quantity Ty (@) * w which is similar to & * u
and @ * y as discussed in [46, 47] because all such oper-
ators are of the same type (spatially invariant, i.e., convo-
lution). With Dirichlet boundary conditions for u, h, we shall
obtain Block-Toeplitz-with-Toeplitz-Blocks (BTTB) struc-
ture; however other boundary conditions can also be con-
sidered leading to different but similar structures [48, 49]. It
should be noted that parameters may be chosen to suit the
assumption of Dirichlet boundary conditions but the choice
is not influential for boundary conditions such as Neumann
or periodic.

Discretisation of the Total Variation Regularisation (Differ-
ential) Term. Using central differences, we shall derive a
linearised matrix with 5-diagonal coefficient matrix structure
(46, 47].

Thus after discretization, (22) leads to

Ay (§,@)y = (H?Hl """1]1)1/7 =b (¥, ®),

A2 (1;7,&3)&32 (H;Hz +(X2]2)C_l') :B)z (1/~/>(T) >

(26)

where H,, H, are of BITB form and and J; denotes the
discretised TV operator for (22).

3.3.3. Iterative Solution of Linear Systems. We now consider
a solution method for solving our system (26) of discrete
versions of linearised PDEs (22). We use a preconditioned
conjugate gradient algorithm; see [46, 47]. In order to
improve the speed of convergence, we make use of precondi-
tioners P, and P,. We implement the product preconditioner
following the work of [46] and given by

Py = yl (75 7 4 0) " (r1 + 0, (7))
j (27)
(D), =12

for (26), where 17;C is a circulant approximation [46, 47] to ¥;
defined above and y,, y, are positive constants.

3.4. Solution II by an Augmented Lagrangian Method. The
central idea of our second method for model (17) is to
maintain the linear deblurring 4 * u in the original variables
or to remove the nonlinearity in the fitting term while still
imposing the two proposed transforms u = T, (y), h = Ty (w).

This is achieved by treating the transforms as constraints
for u, h, ¥, w and utilizing an augmented Lagrangian formu-
lation, as was done in modeling other problems [6, 7, 43,
50]. More importantly for our transformed formulation, as
remarked, the nonlinearity introduced by the transforms to
the blurring term is removed by the method.

Starting with the unconstrained nonnegative problem
given by (4) we propose the augmented Lagrangian minimis-
ing functional:

fwhy,wl,dy)
1
) Il s v — Z"iz(o) +a,]; (T, (v))
Y
+ 31 e - Ta(‘//)"iz(o) (28)
+ (Apu=T,(v)) + &), (Ty (w))

+ % "h - Tb(“))”IZ}(Q) + Ay h =T, (w)),
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(1) function TRANSFORM_METHOD_2(Z, &}, 5, a, b, Ko, V1> Vs> tol, max it)
2 u” =z 01" <0

(3) Calculatea = {a,,a,,a;,a,}, and b = {b, b,, b;, b,}

@ ¢« —(a;/2)log((a, + a, - u)/(a,” +a,)))

(6) for £ « 1 to max it do

(17)  end for
(18) end function

G) @ —=(b/2)log (b, + b, - K)/(by(h"” +1,)))

?) Solve 8f /oh = 0 (29) for K™V, ie.
(1Y (uORED ~ 2) £ 29 1y, (K~ (Bw'® + BO)) = 0
(8) for ¢, — 1 to maxit do
9) Solve of /0w = 0 (29) for wety given 0 ie.
—BAY = y,B, (R = (B @™ + RS?)) + 1, () 02D = 0
(10) end for
(11) )L(2€+l) - )l(ze) +7 (h(€+l) _ Tb (w(€+1)))
12) Solve df /ou = 0 (29) for u'“*Y, i.e.
(h(eﬂ))T (h(e+1)u(e+1) _ z) i /\(le) +y (u(€+l) _ (Blw(e) i ﬁ(le))) _
(13) for ¢, < 1 to max it do
(14) Solve ?f /oy =0 (13291) for 1//“1)’;) lgiven(l(g/;[l), ie. ) -
_Bl)‘(l) _YIBI (14( +1) _(Bl.ll/( 1+1) +R11 ))+]1 (W( 1))W( 1+1) =0
(15) end for
(16) A(lm) - /\(le) + (u(m) T, (W(ZH)))

ALGORITHM 3: The second transform based algorithm for positivity with ADM.

where J; and ], are regularisers representing either total
variation (where we expect jumps in intensity) or L2 regu-
larization where we expect smooth edges. Nonnegativity is
imposed implicitly by the transform and by A, and A, for the
image and kernel, respectively, which force them to be close
to their respective nonnegative representations.

Minimising with respect to each of the arguments, we
have

of

5 =h" (hu-2)+ A, +y, (u-(By +R,)) =
0 = _
gj;/ =-BjA; - yB; (” - (311//+R1)) +1, (P y =0,

(29)

af—u (uh—2z)+ A, +y2(h—(Bzw+l~22)):0,

of

= =-B,1,

— 1,8, (h= (Byw +R,)) + ], (@) w = 0,
where By, B, R, = R,(¥), R, = R,(@) are the same as in (22):

4026721/7/“3 (a, +2a,) ((126721/7/“3 -
(1+ aze’w/“3)3 a?

-V < 2 +26f4)%e_2%3 VV’>,

(1+ aze‘z"’/“a)2 a; |V

1) vy

L (W) y =
(30)

4bye /" (by + 2b,) (bre > -
N
(1+ bye20/:)’ b2

_V_<(2(b |+ 2b,) bye 2@l w>.

1+ bye2@/% ) b, |Va|

1) Vol

I, (@) w =
(31)

We use alternate minimisation to solve the minimisation
problem of the augmented Lagrangian functional. We solve
the first equation in (29) efficiently using Fourier transforms
and employ an iterative technique to solve the other equations
of (29). We present our algorithm in Algorithm 3.

The above presented two methods realized Chan-Wong
original model [3]. As demonstrated shortly, the realization
is so effective that even problems beyond the intended tasks
of motion blur or out of focus blur (which are piecewise
constants) can also be modeled. In fact, the TV seminorm
gives acceptable restoration for u but it is less ideal for smooth
h; this prompts us to consider a simple generalization model.
Of course, a better model would be to use a high order
regulariser which is capable of restoring both nonsmooth and
smooth functions (such as a mean curvature [42]).

3.5. A Mixed Model Suitable for Smooth Blur Kernel h. In
an attempt to improve the result of recovered smooth (such
as Gaussian) kernels, we introduce the following functional
which uses the L, norm to regularise the blurring kernel
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h = Ty(w) and the TV to regularise the image u = T,(v),
as a hybrid model of (3) and (4):

1
Fra (@) = 2 [Ty (@) * Tu(w) = 22y
+a J;) VT, (y)| Q2 + % JQ lVTb(w)|2 dQ.

(32)

Then the Euler-Lagrange equations corresponding to
Method I of Section 3.3 can be derived

B (v, (. 9) (v, () * 0~ Z, (#, 9. @))

+ ]2 ((T)) w = 07
(33)
B (v, (@, @))T (n (@0, @) * v -z, (& @, 7))
+, @)y =0,
where v,(y,¥) = By + R(¥), Z,(y,y@) = B,'Z -
B,'B,R,(@) * y,
2
@ (2 (b + 2b4)2b1E >
(1+b,E) by
2(LE-1)
<b3 i+ bZE)Vw Vw + Aw) s
v (0, @) = B,w + R, (@),
(34)

z, (w,0y) = BIIE - BIIBZRl (V) * w,

N 4E, (a, +2a,) (E, - 1) |Vy
@)y = = 4)(1 ) Vv

(1 +1§1)3 a?

V. < 2(al~+22a4)1§1 Vll’)-
(1+E) as |V
Other computational details and use of Method II can be
considered similarly.

4. Experimental Results

The aim of our experimental tests is to demonstrate the
effectiveness of our new transform model (17) for restoring
both the image u and the kernel A, given the received image z.
The results will illustrate the capability of our new algorithm
for potentially wide applications. Comparison with previous
and competing methods have been shown earlier along with
some comparisons here; here we primarily aim to show how
the new algorithm can better restore these examples and a
range of images.

For experimental testing, we consider 6 test images in 4
sets. Our aim is to show that our model is able to recover

the edges of images as well as many of the fine details, in
cases of both piecewise constant blurs and the more chal-
lenging Gaussian blur. We demonstrate this using a piecewise
constant out of focus blur function of radius 4 and a Gaussian
blur function of support equal to the size of the image and of
standard deviation 5. All images have been corrupted by 3%
random noise. For each algorithm, residual tolerances have
been set at 10> with 10’ maximum iterations although this
number is rarely reached.

4.1. Test of Robustness of Algorithm 2

Set 1 (simple image with blurs). Result Set 1 consists of a
synthetic (artificial) image corrupted by out of focus blur
(Blur 1) or Gaussian blur (Blur 2). We see in Figure 3 that
our model is able to reconstruct the edges and preserve the
smoothness of the images in the case of out of focus blur and
offers a significant improvement in the case of Gaussian blur.

Set 2 (detailed image containing many zero-points with
blurs). Result Set 2 consists of Image 2 corrupted by out
of focus blur (Blur 1) or Gaussian blur (Blur 2). We see in
Figure 4(f) that our model is able to preserve the black space
well and reconstruct details in the case of out of focus blur.
It is also able to restore some detail in the more challenging
case of Gaussian blur.

Set 3 (detailed photograph images with blurs). Result Set 3
consists of Image 3 and Image 4 corrupted by out of focus
blur (Blur 1) or Gaussian blur (Blur 2). We see in Figure 4
that in the case of out of focus blur our model is able
to sharpen the images and recover many detailed features
including fine details but can introduce pattern defects. In the
case of Gaussian blur, we see in Figure 6 that many features
are recovered in the image and background objects can be
distinguished. The intensity ranges are also preserved.

Set 4 (detailed retinal images with blurs). Result Set 4 consists
of Image 5 and Image 6 corrupted by out of focus blur (Blur 1)
or Gaussian blur (Blur 2). In Figure 5, we see that in the case
of out of focus blur our model is able to sharpen the images
and recover many fine details. In the case of Gaussian blur, we
see in Figure 7 that many features are recovered in the image,
including blood vessels which were unseen by the blur. The
intensity ranges are also preserved.

4.2. Comparison of Algorithms 2 and 3. Since our primary
aim of this paper is to illustrate what is achievable for a single
channel blind deconvolution, we shall mainly focus on quality
of restoration, rather than algorithms’ efficiency (which is
also important). In fact, in our presented implementations,
Algorithm 3 is a few times faster than Algorithm 2 but the
quality comparison says the opposite. This observation is in
line with findings of [43] where a faster 2-level augmented
Lagrangian method (ALM) with more approximations pro-
duces less quality of restoration for denoising compared to
the slower 1-level ALM.
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(b) Received SNR =13.5 (c) Algorithm 1 [3] SNR =9.8

(d) Algorithm 2 SNR = 21.9 (f) Received PSNR =79

(a) True image

) True image

(g) Algorithm 2 PSNR = 27.3

FIGURE 3: Experimental results on Image 1 with Blur 1. Row 1, I-r: Image 1, received data corrupted by Blur 1, restored image using Algorithm 2.
The PSNR/SNR is lowered by Algorithm 1by 2.25/3.7 from 20.15/13.54 to 17.90/9.84 but increased using Algorithm 2 by 8.21/8.4 to 28.36/21.94.
Row 2, I-r: Image 1, received data corrupted by Blur 2, restored image using Algorithm 2. The PSNR/SNR is increased by 19.44/34.53 from

7.88/-13.4 to 27.32/21.13. Our model is capable of restoring edges and preserving the background in black.

To quantify the restorations, it is useful to use the well
known measures of signal-to-noise ratio (SNR) and the peak
signal-to-noise ratio (PSNR), defined, respectively, as

[Nz ]
ReRes = 0—2,
[Nz - g,
SNR = 10log, ( 4~ e ) (35)
e — 113

~ 2
PSNR = 10log,, (W)

— 2
lli = ull,

where u and # are the true image and the restored image,
respectively, and u,.,, is the mean value of the original image.

Finally we are ready to show in Table 1 some quantitative
measures of the restorations using 3 test images with two

kinds of blurs. Clearly Algorithm 2 is better than Algorithm 3,
though the latter is faster.

5. Conclusions and Future Work

We have presented a total variation based blind deconvo-
lution model with solution positivity achieved by implicit
transforms and two solution algorithms for reconstructing a
deblurred image along with its blur kernel. We demonstrated
that we can ensure positivity and keep the correct range of the
image intensities in the case of several blur types, extending
the original Chan-Wong model’s applicability. This model
is particularly effective in reconstructing the kernel without
significant defects which can significantly impair the results
of previous blind deconvolution algorithms.

Further work involves integrating the remaining con-
straints into the functional and automatic selection of
regularisation parameters. While there has been work in
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(b) Received data (c) Algorithm 2 restored image

- )

(e) Received data (f) Algorithm 2 restored image

(j) True image (k) Received data (1) Algorithm 2 restored image

FIGURE 4: Experimental results on Images 2-4 with Blur 1. Row L, l-r: Image 2, received data corrupted by Blur 1, restored image using
Algorithm 2. The PSNR/SNR is increased by 4.53/5.01 from 20.76/6.58 to 25.29/11.59. Row 2, l-r: Image 2, received data corrupted by Blur
2, restored image using Algorithm 2. The PSNR/SNR is increased by 15.26/30.52 from 12.61/-13.85 to 27.87/16.67. Our model is capable of
restoring details in both cases and of preserving the background in black. Row 3, I-r: Image 3, received data corrupted by Blur 1, restored image
using Algorithm 2. The PSNR/SNR is increased by 11.5/11.66 from 24.26/18.5 to 35.76/30.16. Row 4, I-r: Image 4, received data corrupted by
Blur 1, restored image using Algorithm 2. The PSNR/SNR is increased by 11.76/11.97 from 19.85/15.72 to 31.61/27.69. Our model is capable of
restoring many detailed features and some fine details as well as sharpening edges. There are very few defects in the restored image, notably
surrounding the rope in (1).
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TaBLE 1: Comparison of the new Algorithms 2 and 3. Clearly the slower Algorithm 2 gives better quality than Algorithm 3 (other CPU tests
show that the latter is up to 6 times faster).

Test image Blur type Received z Algorithm 2 Algorithm 3
PSNR SNR PSNR SNR PSNR SNR
1 Out of focus 20.15 13.54 28.36 21.94 27.54 21.2
1 Gauss 7.88 -13.4 27.32 21.13 24.08 17.67
2 Out of focus 20.76 6.58 25.29 11.59 22.09 10.32
2 Gauss 12.61 -13.85 27.87 16.67 25.83 14.22
5 Out of focus 27.48 15.36 33.41 21.63 32.21 20.28
5 Gauss 7.65 -12.97 23.35 17.45 20.77 14.78

(d) Result by Algorithm 2 (f) Received data

(g) Restored image

FIGURE 5: Experimental results on Images 5-6 with Blur 1. Row 1, I-r for Image 5: the PSNR/SNR is lowered from 27.48/15.36 by 0.92/0.97 to
26.56/14.39 using Algorithm 1 but increased by 5.93/6.27 to 33.41/21.63 using Algorithm 2. Row 2, I-r for Image 6: the PSNR/SNR is increased
by 11.6/11.96 from 20.19/12.11 to 31.79/24.07. Our model is capable of restoring many detailed features and sharpening edges. Several of the
blood vessels become visible in (d) and very fine details can be distinguished in (g).
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(a) True image

(b) Received data

(d) True image

(e) Received data

(f) Algorithm 2 restored image

FIGURE 6: Experimental results on Images 3-4 with Blur 2, restored using Algorithm 2. Row L, I-r for Image 3: the PSNR/SNR is increased by
16.77/5.71 from 10.07/15.5 to 26.84/21.21. Row 2, I-r for Image 4: the PSNR/SNR is increased by 4.36/4.67 from 17.79/13.5 to 22.15/18.17. In this
more challenging case of Gaussian blur, our model is capable of restoring some detailed features, including the books in the background of

(c) and the buildings in (f).

the parameter selection with nonblind imaging models [51-
53], further work is required to develop a method for the
selection of optimal parameters for both regularisation terms
in the blind model.

Appendices

A. Parameter Selection for Nonnegativity

While the transform necessitates the selection of additional
parameters a,,...,d,, by, ..., by, it should be noted that they
are easily chosen. In this section, we consider each pair a;, b,
in turn.

The parameters a,, b; are easily chosen, assuming knowl-
edge of the bits-per-sample (bps) value of the true image and
for a, and setting b; = 1 for the blur function since we assume
it to have a unit integral. Better results may be achieved by
selecting a lower value for b but if it is set too low, then
recovery of the true kernel will not be possible. The small
parameters a, and b, should be chosen to be proportional to
a, and by, respectively. Typically, a, = a,/255is an appropriate
value for the image and b, = 10™*b, is used for the kernel since
typical kernels have a small maximum value.

Of the remaining parameters, a, and b, determine the
value of u at ¢ = 0.

a; and b; attempt to keep u close to y and & close to w. To
do this for the image, we define two points o; = T} '(z;) and

0, = Ta_l(‘l.'z) where Ta_l('r) = -a;/21In((a; — 7 + a,)/(ay(T +
a,))). Then we can calculate

5 (A1)

a ((a-1+a,) (1, +a,)
( )

C0.= 231
N ! (13 +ay) (@) — 74 + ay)

For our model, we fix 7, — 7, = 0, —03 and 7, = a; — 73.
Substitute this into (A.1), we obtain an equation for selecting
a; given in (A.2) which is dependent on parameters which
have been discussed earlier and 7;, which is typically set to
T3 =a, /4

a, — 213

“ T (o -+ ag) /(7 +ay)

(A.2)

The parameters a, and b, may be selected to control the
value of y atu = T,(y) = 0O and wat h = Ty(w) = 0. We
consider two cases for the image; similar cases apply for the
kernel. The first case is given by T, (y) = a,/2 and the second
given by T,(y) = 7, at v = 0 where 7, is the lower bound
of y. The first option will make the graph pass through zero
at the midpoint of the intensity values and the second will
make all values of y naturally positive since the lower bound
of y will be equal to zero. We attempt to satisfy each of these
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(a) True image

(d) Algorithm 3 PSNR = 20.8

(b) Received data

International Journal of Computational Mathematics

(f) Received data

(g) Algorithm 2 PSNR = 21.6

FIGURE 7: Test results on Images 5-6 with Blur 2. Row 1, l-r for Image 5, received data z, restored image u, using Algorithm 2 and u, by
Algorithm 3. The PSNR/SNR is increased from 7.65/-12.97 by 15.7/30.42 to 23.35/17.45 using Algorithm 2 and by 13.12/27.75 to 20.77/14.78
using Algorithm 3. Row 2, I-r: Image 6, received data corrupted by Blur 2, restored image using Algorithm 2. The PSNR/SNR is increased by
3.37/3.77 from 18.18/9.91 to 21.55/13.68. Our model is capable of restoring detailed features in these challenging cases of Gaussian blur. Most
of the details are restored in both cases. The slower Algorithm 2 performs better than the faster Algorithm 3.

cases by the selection of a, only. Letting u = T(y), we have
a, = e?'%(a, + a, — u)(u + a,)”" and so we have

at+a,-a;/2 a/2+a,
a, = = =
> a/2+a,  a/2+a,

>

(A.3)
al + a4 — Tl
a=—-"
2 7, +a,

to give the first and second cases, respectively.

In application, either of these will be sufficient to recover
the image with similar results. In the case of the kernel, better
results are obtained with b, = 1. It is therefoire advised that

a, = 1 and b, = 1 are the appropriate values for these param-
eters.

In summary, once a;,b, and a,,b, are defined, the
remaining parameters in the transforms T, (y) and Ty (w) can
be determined automatically.

B. Derivation of Euler Lagrange
Equations for Model (19)

Considering the minimisation, we do it in parts. Note that
when we minimise with respect to one part, for example,
when we minimise with respect to the image, the lagged
component of the transform is assumed to be equal to
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the unlagged part; that is w = @. We may therefore write for
the minimisations with respect to v and w, respectively:

0 (1 _
5 (GIBT@ =y 2l
= B, (T, (@))" * (B,T (@) * y - %)
(B.1)
J (1 _
2 (SIBT) * 0 -2
=B, (L) * (BT, () * w-2).

For the second term, we minimise with respect to v as fol-
lows. We wish to calculate the minimisation of the TV semi-
norm TV(T,(y)) = _fQ VT, (y)|dQ that is (9/0e)(TV(T, (v +
€P)))le=o-

Letting E; = E,(y) = aye>¥/%, we have

2(ay +2a,) E\\Jy; + v
(1B @ (s2+92)

: (V/;ZC‘IS (-2 +2E,) + v, ¢, (a5 + a3 ;)

Fyip(2428)

+y,¢, (a; + a3E1)) dQ.

minTV (T, (v)) = |

(B.2)

Now noting that V- Vy = y2 + 1//?, and letting E, be defined

as follows, we have
2(ay +2a,) Ey \/‘/’;zc +y
3
(1+E) a(v2+v2)
_ 2(ay +2a,) E\\Vy - Vy

S +E)a(Vy-vy)

E,=E,(y) =

minTV (T, (v)) = j 26E, (E, — 1) Vy - VydQ
v Q

+ J a;E, (E; + 1) Vy - VopdQ.
Q
(B.3)

Using Green’s theorem IQ F-VvdQ = - _[Q V-(Fv)dQ+J‘aQ vF-
ndoC) we have

J a,E, (E, + 1) Vy - VgdO)
Q

=- IQ V- (a;E, (E; + 1) Vy¢) dQ (B.4)

+ J ¢ayE, (E; + 1) Vy - ndoQ.
20

Therefore the minimisation of the TV term alone leads to
2E, (E, - 1) Vy - Vy = V- (a;E, (E; +1) Vy) 55)
B.5
2
=E, (E; 1) |[Vy| -V (aE, (E; + 1) Vy) = 0
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with boundary conditions a;E,(E, + 1)Vy - n = 0 where we

used |Vy| = /Vy - Vy and denoted
2 (a, +2a,) E, [Vy/|

E,=E = . B.6
ROy
Thus the above term is simplified to
4E, (a, +2a,) (E, - 1) [Vy/|
(1+ E1)3 a
(B.7)
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