Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2015, Article ID 898514, 12 pages
http://dx.doi.org/10.1155/2015/898514

Hindawi

Research Article
Supporting Technical Debt Cataloging with TD-Tracker Tool

Lucas Borante Foganholi, Rogério Eduardo Garcia, Danilo Medeiros Eler,
Ronaldo Celso Messias Correia, and Celso Olivete Junior

Faculty of Science and Technology, Sdo Paulo State University (UNESP), Roberto Simonsen Street, No. 305,
19060-900 Presidente Prudente, SP, Brazil

Correspondence should be addressed to Lucas Borante Foganholi; borante@gmail.com
Received 1 June 2015; Revised 8 August 2015; Accepted 27 August 2015
Academic Editor: Andrea De Lucia

Copyright © 2015 Lucas Borante Foganholi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Technical debt (TD) is an emergent area that has stimulated academic concern. Managers must have information about debt in order
to balance time-to-market advantages and issues of TD. In addition, managers must have information about TD to plan payments.
Development tasks such as designing, coding, and testing generate different sorts of TD, each one with specific information.
Moreover, literature review pointed out a gap in identifying and accurately cataloging technical debt. It is possible to find tools
that can identify technical debt, but there is not a described solution that supports cataloging all types of debt. This paper presents
an approach to create an integrated catalog of technical debts from different software development tasks. The approach allows
tabulating and managing TD properties in order to support managers in the decision process. It also allows managers to track
TD. The approach is implemented by TD-Tracker tool, which can integrate different TD identification tools and import identified
debts. We present integrations between TD-Tracker and two external tools, used to identify potential technical debts. As part of
the approach, we describe how to map the relationship between TD-Tracker and the external tools. We also show how to manage
external information within TD-Tracker.

1. Introduction (i) Setting targets for debt and specifying what level and

which debt types are acceptable for the project or
During software development it is usual to prioritize some organization.
activities, leaving others in the background, such as code opti-
mization, use of best practices, defect correction, and docu-
mentation. The main reason for this is to reach the expecta-
tions imposed due to time or financial constraints. Therefore,
postponing a technical activity creates technical debt. The
term “technical debt” is used as a metaphor to refer to the

likely long-term costs associated with software development

(ii) Analyzing and understanding debt to estimate the
potential impact and provide rationale for decisions.

(iii) Using TD as input for governance of application assets
and analyzing an application’s debt in correlation with
other information such as business value or user
perceived quality.

and maintenance shortcuts taken by project stakeholders to
deliver short-term business benefits [1-3].

Seaman and Guo [4] explain a tradeoftf when dealing with
technical debt. They argue that software managers need to
balance between incurring TD and the associated costs when
planning their projects. Only with TD information, it is
possible to plan and decide which TD is going to be fixed.
However, the lack of this information is a problem. Letouzey
and Ilkiewicz [5] described some of these manager actions:

(iv) Institutionalizing previous practices and putting in
place tools and processes to produce benefits of pro-
active TD management.

There are techniques and tools that could potentially be
useful in the identification of TD, even if many of them were
not developed for this purpose [6]. Techniques, such as code
smells, design patterns, test results analysis, and test plans
verification, can be classified accordingly with the software
artifact related or TD type. Tools, such as FindBugs, Sonar,

and code test coverage tools, fully or partially automate tech-
niques. Automatic approaches are capable of accommodating
the change rates that major development projects introduce,
but their reliance on statically predefinable models makes
them incapable of modeling the entire requirement space [6].
Manual approaches capture the entire space [7], but due to
their nature they consume a large amount of development
resources which prohibits their frequent use.

A problem of technical debt context consists of catalog
TD items originated from any software activity or TD type
and using contextualized information when the debt is
detected. It is possible to find tools that can identify technical
debt, but no solution described in the literature review was
found to support cataloging all types of debt.

Thus, the goal of this paper is to present a tool named
TD-Tracker. The tool aims to create a catalog integrating TD
from design/code, test, documentation, defect, and infras-
tructure activities in a properly designed structure linking
stakeholders’ observations about technical debt to related
artifacts in the software activity. It is also intended to integrate
with identification tools to import technical debt, aggregating
automatic and manual approach benefits. TD-Tracker can
concentrate information about technical debt of any type and
from different project activities, allowing managers to track
the entire TD life cycle.

The methodology used in this paper consists in describing
an integrated catalog within a semiautomatic approach. The
proposed approach is implemented by TD-Tracker and is
intended to resolve technical debt by supporting its manage-
ment on two levels. Stakeholders conducted micromanage-
ment through TD issues under their responsibility, at imple-
mentation level and project level management by making
TD-Tracker cater for TD information needed in the decision
process. In this paper two studies are presented in order to
show external integrations with Sonar and GitHub. The goal
of both is to catalog information of technical debts provided
by TD identification accomplished in external tools. Each tool
identifies specific TD types.

This paper is organized as follows: in Section 2 the back-
ground used in the work is presented, in Section3 the
proposed approach is detailed, in Section 4 TD-Tracker tool
which implements the proposed approach is described, in
Section 5 an application of TD-Tracker with two external
tools is demonstrated, in Section 6 the discussion about the
proposed approach is presented, and in Section 7 the conclu-
sion and future works are presented.

2. Background

In this section the theoretical background of technical debt
identification and cataloging is presented.

2.1. Identification of Technical Debt. Guo and Seaman [8]
proposed a classification of technical debt into four main
types: design (or code), testing, defect, and documentation
debt. In each type of TD it is possible to find techniques and
tools to identify the debt.

Advances in Software Engineering

Design or code debt can be identified by statically analyz-
ing source code or inspecting code compliance to standards
[4]. Izurieta et al. [6] mentioned techniques and tools that
could potentially be useful in the identification activity. They
presented four specific identification techniques: code smells,
automatic static analysis, modularity violations, and design
patterns, described in the following.

Code smells (a.k.a. bad smells), a concept introduced by
Fowler et al. [9], describe choices in object-oriented systems
that do not use principles of good-object oriented design.
Another concept of code smells refers to potential violations
of good object-oriented design principles [10]. Automatic
approaches have been developed to identify code smells, as
proposed by Marinescu [11]. Moha et al. [12] designed a
framework for automatic detection of code smells, including
a component for formally describing a code smell using
a domain specific language. van Emden and Moonen [13]
described jCOSMO tool, a code smell browser to detect and
visualize smells in Java source code, focusing on two code
smells (instanceof and typecast). Simon et al. [14] define a
distance-based cohesion metric and a 3D visualization for
detecting bad smells that violate high cohesion and low
coupling principles. Schumacher et al. [15] focused on eval-
uating the automatic approaches regarding their precision
and recall. Palomba et al. [16] described an approach on how
code elements change overtime, exploiting change history
information to detect instances of five different code smells
through HIST. Former studies have shown that some code
smells are correlated with defect- and change-proneness [17].
Another example of tool for code smells technique is Code-
Vizard [17].

Automatic static analysis (ASA) is a reverse engineering
technique that consists of extracting information about a
program from its source code using automatic tools [18].
ASA tools search issues based on violations on recommended
programming practices and potential defects that might
cause faults or might degrade some dimensions of software
quality such as maintainability and efficiency, among other
things. Some ASA issues can indicate candidates to TD. In
this case, one in charge of cataloging can postpone the task of
fixing it. In previous work Vetro et al. [19] analyzed the issues
detected by FindBugs in two pools of similar small programs,
Sonar [20].

There are other tools used in ASA studies related to code
review such as CheckStyle, Gerrit, and PMD. Checkstyle is a
static code analysis tool used in software development for
checking if Java source code complies with coding rules [21].
A Checkstyle plug-in can provide overload syntax coloring
or decorations in code editor, decorate the project explorer
to highlight problem-posing resources, and add warnings
and error outputs to the outputs. Gerrit is a free web-based
software code review tool integrated with git and serves as
a barrier between developers’ private repositories and the
official. Developers make local changes and then submit
these changes for review. Reviewers make comments via the
Gerrit web interface. For a change to be merged into the
Android source tree, it must be verified and approved by a
senior developer. PMD [22] is a source code analyzer that
finds common programming flaws like unused variables,

Advances in Software Engineering

empty catch blocks, and unnecessary object creation. The tool
supports Java, JavaScript, PLSQL, Apache Velocity, XML, and
XSL languages.

Izurieta et al. [6] described that, during software evolu-
tion, if two components are always changed together to
accommodate modifications but they belong to two separate
modules designed to evolve independently, then there is
nonconformity. They may be caused by side effects of a
quick and dirty implementation, or requirements might have
changed so that the originally designed architecture could not
be easily adapted. When such discrepancies exist, the software
can deviate from its designed modular structure, which is
called a modularity violation and it can indicate TD. Wong
et al. [23] have demonstrated the feasibility and utility of this
approach. In their experiment using Hadoop, they identified
231 modularity violations from 490 modification requests
and 152 (65%) violations were conservatively confirmed. For
modularity violations CLIO is another example of a suitable
tool [23].

Design patterns [24] are popular because they claim,
among others, to facilitate maintainability and flexibility of
designs, reduce the number of defects and faults, and improve
architectural designs. Software designs decay as systems and
operational environments evolve and this can involve design
patterns. Classes that participate in design pattern realiza-
tions accumulate grime nonpattern related code. Grime
represents a form of TD, since the effort to keep the patterns
cleanly instantiated has been deferred. In prior studies, Izu-
rieta and Bieman [25] introduced the notion of design pattern
grime and performed a study on three open source systems,
JRefactory, ArgoUML, and eXist.

The four described techniques comprehend one type of
TD: source code or design. There are other types of TD such
as testing, defect, and documentation, which will be contex-
tualized in the following.

Testing debts are tests that were planned but not imple-
mented/executed or got lost. They are also test cases not
updated for new/changed functionality or low code coverage
[4]. They can be identified by different techniques such as
comparing test plans to their results, checking planning tests
and executed activities, and test code coverage [4]. The tools
mentioned are not planned to identify TD but can be used
to do that. Yang et al. [26] survey coverage-based tools and
compared 17 tools based on three features: code coverage
measurement, coverage criteria, and automation, which
includes reporting. Shah et al. [27] present the consequences
of exploratory testing of TD through systematic review.
Exploratory testing is an approach that does not rely on
formal test case definition; instead of designing test cases, the
execution and evaluation of the software behavior are based
on tester intuition and knowledge and can be used as source
of TD [27].

Debts of documentation type originate from documen-
tation that are not kept up to date. It can include API and
software requirements and use case documentation. They can
be identified by comparing change reports to documentation
version histories. If modifications are done without accom-
panying changes to documentation, the corresponding not
updated documentation is a TD. Forward and Lethbridge

[28] identified, through a survey, tools used to deal with doc-
umentation in software projects, including automated gen-
eration of documentation. Traceability-based reading [29]
is a scenario-based reading technique designed to uncover
inconsistencies between multiple views on an object-oriented
software system. It describes how to perform correctness
and consistency checks among various UML models. Due to
this specific focus on a limited set of important defects, the
technique is to be used in combination with other reading
techniques for complete coverage of a system description.

Defect debts are known defects that are not yet fixed
[4], such as low priority or severity defects due to rarely
manifested or presented workarounds. They can be identified
by comparing test results to change reports; the defects found
and not fixed are defect debt items [4]. The tools used to find
source code debts and the tools that support test executions
are capable of identifying defects. Snipes et al. [30] detailed a
technique based on change control boards (CCB) to catego-
rize and prioritize defects supporting manager decisions to
fix/defer debts based on cost-benefit analysis.

2.2. Cataloging Technical Debt. The structure for cataloging
technical debt in the proposed approach is based on the
documentation structure introduced as part of the Technical
Debt Management Framework (TDMF) [4, 31] by Seaman et
al. This structure is extended in order to decompose entries
into reusable components as well as to properly present
technical debt in different software development activities.

The TDMF is a three-part approach for managing tech-
nical debt in software projects. It relies on a TD List (TDL)
constructed in the first, technical debt identification, part.
The list, which is similar to a task backlog, is populated
with technical debt items, which correspond to single atomic
occurrences of technical debt in the project.

A TD Item documents and upholds a set of information
[4]. Each item represents a task left undone that incurs a
risk of causing future problems if not completed. The original
catalog contains the following:

(i) A description that explains the TD.
(ii) The type of TD, related to the software artifact.

(iii) Location of which part of the system the debt item is
related to.

(iv) The reason for its acquisition or why that task needs
to be done.

(v) An estimate of the TD principal, which indicates how
much resources are required to pay it back to make
this partition fully adhere to the design.

(vi) Interest probability, which estimates the probability of
the issue occurrence.

(vii) Interest amount, resources required for extra work if
the TD causes problems later.

Initially, when an item is created, the principal, expected
interest amount, interest standard deviation, and correlations
with other debt items can be estimated subjectively according
to the maintainer’s experience [4]. Since it is uncertain

whether extra effort will be required, they used expected
interest amount and interest standard deviation to capture
the uncertainty. The principal and interest of a technical debt
item are estimated through measurement estimation of
various development-related entities, principally effort. This
rough estimation can be adjusted later using historical data
or through other types of program analysis.

As exposed by Guo and Seaman [8], different types of
technical debt may require different forms of measure. For
example, the number of known but not fixed defects is a
measurement of defect debt. The difference between expected
code coverage of the test suites and their actual coverage can
be used to measure testing debt. They also mentioned that
it is necessary to use compatible units of measurement for all
types of technical debt in order to easily monitor and compare
with each other. For that, they used principal and interest to
measure all types of technical debt. In this paper we use three-
point scale (High/Medium/Low) as the unit of the metrics.

After explaining the measurement step, technical debt is
tracked, is quantified, and is thus ready to be used for the
decision making process. At this point it is necessary to
contextualize decision making, but it is not detailed since the
work is limited to TD identification and cataloging process,
also to describe a tool for tracking TD. Guo et al. [3]]
described one scenario in which the technical debt list is
used to facilitate decision making in release planning. For
this planning, the project manager sorts TD according to
their cost and benefit and determines the set that should be
paid to minimize the cost and maximize the benefits of the
project. Various approaches [8, 32, 33] have been proposed
for technical debt prioritization and decision making.

3. The Proposed Approach

In this section the proposed approach of identification and
cataloging technical debts is described. The approach has
three activity groups: Identification, Cataloging, and Manag-
ing, as depicted in Figure 1.

The identification group initiates the proposed approach
and copes with technical debt identification activities for the
types design (or code), testing, documentation, and defect.
These types summarize all defined types proposed by [31].
Each type of technical debt represents a different activity since
the process or tool used in identification of this activity can
be different. There is no input artifact or previous process
in this group. The output of this activity is a list containing
candidates to TD. When the list is created they are classified as
candidates because they need to be confirmed by a manager
or someone else performing the TD collector role. Some
collector actions can include decision to fix TD before catalog
or a proper review of the identified item, which can lead to
an exclusion from the catalog. As indicated in the previous
section, there are techniques and tools for identification of
each kind of technical debt mentioned.

Technical debt cataloging is the second group in the
proposed approach and starts after identification. This group
contains two distinct activities: manual cataloging and semi-
automated cataloging. They can be used in different situations

Advances in Software Engineering

(3) Managing

(2) Cataloging

_ /‘\
assignment Cgf;r;;ialllg
TD control Yamm :
Semiautomated
catalogin
TD ging
monitoring -TD st
candidates

Defect TD

. Documentation
Testing TD ™

(1) Identification

FIGURE 1: Proposed approach.

and applied accordingly to the use of techniques and tools
mentioned in the previous group activity. Both activities
must be performed by a collector and are detailed in the
following. Collector is a role performed by a user and consists
of collecting (in a manual or semiautomated way) the TD
candidates list and defining which will be cataloged as TD.
The output of cataloging is a register of technical debt.

Manual cataloging is the activity used to catalog any
technical debt manually, regardless of debt type, origin, or
way of identification. Manual approach can analyze wide
areas in software development activities, besides the large
amount of resources (time or people) required. Zazworka et
al. [34] show that different stakeholders are aware of different
debts in their project, indicating that TD elicitation should
consider an inclusion of project team members. Zazworka
et al. also indicates that aggregation is an effective approach
to combine the identification results of these different team
members.

Semiautomated cataloging uses the candidates of TD
list generated in identification group as input and catalogs
the item from the TD list. The collector analyzes the TD
candidates list and, for each TD item, rejects or registers TD
item, fulfilling the required information. This information
can be provided by the integration if the catalog attributes
(structure) are previously mapped. In this case, the only
action performed by the collector is to check and approve the
candidates as TD items.

For both cataloging activities the integrated catalog is
used and its structure supports any type of technical debt.
The structure is based on the item structure described in
Subsection 2.2 proposed by Seaman and Guo [4]. It is
extended in the proposed approach in order to catalog all
types of technical debt and properly present technical debt
at the next group activity. It also makes it possible to track,
control, and classify pending or finished items, TD sort and
prioritization. Item structure is described in Table 1.

The last group in the proposed approach is Managing. It
comprehends TD assignment (or reassignment), TD control,

Advances in Software Engineering

TABLE 1: Technical debt template, adapted from [4].

ID TD identification number

Date Date of TD identification

Responsible Person or role who should fix this TD item

Type Design, documentation, defect, testing, or other type of debt
Project Name of project or software application

Location List of files/classes/methods or documents/pages involved
Description Describes the anomaly and possible impacts on future maintenance

Estimated principal

How much work is required to pay off this TD item on a three-point scale: High/Medium/Low

Estimated interest amount

How much extra work will need to be performed in the future if this TD item is not paid off now

on a three-point scale: High/Medium/Low

Estimated interest probability

How likely is it that this item, if not paid off, will cause extra work to be necessary in the future on
a three-point scale: High/Medium/Low

Intentional Yes/No/Don’t Know

Fixed by Person or role who really fix this TD item

Fixed date Date of TD conclusion

Realized principal How much work was required to pay off this TD item on a three-point scale: High/Medium/Low

Realized interest amount

How much extra work was needed to be performed if this TD item was not paid off at moment of

detection, on a three-point scale: High/Medium/Low

and TD monitoring activities. The activities use the TD
catalog list as input and support manager decisions. TD
assignment activity is used to perform attribution of TD to
a responsible. TD control activity is used to manage TD,
modifying properties and deleting or changing TD status. TD
monitoring activity is used to track TD’s life cycle and due
dates and, when some changes are needed, can use previous
activity to perform any modification.

4. TD-Tracker Tool

TD-Tracker is a tool that implements the approach (protocol)
described in this paper. TD-Tracker uses the integrated
catalog as metadata in order to register technical debt
properties. It was developed using Java language and public
community maintained frameworks to improve development
productivity and reuse.

The tool architecture uses MVC (Model View Controller)
design pattern. For persistence (or model) Hibernate frame-
work is used, which enables the writing of applications whose
data outlives the application process and applies to any
relational databases (via JDBC). For interface (or view) layer
the framework used is Vaadin because of its popularity and
automation on browser-server communication.

TD-Tracker (download of Beta version and installa-
tion guide is available on http://www2.fct.unesp.br/grupos/
lapesa/tdr) is a web-based application and uses an internal
Tomcat as web container, which allows the execution from a
web application archive (war) file as a Java archive (jar). As a
web-based software all advantages are inherited from this
kind of application and its detailed benefits are discussed
in [35]. Since TD-Tracker uses Vaadin 7, the web browsers
supported by this version of the framework are also supported

by the tool, but the tool was intensively tested with Google
Chrome browser and its use is strongly recommended.

The database structure of TD-Tracker uses the proposed
integrated catalog (or TD catalog) as an entity and its
attributes as columns. It also has an entity for users (a.k.a
responsible), one entity to register the information of con-
nection with external tools and another for mapping the
relationship between TD-Tracker catalog and external appli-
cation properties. These connection and relationship maps
are the key to configuring an integration, allowing TD-
Tracker semiautomated process to retrieve information from
TD identification tools. As explained before, different tools
are used for different kinds of technical debt and an integrated
catalog is only possible when you have the external TD
identification tools connected with TD-Tracker. In the cur-
rent version TD-Tracker supports four of the most popular
database engines [36], MySQL, Oracle, Postgres, and SQL
Server, and integrates with external database through direct
connection.

The layout of the application contains a left side steady
menu used to navigate among the programs (or functional-
ities). Each program represents one or more activities of the
proposed approach. The menu also contains the logged user
information such as Name, Email, Edit Profile option, and
application logout. TD-Tracker has access and permission
control; to manipulate any content it is necessary to have a
login and log into the application. The user has two types of
profile, User and Administrator, and only administrators can
add new users.

The architecture of the solution is depicted in Figure 2 and
contains Integration, TD Cataloging, Authentication, and User
components.

Integration corresponds to external integration process
and allows configuring, testing, and saving the information

TD manager

Advances in Software Engineering

Responsible

|
LT

] [] cataloging

TD identification

tool

ntegration

1—O——1>00

Exterpal TD catalqging

é) xternal TD cataloging

[1 1D

1—0
Manual TD

cataloging

User session

Users

[.
User session

+—0

Authentication

FIGURE 2: TD-Tracker architecture.

needed to connect. In current release, TD-Tracker has two
kinds of integration: database direct connection and using
Github API. The first is intrusive and made through database
mapping and connection, which involves setting all required
information for TD-Tracker map and connecting directly
to an external TD identification tool databasee. The second
integration uses an API to connect with GitHub, reported to
be the largest repository host in the world, in order to extract
all issues from any public or private project.

For database connection, the first step is to set the creden-
tials of the external database to connect. To accomplish that
it is necessary to fulfill integration properties which com-
prehend Alias, Server, Port, Database Name, Database Type,
User, and Password. After informing all the required fields,
it is possible to test the connection. This configuration is
hard since it demands knowledge of identification of TD tool
database credentials.

After configuring the connection it is indispensable to
map a relationship between TD catalog properties and iden-
tification tool fields. For that, the user needs to provide an
external table name and fields, associating with the existing
properties of TD-Tracker catalog, establishing a relationship
between the tools. At this point, the user can check results of
the integration map under construction and visualize which
information is correct or needs changes.

For GitHub connection, the first step is to set the creden-
tials to connect with a specific project on GitHub. The fields
used to create this integration are Alias, User, Password, and
Project. After informing all the required fields, it is also pos-
sible to test the connection. Note that for this configuration
it is necessary to have one user created on GitHub and the
name of the project to access its issues. No other relationship
is needed to map GitHub connection and the user can check
results of the integration map for a project retrieving foreign

Integration Connection

Alias Sonar

Project | elastic/elasticsearch

User borante
[R pe—

Test Connection

Tite

Better support for async indexing

Cluster Health: Add wait time for pending task and recovery pet

Suggest weights are silently bucketed

REST Test blacklist should not use PathMatcher

cat fielddata endpoint does funky things if field names are [id, i
[sso Plugin for ElasticSearch

search by polygon can not get allresult, can someone tell me w

Better exception if array passed to ‘term’ query.

[ENGINE] Ignore 3x segment upgrade if unneeded

Fix typed parameters In IndexRequestBuilder and Createindex!

Internal: remove unused code.

Aggregations: combining children, nested and range filter - fites

#1370 - Fix HTML response during redirection

deb package postrm script

bulk updates with groovy script leads to long gc pauses

Integration Type
GITHUB

Connection tested successfully.

Check Results

Location Responsible. puon

1:am indexing from a message stream where | can get bursts of
I order to get a quick overview using by simply checking the cl
The positive integer "“weight'* provided to the *“completion” tyg
Currently we use "PathMatcher to perform matching on REST
To recreate, start with a freshly started cluster (1.5.2) it nothi
Hi I'm a Apache Fediz Developer and | would like to build an au
Hi all, 1 am sorry but | can not open https://discuss.elastic.col.s
Added a check that explicity throws an exception in case of an

If the index was created with 0.90. or later, skip the check for ¢

as wellas q

Hello, | am experiencing strange behavior when using aggrega
Fixes Issue #11370 by fixing response HTML
Tanguy Leroux Hi, i have var/lib/elasticsearch on separate filesystem, i found

We are doing bulk updates for hundreds of thousands of docun .

FIGURE 3: Integration between TD-Tracker and GitHub for Elastic-

Search project.

TD candidates (or GitHub issues). This form of connection
and checking results action is presented in Figure 3.

Integration component, as presented in Figure 2, has two
lines that create a relation between TD Cataloging and an
external TD identification tool. It is also possible to see
that the relation with the external tool through External TD
Candidate and the connection with TD Cataloging is through
external cataloged TD.

TD Cataloging component is where the register of techni-
cal debt resides and can be inputed manually or retrieved after
integration. It has a synchronization activity made through
a foreign database connection from a TD identification tool,

Advances in Software Engineering

detailed in the following. The component also contains man-
ager activities such as TD monitoring, control, and assign-
ment.

For manual cataloging, the user has to fulfill TD attributes
presented in the catalog described in the proposed approach.
The collector can input manually a TD from an external can-
didates list or after detecting it in an isolated case; it is only
possible after logging into application. For this kind of cata-
loging, TD-Tracker validates required attributes, not allowing
them to be saved if they are not detailed.

For semiautomatic interface it is necessary to create a
database integration mapping of the relationship between
TD-Tracker and the external tool. The interaction between
TD Cataloging and Integration component exists in this kind
of integration. To make it work it is necessary to configure the
connection information and create the relationship between
the fields of the integrated catalog and external database table,
as explained in the Integration component. Configuration is
a prerequisite for synchronization, an action performed by a
controller or manager. Synchronization is composed of two
steps: database or API connection and external information
extraction.

After synchronization, external information is presented
in a grid in TD-Tracker interface where it is possible to filter
and sort the external TD identified by the integrated tool
and import to TD-Tracker. A filter and sorting mechanism
is used to select on TD candidates list the debts that should
be cataloged, granting TD control. All fields mapped with
TD catalog in the configuration stage can be used as filters,
allowing managers or controller to limit the number of
candidates to analyze and apply an external strategy within
displayed data. The grid is composed of the fields mapped
in the configuration stage and information presented in the
grid, for some fields such as responsible, TD type, and the
estimations, can be overridden.

An attribute to register external information ID is also
created in the semiautomatic interface, avoiding duplication
when cataloging TD and alerting when the external key is
marked for integration twice. For the proper use of this
activity it is vital to configure the external field ID when map-
ping integration properties.

The assignment activity is only possible after including
the responsible person as an application user. In manual cat-
aloging a list of existing users can be used to find a specific
person when assigning a TD for a person. TD control activity
can be performed while TD is not finished or deleted; it
remains available to the manager to deal with TD relevance,
estimated effort to fix the debt, and TD interest and probabil-
ity to cause extra work in the future. It can also control the
date when TD was fixed and the efforts realized to fix it. The
dates and realized efforts can also be performed by the user
responsible for the technical debt.

TD monitoring activity can support the decision process
when it is possible to filter and find pending technical
debts, which can affect the plan of the next project interac-
tion or delivery. TD-Tracker can help the manager to pri-
oritize TD based on estimated information of each TD.
The tool does not implement any prioritizing algorithm but
the properties, estimated principal, interest amount, and

interest probability, can be combined and used in decision
techniques by managers. TD-Tracker also keeps historical TD
information, which can be used to estimate TD in similar
projects or software activities and a proper estimation can
help managers’ decisions.

Authentication component corresponds to application
authentication and permissions to access the functionalities.
It integrates with TD Cataloging component through user
session, which is required to perform any kind of cataloging.
Authentication also integrates with User component to vali-
date the credentials and create a user session. User component
is related to profile and used as a responsible or fixed by
person when associating with a TD in TD Cataloging, as
presented by the line in Figure 3.

The implementation of integrated catalog and an over-
view of the tool are presented in next section.

5. TD-Tracker Application

Two different scenarios covered by TD-Tracker are presented
in this section. In the first scenario, the integration with Sonar
through database mapping and extraction is described. In the
second scenario GitHub integration through a public API is
described. The reason for presenting two scenarios is to show
that integration is feasible for design and defect TDs.

5.1 Integration with Sonar and OpenRefine Project. In this
integration the use of TD-Tracker to catalog TD from open
source project named OpenRefine [37] is presented. This tool
is developed for working with messy data, which includes
cleaning, transforming from one format into another, extend-
ing with web services, and linking to databases. The project is
being developed using Java and contains 36.883 LOCs (Lines
of Code) distributed in 496 classes, a wiki as documentation
[37] and some issues cataloged on Github repository.

Sonar is a world wide adopted (ASA) tool developed to
analyze source code. The tool is based on rules to identify
source code defects or refactoring points. It contains a total of
516 rules when integrated with FindBugs, in the version 3.7.4,
and for Java projects. These rules are classified into standard
severities such as info, minor, major, critical, and blocker,
which can be customized. The rules are also grouped as bad
practices, correctness and performance issues, design flaws,
code issues, security, and so forth. In this application Sonar
was locally installed and configured to use Postgres database
as its issues repository.

After configuring [37] project using Eclipse, a very com-
mon IDE for Java projects, and compiling all the applications,
the project was added into Sonar to perform the automatic
syntax analysis. The 6596 issues identified by Sonar for this
project represent TD candidates and were revised before
performing the integration with TD-Tracker. Minor issues
represent more than 41% and major issues more than 56%,
comprehending 98% of the total amount identified. Minor
issues usually are not fixed because of their relevance and
major issues because of the high effort spent in fixing and the
low probability of causing extra work.

Integration Connection

Server Port

Database Database Type
sssss POSTGRES

Connection tested successfully.

Add Relationship Check Results

Tabe Foreign Field Internal Fiekd

ssssss rule_id TITLE
issues. message DESCRIPTION
issues. line LOCATION

RESPONSIBLE

FIGURE 4: Mapped integration between TD-Tracker and Sonar.

TABLE 2: Mapped relationship between TD-Tracker and Sonar.

TD-Tracker fields Sonar fields
Date issue_creation_date
Responsible assignee
Project root_component_id
Location component_id
Description message

The first step in TD-Tracker, for integrating a TD catalog,
was to create a connection between TD-Tracker and Sonar.
The integration connection attributes explained in Section 4
were defined as Postgres database, localhost server, and Sonar
credentials to connect to the database, as presented in
Figure 4. In Figure 4 it is also possible to see how TD-Tracker
creates the relationship, explained in the following.

After successfully testing the connection, it is crucial to
map the external table and fields to import TD candidates list.
In this step, it is fundamental to know the characteristic of the
Sonar database, which means knowing the table that contains
issue information and which columns of that table are related
to the proposed catalog properties. By investigating Postgres
database, the “Issues” table on Sonar schema was found and
it contains all identified information for OpenRefine project.
Using table “Issues” it is possible to create the relationship
between the two applications with fields as shown in Table 2.

The previous steps establish the integration, using these
parameters TD-Tracker can extract the information through
Integration Sync interface, and the manager can filter or sort
this information to register technical debt into the integrated
catalog. As explained in the previous section, only the marked
external information is retrieved from the identification tool
and that is the reason for creating such filters and sort options.
In the OpenRefine project issues registered into Sonar only
the critical severity was filtered and marked, resulting in 30
TD candidates. After reading and concluding that only 2 of

Advances in Software Engineering

e Tite

Administrator DESIGN 7%
User2 DESIGN 22
el L ‘echnical Debt Register

798

Date. 1 0203115
Adminisrator
of v

DEFECT ; by sequences of white-spaces.
DESIGN
DOCUMENTATION

OpenRefine

Line 83

Amount | MEDIUM
Probebiity | HIGH
Administrator

£ 260315

FIGURE 5: Implemented integrated catalog.

the 30 issues were TD, both were cataloged, 1 assigned to user
Administrator and 1 to User2.

With the information inserted into the catalog, managers
are allowed to take control of it through the TD Monitoring
interface, which is the same for manual registers of TD.
In Figure 5 an example of an integrated technical debt of
design type assigned to the responsible named Administrator
is presented. It is possible to see two different screens; the first
(superior corner) is a list of remaining TD only displaying
the 2 cataloged TDs; in this screen manager can filter by
responsible, TD Type, and title. In the second screen (inferior
corner) the detailed TD information is presented, explained
in the following.

The cataloged debt occurred on project OpenRefine in
line 83 of class com.google.refine.browsing.facets. ListFacet and
was defined as design TD to the responsible Administrator on
02/03/15. The TD description was Incorrect lazy initialization
of static field com.google.refine.ProjectManager.singleton in
com.google.refine.RefineServlet.destroy() and the estimation
was defined as follows: low estimated principal, which implies
low difficulty of fixing; medium interest amount, which
means medium difficulty if it is decided to postpone imple-
mentation to fix it; high interest probability, which stands for
alot of extra work when necessary to fix it in the future.

In this example, it was also possible to show informa-
tion with regard to fixing TD such as the date when the
implementation finishes, the author who fixed the TD, and
the real effort to fix: realized principal and interest amount.
The first one remained low, same as in estimation, and the
realized interest amount was changed from medium to low
difficulty. It means that real difficulty was easier than expected
initially. This kind of information is useful to the person who
performed the collector role, since it can be used as historical
information and provide a better base of estimation for the
next time. It is important to point out that if the estimation
of interest amount was defined as low, it probably changes

Advances in Software Engineering

TABLE 3: Cataloged technical debts from ElasticSearch issues in GitHub.

Title

Description

Reindex from _source by
document ID or query

Be able to ask the system to reindex from the saved JSON by document ID or query. This is useful
once we have ES style plugins for manipulating documents that might later change and therefore
cause you to want to reindex some set of documents. #490 and #491 would let you query by a set
of documents indexed before the required change. If you are going to store the JSON, you can take
advantage of that by reindex requests. This might also allow the system to handle schema changes

in the future more automatically by reindexing to the new analyzer over time in batch.

There should be an integration point for ES and external application where the external
applications should be notified of any document changes or updates that happen in ES. CouchDB

Changes API #1242

have a good implementation on it and it would be great if ES can also incorporate something

similar or same. CouchDB change notification feature
http://guide.couchdb.org/draft/notifications.html

With only one shard the following query gives the correct counts no matter what the size

Terms facet gives wrong count
with n_shards > 1 #1305

parameter is set to. However, with more than one shard the size parameter affects the accuracy of
the counts. If it is equal to or greater than the number of terms returned by the facet query (5 in

this case) then it works fine. However, the terms at the bottom of the list start to display low
counts as you reduce the size parameter.

the order in project manager list and could not be included
as TD to be fixed.

5.2. Integration with GitHub and ElasticSearch Project. In
this second scenario the use of TD-Tracker is presented to
catalog TD from open source project named ElasticSearch
[38]. The tool is an API for real-time search and analytics
capabilities. It supports multilingual search, geolocation, con-
textual did-you-mean suggestions, autocomplete, and result
snippets. The project has different implementations in multi-
ple languages, but the chosen project is being developed
using Java. It has 124 releases, 12,163 commits done by 436
contributors, complete documentation references (the docu-
mentation, accessed on 2015-05-27, can be found at https://
www.elastic.co/guide/en/elasticsearch/reference/current
/index.html), and some issues cataloged on Github repository.

Github is a web-based Git repository hosting service,
which offers all of the distributed revision control and source
code management functionality. GitHub provides a web-
based graphical interface, desktop, and mobile integration. It
has several collaboration features such as wikis, task man-
agement, and bug tracking and feature requests for every
project. The repository offers plans for private repositories
and free accounts, which are usually used to host open source
software projects. GitHub reports having over 9 million users
and more then 21.1 million repositories, making it the largest
code hoster in the world.

For this TD-Tracker application, ElasticSearch was chosen
because of its relevance on open source projects developed
using Java with more then 11,000 positive evaluations on
GitHub. The project has 7,222 issues created on its bug tracker
repository, 6,266 of them closed and 966 open, used as TD
candidates.

The first step in TD-Tracker, to integrate a TD catalog, was
to create a connection between TD-Tracker and GitHub. For
this, an existing GitHub user was necessary, as explained in
the tool section. After configuring user borante, its password,
and a repository project (ElasticSearch), it is possible to

test the connection and check information about the issues
created for the project. It is important to mention that this
step is only for parameters configuration, not for real syn-
chronization.

After configuring the parameters, the next step is to use
Integration Sync interface to perform synchronization. TD-
Tracker uses the parameters to extract TD candidates through
API and presents it on a grid for manual selection. The
manager can filter or sort all gathered information in this grid
to register technical debt into the integrated catalog. The
selected external information is retrieved from the identi-
fication tool and cataloged. In the ElasticSearch project issues
registered into GitHub only the oldest was filtered (issues
before 2012) and marked to sync, resulting in 8 TD candi-
dates. The reason to use this filter is to catalog defect debts
pending for too long (more than 3 years). After excluding the
issues with some project developers already assigned, only 3
of the 8 issues became TD and were cataloged as presented
in Figure 6. In this application example, all of the cataloged
issues were assigned to user Administrator.

Unlike design issues presented in previous scenario, the 3
cataloged debts occurring on project ElasticSearch came from
problems founded and not fixed, becoming defect debt. As a
common scenario when dealing with bugs, the person who
identifies does not know the code and, consequently, the
exact location of the bug. With this, none of the previously
cataloged TD has the location defined when synchronized.
In Table 3, the three cataloged technical debts are presented.

6. Discussions

6.1. Approach. This initial picture will contribute to future
research efforts concerned with continuously monitoring and
managing TD in software projects, a larger subject that is out
of the scope of this study. In this study we address the TD
problem holistically for any kind of TD from identification to
registering and managing the cataloged information. We also
provided useful information on techniques and tools used

10

Integration Synchronization

Be able to ask the system

icard always uses OR operator on spit terms Query stri

phrases with stop words when term vector Ita recoro
PhraseQuery support to REST & Java API currently |
ort Atthe mol

Allow access to Lucene field nfos via API Attimes it

implement explain for top_children query Itwould b+

D Type Responsible Is Intentional? Estimated Principal Estimated Interest Amount Estimated Interest Probabilty

FIGURE 6: Synchronization between TD-Tracker and issues mapped
for ElasticSearch on GitHub.

on identification activity. The tool application presented in
this paper focused on an integration with Sonar but raises a
question for further tradeoff analysis studies into how tools
can help to point to TD that is worth being managed.

Besides some background mentioned regarding the port-
folio approach proposed by [8], there is no definition in our
extended catalog which establishes the correlation between
two technical debt items. It is known that this correlation
depends on the type of changes imposed on the system
and it cannot be fixed. However, this lack of information
(correlation between TDs) is planned as a topic for future
work. This work is being developed to refine and expand the
approach proposed in this paper.

6.2. TD-Tracker. 1t is possible to find several works related
to decision making process in TD, such as [30, 32, 33]. TD-
Tracker tool aims to help managers control TD and support
their decision, establishing a relationship to these works.
However, integrated catalog is an extension of previous work
[4] with additional information to cope with manager needs
and it can change from person to person, which is implied in
expanded integrated catalog in future versions.

TD-Tracker may cause accumulation of technical debt.
The integrated catalog is designed to be complete and intu-
itive but it cannot be fast enough to capture all information
of technical debts and update them. Using another tool to
manage the debt could make the responsible of the debt not
update the information.

It is possible to extend TD-Tracker for software develop-
ment companies, in order to get more people involved on
technical debt scenario and its management. For that it is
fundamental to provide a refined version of the academic
application described and introduce the TD-Tracker for
manual or integrated technical debt management process in
their projects. With continued development, it is expected to
discover ways to further support the projects’ technical debt
management through enhancements in the tool.

A unified integrated catalog is the key to control different
processes and artifacts from a project. It allows managers to
keep a list of closed and pending technical debts, helping
with project planning, control, and execution. An integrated

Advances in Software Engineering

catalog also enables comparison of TD attributes for pri-
oritization or applies techniques to rank and schedule TD
payments. The tool also allows the users to handle mul-
tiple projects simultaneously, expanding TD cataloging and
control. It also simplifies monitoring of identified TD in a
single tool, independent of technical debt type.

7. Conclusions

The tool is designed to facilitate integration between different
types of TD. It is possible through a unique integrated repos-
itory that supports all kind of debts and can group any
information related to TD. TD-Tracker design focused on
easily integrated databases and assists relationship mapping
between external tools.

The approach produces and maintains a TD list according
to the captured TD. TD List provides valuable information for
existing software components. It can be helpful generating a
product backlog list, providing a list of needed updates on
documentation, prioritizing defects, and evidencing faults in
testing area.

Two applications scenarios were presented; each one
deals with a different kind of technical debt source code/
design and defect. No application example of testing and
documentation TD was presented due to the similarity of the
steps when using database direct connection. It means that
any integration can be created on database direct connection
using the same steps as the first application example. Of
course it is necessary for the TD identification tool to provide
the connection credentials.

TD-Tracker also can capture human-detected technical
debt. In addition to the integration, it is possible to catalog any
kind of technical debt identified by stakeholders. Since they
are fully aware of all active requirements and development
conventions, they can find additional technical debts, not
identified by any tools. This ensures that information can be
cataloged, regarding the integration.

By grouping technical debt identification from different
project development levels (code, test, and document), TD-
Tracker tool ensures that the project is conducted while aware
of technical debts presence. This allows any stakeholder
to avoid unintentionally increasing the number of TD by
checking cataloged items of any project area. It also allows
decreasing TD interest value by tackling technical debt in
areas where the project is currently conducted.

When cataloging intentional debt, especially for defect
debt, many of the items could be requirements that were not
fully implemented. The intentionality of these items indicates
that a decision was made not to finish the implementation
of those requirements, most likely due to time constraints,
which makes these instances conceptually different from
defects caused by unintentional programming mistakes. For
this action it is indispensable that the collector possess or
receives the correct information to properly register post-
poned implementation.

TD-Tracker is being used by a small software develop-
ment company for Java developers and testers teams. The
project manager reported that TDs have been cataloged and

Advances in Software Engineering

paid, but we still have no amount of data to apply any
prioritizing technique, since the sampled TD set is not sta-
tistically significant. With continued development, getting
more people involved on technical debt scenario and its man-
agement, it is expected to discover ways to further support the
projects’ TD management through enhancements in the TD-
Tracker.

TD-Tracker allows multiple TD identification tools to be
used instead of only one of the mentioned and the adoption
of different tools is strongly recommended, since they point
to different problems in a software artifact [20]. The use of
a single tool or single indicator (e.g., single code smells) will
only in rare cases point to all important TD issues in a project.
As a result, project teams need to make intentional decisions
about which of the TD indicators are of most relevance to
them, based on the quality goals of their project, as suggested
in [39].

In order to enhance productivity in the industrial sector
we expect to further improve and validate TD-Tracker in
such environments. For that, we have planned an extensive
series of case studies with an experimental evaluation on open
source software. These studies will reach closed and ongoing
open source software projects with desirable characteristics
such as access to software documentation, existence of repos-
itory issues, and test plans. Closed projects are also in the
scope of validation because we intend to apply TD-Tracker in
its previous released product versions, studying the life span
and historical information of technical debt.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] W. Cunningham, “Object-oriented programming systems, lan-
g] prog g sy
guages, and applications,” in The WyCash Portfolio Management
System, 1992.

[2] N.Brown, Y. Cai, Y. Guo et al., “Managing technical debt in soft-
ware-reliant systems,” in Proceedings of the FSE/SDP Workshop
on Future of Software Engineering Research (FoSER ’10), pp. 47-
52, ACM, Santa Fe, NM, USA, November 2010.

[3] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical
debt: towards a crisper definition report on the 4th international
workshop on managing technical debt,” ACM SIGSOFT Soft-
ware Engineering Notes, vol. 38, no. 5, pp. 51-54, 2013.

[4] C. Seaman and Y. Guo, “Measuring and monitoring technical
debt,” Advances in Computers, vol. 82, pp. 25-46, 2011.

[5] J.-L. Letouzey and M. Ilkiewicz, “Managing technical debt with
the SQALE method,” IEEE Software, vol. 29, no. 6, pp. 44-51,
2012.

[6] C. Izurieta, A. Vetro, N. Zazworka, Y. Cai, C. Seaman, and E
Shull, “Organizing the technical debt landscape,” in Proceedings
of the 3rd International Workshop on Managing Technical Debt
(MTD ’12), pp. 23-26, IEEE, Ziirich, Switzerland, June 2012.

[7] J. A. Kupsch and B. P. Miller, “Manual vs. automated vulnerabil-
ity assessment: a case study, CEUR Workshop Proceedings, vol.
469, pp. 83-97, 2009.

1

[8] Y. Guo and C. Seaman, “A portfolio approach to technical debt
management;” in Proceedings of the 2nd working on Managing
technical debt (MTD °I1), pp. 31-34, Honolulu, Hawaii, USA,
May 2011.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refac-
toring: Improving the Design of Existing Code, Addison-Wesley,
1999.

[10] M. Lanza, R. Marinescu, and S. Ducasse, Object-Oriented
Metrics in Practice, Springer, Secaucus, NJ, USA, 2005.

[11] R. Marinescu, “Detection strategies: metrics-based rules for
detecting design flaws,” in Proceedings of the 20th IEEE Inter-
national Conference on Software Maintenance, pp. 350-359,
September 2004.

[12] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur,
“Decor: a method for the specification and detection of code
and design smells,” IEEE Transactions on Software Engineering,
vol. 36, no. 1, pp. 20-36, 2010.

[13] E.van Emden and L. Moonen, “Java quality assurance by detect-
ing code smells,” in Proceedings of the 9th Working Conference on
Reverse Engineering, pp. 97-106.

(14

F. Simon, E Steinbriickner, and C. Lewerentz, “Metrics based
refactoring,” in Proceedings of the 5th European Conference on
Software Maintenance and Reengineering, pp. 30-38, March

2001.

J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw,
“Building empirical support for automated code smell detec-
tion,” in Proceedings of the ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM
’10), ACM, 2010.

[16] E Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using
change history information,” in Proceedings of the 28th IEEE/
ACM International Conference on Automated Software Engi-
neering (ASE ’13), pp. 268-278, November 2013.

[17] N. Zazworka, M. A. Shaw, E Shull, and C. Seaman, “Investigat-
ing the impact of design debt on software quality;” in Proceedings
of the 22nd Workshop on Managing Technical Debt (MTD ’11),
pp. 17-23, ACM, May 2011.

[18] D. Binkley, “Source code analysis: a road map,” in Proceedings of
the Future of Software Engineering (FOSE "07), pp. 104-119, May
2007.

A. Vetro, M. Morisio, and M. Torchiano, “An empirical valida-

tion of FindBugs issues related to defects,” in Proceedings of the

15th Annual Conference on Evaluation and Assessment in Soft-

ware Engineering (EASE ’11), pp. 144-153, April 2011.

[20] N. Zazworka, A. Vetro, C. Izurieta et al., “Comparing four
approaches for technical debt identification,” Software Quality
Journal, vol. 22, no. 3, pp. 403-426, 2014.

[21] A.Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen,

“Mining software repositories to study co-evolution of pro-

duction & test code” in Proceedings of the Ist International

Conference on Software Testing, Verification, and Validation

(ICST °08), pp. 220-229, IEEE, Lillehammer, Norway, April

2008.

PMD, July 2015, https://pmd.github.io/.

S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software

modularity violations,” in Proceedings of the 33rd International

Conference on Software Engineering (ICSE ’11), pp. 411-420,

IEEE, Honolulu, Hawaii, USA, May 2011.

[24] Y.-G. Gueheneuc and H. Albin-Amiot, “Using design patterns
and constraints to automate the detection and correction of

(15

(19

[22
[23

12

[25]

[26]

(27]

(30]

(31]

(32]

(34]

[36]

[37]
(38

(39]

inter-class design defects,” in Proceedings of the 39th Inter-
national Conference and Exhibition on Technology of Object-
Oriented Languages and Systems (TOOLS39 ’01), pp. 296-305,
IEEE, Santa Barbara, Calif, USA, July-August 2001.

C. Izurieta and J. M. Bieman, “A multiple case study of design
pattern decay, grime, and rot in evolving software systems,”
Software Quality Journal, vol. 21, no. 2, pp. 289-323, 2013.

Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based
testing tools,” The Computer Journal, vol. 52, no. 5, pp. 589-597,
20009.

S. M. A. Shah, M. Torchiano, A. Vetro, and M. Morisio, “Explor-
atory testing as a source of technical debt,” IT Professional, vol.
16, no. 3, Article ID 6475929, pp. 44-51, 2014.

A. Forward and T. C. Lethbridge, “The relevance of software

documentation, tools and technologies,” in Proceedings of the
ACM Symposium on Document Engineering (DocEng *02), pp.

26-33, ACM, New York, NY, USA, November 2002.

G. Travassos, E Shull, M. Fredericks, and V. R. Basili, “Detecting
defects in object-oriented designs: using reading techniques to
increase software quality,” in Proceedings of the 14th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA °99), pp. 47-56, ACM,
Denver, Colo, USA, November 1999.

W. Snipes, B. Robinson, Y. Guo, and C. Seaman, “Defining the
decision factors for managing defects: a technical debt per-
spective,” in Proceedings of the 3rd International Workshop on
Managing Technical Debt (MTD ’12), pp. 54-60, June 2012,
http://www.scopus.com/record/display.url?eid=2-52.0-848641-
35572&origin=inward&txGid=7200AE1F63ACIEDA2F928E7-
752950AC2.CnvicAmOODVwpVrjSeqQ%3al.

Y. Guo, C. Seaman, R. Gomes et al., “Tracking technical debt—
an exploratory case study,” in Proceedings of the 27th IEEE Inter-
national Conference on Software Maintenance (ICSM ’11), pp.
528-531, September 2011.

C. Seaman, Y. Guo, N. Zazworka et al., “Using technical debt
data in decision making: potential decision approaches,” in Pro-
ceedings of the 3rd International Workshop on Managing Techni-
cal Debt (MTD ’12), pp. 45-48, IEEE, Zirich, Switzerland, June
2012.

K. Schmid, “A formal approach to technical debt decision
making,” in Proceedings of the 9th International ACM Sigsoft
Conference on the Quality of Software Architectures (QoSA ’13),
pp- 153-162, ACM, New York, NY, USA, June 2013.

N. Zazworka, R. O. Spinola, A. Vetro, E Shull, and C. Seaman,
“A case study on effectively identifying technical debt,” in Pro-
ceedings of the 17th International Conference on Evaluation and
Assessment in Software Engineering (EASE ’13), pp. 42-47, ACM,
Porto de Galinhas, Brazil, April 2013.

A. Charland and B. Leroux, “Mobile application development:
web vs. native,” Communications of the ACM, vol. 54, no. 5, pp.
49-53, 2011

DB-Engines Ranking, March 2015, http://db-engines.com/en/
ranking.

OpenRefine, March 2015, http://openrefine.org/.

Elasticsearch, 2015, https://www.elastic.co/products/elastic-
search/.

E Shull, “Perfectionists in a world of finite resources,” IEEE Soft-
ware, vol. 28, no. 2, pp. 4-6, 2011.

Advances in Software Engineering

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

