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This paper presents entropy analysis of electrically conducting Newtonian fluid flow inside a horizontal composite duct. The
upper impermeable wall of the duct moves with a uniform velocity while the lower wall is porous strata of finite thickness with
impermeable bottom. The upper wall and the impermeable bottom are at constant temperature but at different temperatures. The
duct is divided into two regions: Region I of clear fluid and Region II of fluid saturated porous layer. Momentum and thermal
regimes for clear and porous regions are matched at clear fluid-porous interface by employing suitable matching conditions. The
governing equations are solved analytically. Analytical solutions obtained for velocity and temperature are utilized to compute
entropy generation. The effects of pertinent parameter on temperature distribution, entropy generation, and Bejan number are
portrayed graphically and discussed.

1. Introduction

All real processes are irreversible, and a physical quantity
termed entropy defined in the second law of thermodynamics
is a pertinent measure of irreversibility of the systems.
Entropy analysis is vital for optimizing devices that confront
“thermodynamic imperfection” due to heat transfer, mass
transfer, imposed magnetic field, radiative heat transfer, fluid
flow irreversibilities, and so forth. It is known that entropy
generated in systems destroys availablework and thus reduces
its efficiency. Bejan has shown in his pioneer works [1–3]
that in convective heat transfer processes one can identify
parameters which are decisive in entropy generation. He
emphasised that the combined heat transfer and thermody-
namics model “portrays” irreversible nature of the device
and thus the optimization of such a model gives us a feel
for the otherwise abstract concept of entropy generation,
specifically where and howmuch of it is being generated, how
it flows, and how it impacts thermodynamic performance.
Entropy analysis has proved to be a pertinent technique to
help thermodynamic optimization emerge as a self-standing
research area.

In the present scenario where energy optimization is
a natural want there is much scope for devising optimal
industrial thermal systems following second law analysis.
Such analysis helps peep into minimization of entropy by
simply identifying and selecting the parameters to eradicate
the erosion of available energy for direct conversion to work.
Once such pertinent information is available then it can
be harnessed to design optimal thermal systems. Recently,
entropy analysis is gaining currency in engineering fields like
heat exchangers, cooling of nuclear reactors, energy storage
systems, cooling of electronic devices, pumps, turbine, and
pipe networks, and so forth. Last decade has witnessed a great
surge of research activity in entropy generation aspects in
fluid flow systems.These investigationswere carried out theo-
retically in idealized flow configurations having technological
implications.

Channel flow is one of the idealized configurations in
fluid mechanics which serves as an important introductory
model to large scale analogous systems. Some studies have
been reported on the entropy analysis in channel flow.
However, a rapid search of the literature reveals that there
are three types of problems pertaining to entropy analysis for
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convective flow inside channels: firstly, channels where the
fluid is clear; secondly, channels filled with fluid saturated
porous material; thirdly, fluid flow in channels with perme-
able walls.

The inherent irreversibility of fluid flow and heat transfer
for non-Newtonian power law fluids in a pipe and channel
made of two parallel plates was investigated by Mahmud
and Fraser [4]. Mahmud et al. [5] examined the entropy
generation in a MHDmixed convection channel flow. Yilbas
et al. [6] presented an analytical solution for entropy gen-
eration in a constant viscosity non-Newtonian third grade
fluid flow in an annular pipe. They showed that entropy
generation number attains high values in the region close to
the inner wall of the annular pipe and increasing Brinkman
number enhances entropy generation. Haddad et al. [7]
examined entropy generation due to forced convection in
parallel plates microchannel. Mahmud and Andrew Fraser
[8] furnished a numerical treatment to entropy generation
characteristics inside a porous channel considering viscous
dissipation effect. Aziz [9] examined entropy generation in
pressure gradient assisted Couette flow. Hooman and Ejlali
[10] dealt with entropy production for thermally developing
dissipative forced convection in a porous tube. Hooman et
al. [11] studied entropy generation for forced convection in
a porous channel with isoflux or isothermal walls. Makinde
and Aziz [12] performed analytical and numerical analysis
of the second law of thermodynamics for plane Poiseuille
flowwith asymmetric convective heat transfer taking variable
fluid viscosity. Makinde [13] conducted entropy generation
study in a falling variable viscosity liquid film along an
inclined heated plate with convective cooling. Makinde and
Bég [14] performed the second law analysis to the problem of
inherent irreversibility in a reactive hydromagnetic channel
flow. Makinde and Eegunjobi [15] investigated effects of
convective heating on entropy generation rate in a channel
with permeable walls. Vyas and Rai [16] investigated entropy
regime for radiative MHD flow inside a channel with natu-
rally permeable wall. Chauhan andKumar [17–19] performed
entropy analysis for third grade fluid.

Couette flow and associated thermal regime in a parallel
plates channel involving porous substrate simulates flow
and heat transfer behaviour of lubricants in porous journal
bearings and porous rollers, geophysical channels, granular
media filtration, and so forth. The thermal characteristics
at clear fluid-porous interface are important to understand
numerous processes like pollutant dispersion in aquifers,
environment transport processes, separation processes in
chemical industry, flow past porous scaffolds in bioreactors,
drying process, and so forth. Many authors have investi-
gated Couette flow for variety of configurations [20–25].
The laminarity of channel flow is a pertinent issue and
therefore many numerical and laboratory studies have been
devoted on the channel flow regime (clear fluid channel and
porous medium channel) to be laminar. Newtonian fluid
flow in the channel remains laminar when the pressure loss
is directly proportional to the fluid velocity. Customarily,
Reynolds number signifies the critical value beyond which
the heat gradient is no longer proportional to the velocity.
The critical value of Reynolds number as per experiments
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Figure 1: Flow configuration and coordinate systems.

ranges between 1 and 15. Much insight into the issue can
be seen in [26–29] and the references contained therein. In
this backdrop, entropy generation analysis for MHD laminar
Newtonian fluid flow and heat transfer in a composite duct is
an interesting situation to look into.

2. Formulation of the Problem

A fully developed laminar flow of a viscous electrically con-
ducting Newtonian incompressible fluid in a long horizontal
composite duct of width 𝑑 = 𝐻 + 𝑎 is considered. The
upper impermeable wall of the duct moves with a uniform
velocity 𝑢

0
while the lower wall is stationary porous strata

of finite thickness with impermeable bottom. The upper wall
and the impermeable bottom are at constant but different
temperatures 𝑇∗

1
and 𝑇∗

2
, respectively (𝑇∗

1
> 𝑇
∗

2
). The duct

is divided into two regions: Region I (0 ≤ 𝑦∗ ≤ 𝐻) consisting
of clear fluid and Region II (−𝑎∗ ≤ 𝑦

∗
≤ 0) which is

fluid saturated porous layer (Figure 1). ACartesian coordinate
system is used,where𝑂𝑥∗𝑦∗𝑧∗ constitutes a set of orthogonal
axes with origin at the interface. The channel being parallel
to 𝑥∗-𝑧∗ plane is very long and is with large width in the
𝑧
∗-direction; hence all the physical quantities except pressure
depend on 𝑦∗ only.

A uniformmagnetic field of strength𝐵
0
is applied parallel

to the𝑦∗-axis.The inducedmagnetic field is neglected, which
is valid for small magnetic Reynolds number. The fluid is
assumed to be without phase change and in local thermal
equilibrium with the porous medium. A constant pressure
gradient 𝜕𝑝∗/𝜕𝑥∗ at the mouth of the channel is also applied.

Considering the Brinkman model [30] for the porous
medium, the governing equations for the setup under con-
sideration are as follows:

for Region I: (0 ≤ 𝑦∗ ≤ 𝐻)

𝜇
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for Region II: (−𝑎∗ ≤ 𝑦∗ ≤ 0)
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The quantities 𝑢∗, 𝑝∗, 𝜅, 𝜇, 𝑇∗, 𝑘∗, and 𝜎 denote the fluid
velocity, pressure, thermal conductivity, coefficient of vis-
cosity, temperature, permeability, and electrical conductivity,
respectively. The quantities 𝜇 and 𝜅 are effective viscosity
and effective thermal conductivity, respectively, of the porous
medium.

The boundary and interface conditions on velocity and
temperature are as follows:
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(5)

3. Solution

We introduce the following nondimensional quantities:
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In view of (6) the governing equations (1) through (4) take
the following nondimensional forms:

for Region I (0 ≤ 𝑦 ≤ 1),

𝑑
2
𝑢

𝑑𝑦2
−𝑀
2
𝑢 = −𝐶, (7)
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for Region II (−𝑎 ≤ 𝑦 ≤ 0),
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The boundary conditions (5) in nondimensional form are
reduced to the following:

𝑦 = 1: 𝑢 = 𝑢
0
, (𝜃)I = 1,

𝑦 = 0: (𝑢)I = (𝑢)II , 𝜙
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2
) are the Hartmann number and Brinkman

number, respectively.
The equations for velocity and temperature fields for

both regions given in (7) through (10) are linear ordinary
differential equations and hence are amenable to closed form
analytical solutions. In view of the boundary conditions (11)
we get the solutions as follows:

for Region I,
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for Region II,
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On applying boundary conditions (11) to (12) through
(15) we get simultaneous equations involving the constants of
integration as follows:
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The systems of (16) to (19) for the unknowns 𝐴
1
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4
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,

and 𝐵
4
have been solved by MATLAB using the module

LINSOLVE and these values are then utilized to get the
solution of governing equations. After determining velocity
and temperature distributions we take on entropy generation.

4. Second Law Analysis

The local volumetric rate of entropy generation in presence of
magnetic field following Woods [31] for the setup is given by
the following:

for Region I,
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for Region II,
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It is clear from (24)-(25) that various sources contribute
in entropy generation: the first term in these equations shows
the contribution of heat transfer to the entropy generation,
the second term is the local entropy generation due to fluid
friction, and the third term signifies the effect of magnetic
field in the generation of entropy. The last term in (25)
accounts for local entropy generation due to friction offered
by porous medium.

In order to define the dimensionless entropy generation
rate we prescribe the characteristic entropy generation rate,
the dimensionless temperature difference, and the nondi-
mensional number for entropy generation, respectively, as
follows:
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Thus the nondimensional number for entropy generation
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𝑠
for both regions is given by the following:
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The Bejan number, an important irreversibility parame-
ter, can be defined for both regions as follows:

for Region I,

Be = 𝑁
1

𝑁
1
+ 𝑁
2

; (30)

for Region II,
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𝑁
3

𝑁
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4

. (31)
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5. Results and Discussions

The profiles for the temperature distribution, entropy gener-
ation distribution, and Bejan number have been drawn and
discussed. It is to be noted that the dotted vertical line (𝑦 = 0)
indicates the porous-clear fluid interface. Figures 2–6 display
the effects of pertinent parameters on temperature distri-
bution. Before analysing the figures, we wish to emphasise
that the fluid flow undertaken is dissipative. There are three
sources of dissipation: firstly the viscous dissipation (internal
fluid friction); secondly the Ohmic dissipation which means
the heat produced by the opposing Lorentz force; and thirdly
the friction due to the resistance offered by the walls of
porous matrix. From the physical consideration it is known
that dissipation serves as a heat source to the system causing
considerable quantitative and qualitative changes to thermal
regime. In Figure 2, the temperature distribution for various
values of Br is plotted.WhenBr = 0, temperature distribution
is linear. For Br > 0, a parabolic distribution is superimposed
on it; that increases by increasing Br and the magnetic field;
it also decreases by the increasing permeability of the porous
bed. For a given value of the temperature difference𝑇∗

1
−𝑇
∗

2
>

0, heat flows from the upper wall of the fluid as long as Br
does not exceed a certain value after which the maximum
temperature shifts from the upper wall region to somewhere
in middle region of the channel, and heat flows from the fluid
to the upper wall. It is evident that temperature attains peak
somewhere in themiddle of the channel. Figure 2 exhibits the
effect of Brinkman number on the temperature distribution.
The figure reveals that the temperature increases with an
increase in Br. Larger values of the Brinkman number are
indicative of rather more frictional heating in the system
thereby causing rise in the temperature. In fact, frictional
heating serves as energy source to modify the thermal
regime. Figure 3 displays the variation in temperature 𝜃 for
varying values of permeability parameter 𝑘. It is revealed
that the temperature rises with the increasing values of the
permeability parameter. Figures 4 and 5 display the variation
in temperature 𝜃 for varying values of viscosity ratio 𝜙

1

and thermal conductivity ratio 𝜙
2
, respectively. The figures

reveal that there is a substantial increase in temperature for
the increasing values of 𝜙

1
and 𝜙

2
. The effect of Hartmann

number 𝑀 on the temperature field has been shown in
Figure 6. The figure reveals that the temperature decreases in
the duct with an increase in the values of𝑀.

The variations in entropy and Bejan number for different
values of the parameters involved have been displayed in
Figures 7–20. These figures reveal sharp jumps in entropy
generation number and Bejan number at the clear fluid-
porous interface. From these figures it is also found that
entropy is large in regions adjacent to wall and then attains its
minima somewhere in themiddle of the channel.Thismay be
attributed to the fact that, in themiddle of the channel, veloc-
ity and temperature attain their peaks indicating vanishing
velocity and temperature gradients.Wemay conclude that the
walls of the channel serve as sources to entropy generation.
Bejan number vanishes in themiddle of the channel and then
increases in the vicinity of upper plate. The reason behind
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this behaviour of Bejan number can be attributed to peaks
in velocity and temperature in the middle of the channel, that
is, vanishing velocity and temperature gradient.

Figures 7 and 8 display variations in entropy generation
number and Bejan number, respectively, for varying values
of Brinkman number Br. We find that, with the increasing
values of Br, entropy generation number increases. In fact
larger Br values are indicative of more frictional heating in
the system. Figure 9 reveals that, with the increasing values
of permeability parameter 𝑘, entropy generation number
𝑁
𝑠
increases in the regions close to the bottom while it

decreases near the porous-clear fluid interface and further
attains minima below the central line of the clear fluid
region. The reason for this may be explained by the fact that
larger values of permeability parameter 𝑘 indicate more fluid
traversal inside porous medium. This results in lager friction
due to internal fluid friction and the resistance offered by
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the porous medium walls. Figure 10 exhibits that Bejan
number decreases near the lower wall and increases near
the porous-clear fluid interface in porous region whereas
it increases in clear fluid region with increasing values of
𝑘. Figure 11 depicts that, with the increasing values of 𝑀,
entropy generation number decreases in the porous substrate,
in regions adjacent to clear fluid-porous interface and the
upper wall. Figures 12 and 13 display the effect of𝑀 on Bejan
number in clear fluid region and porous region, respectively.
Figure 12 displays that, with the increasing values of𝑀, the
Bejan number Be increases considerably in the lower part
of the clear region while the trend is reversed in the upper
part of the channel. Be vanishes somewhere in the middle
of the channel for respective values of 𝑀 in the porous
region. However, for larger values of 𝑀, a reverse trend is
observed in themiddle of the porous region. Figure 13 reveals
that variation in Be across the porous substrate for varying
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Figure 12: Bejan number for variation in𝑀 when 𝑘 = 0.5, Br = 3,
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Figure 13: Bejan number for variation in𝑀 when 𝑘 = 0.5, Br = 3,
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𝑀 is somewhat cumbersome. Figures 14 and 15 depict the
effect of Ω on the entropy generation number and Bejan
number, respectively.The figures reveal that𝑁

𝑠
increases and

Be decreases throughout the channel considerably with the
increasing values of Ω. Figure 16 exhibits that an increment
in viscosity ratio 𝜙

1
leads to an increment in 𝑁

𝑠
. Figures

17 and 18 reveal the effect of viscosity ratio 𝜙
1
on Bejan

number in porous region and clear fluid region, respectively.
Figure 17 displays that, with an increase in 𝜙

1
, Bejan number

decreases in the porous region except in the region adjacent
to the porous-clear fluid interface where the trend is reversed.
Figure 18 shows that, with the increasing values of 𝜙

1
, the

Bejan number decreases in the region 0.2 ≤ 𝑦 ≤ 0.4 and
increases in the upper part of clear fluid region. It has been
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observed that Be remains unchanged with the increasing
values of 𝜙

1
at 𝑦 = 0.2. Figures 19 and 20 depict the effect

of thermal conductivity ratio 𝜙
2
on the entropy generation

number and Bejan number, respectively. The figure reveals
that, with the increasing values of 𝜙

2
, entropy increases in

the porous region and in upper part of the clear fluid region;
however the trend is reversed in the lower part of clear fluid
region. The same phenomena are observed for the Bejan
number for increasing values of 𝜙

2
.

6. Conclusion

GeneralisedMHDCouette flow in a parallel composite chan-
nel is considered. The channel is bounded by an isothermal
impermeable moving wall and a stationary porous substrate
with impermeable bottom maintained at constant temper-
ature different from that of the upper wall. The governing
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equations for momentum and energy for the clear region and
for the porous region are solved in view of the boundary
conditions andmatching conditions at the clear fluid- porous
interface. Velocity and temperature distributions for both
regions are derived analytically which are used to compute
entropy generation.The effects of pertinent parameters on the
quantities of interest are depicted graphically and discussed.
The findings are as follows.

(1) Temperature in the channel increases with the
increase in Brinkman number, permeability param-
eter, viscosity ratio 𝜙

1
, and thermal conductivity ratio

𝜙
2
whereas it decays with the increasing values of

Hartmann number𝑀.
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(2) Entropy generation number rises in the clear and
porous regions adjacent to walls with the increasing
values of Br, 𝑘, Ω, 𝜙

1
, and 𝜙

2
while the reverse trend

is observed for the increasing values of𝑀.
(3) TheBejan number riseswith increasing values of Br in

porous region, in the vicinity of clear fluid interface,
and in the upper part of the channel.

(4) With the increasing values of permeability parameter
𝑘, Bejan number increases in the clear region. How-
ever the trend is reversed at the interface.

(5) Variation in Bejan number for varying values of 𝑀
is such that in clear region Be decreases in the upper
part of the channel with the increasing values of𝑀,
while the trend is reversed in the lower part of clear
region.

(6) Bejan number decays with the increasing values ofΩ.
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Figure 20: Bejan number for variation in 𝜙
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(7) With the increasing values of𝜙
1
and𝜙
2
, Bejan number

increases in the regions close to the walls.

Nomenclature

𝑎 : Nondimensional thickness of porous medium
𝑎
∗: Thickness of porous medium

Be: Bejan number
𝐵
0
: Magnetic field

Br: Brinkman number
𝐻: Width of clear region
𝑘
∗: Permeability of the porous medium
𝑘: Nondimensional permeability
𝑀: Hartmann number
𝑁
𝑠
: Entropy generation number

𝑝
∗: Pressure
𝑆
𝐺
: Entropy generation rate

𝑆
𝐺0
: Characteristic entropy generation rate

𝑇
∗: Temperature
𝑇
∗

1
, 𝑇
∗

2
: Temperature of upper wall and impermeable

bottom, respectively
𝑢
∗: Fluid velocity along 𝑥∗-direction
𝑈: Nondimensional velocity
𝑂𝑥
∗
𝑦
∗
𝑧
∗: Coordinate system.

Greek Letters

𝜃: Nondimensional temperature
𝜅: Thermal conductivity
𝜅: Effective thermal conductivity
𝜇: Fluid viscosity
𝜇: Effective viscosity
𝜎: Electrical conductivity
𝜙
1
, 𝜙
2
: Ratios of viscosity and thermal conductivity,
respectively

Ω: Dimensionless temperature difference.
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