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Source-free equations of nonlinear electrodynamics minimally coupled to gravity admit regular axially symmetric asymptotically
Kerr-Newman solutions which describe charged rotating black holes and electromagnetic spinning solitons (lumps). Asymptotic
analysis of solutions shows, for both black holes and solitons, the existence of de Sitter vacuum interior which has the properties
of a perfect conductor and ideal diamagnetic and displays superconducting behaviour which can be responsible for practically
unlimited lifetime of the electron. Superconducting current flows on the equatorial ring replacing the Kerr ring singularity of the
Kerr-Newman geometry. Interior de Sitter vacuum supplies the electron with the finite positive electromagnetic mass related to the
interior de Sitter vacuumof the electroweak scale and to breaking of space-time symmetry, which allows explaining themass-square
differences for neutrino and the appearance of the minimal length scale in the annihilation reaction 𝑒

+

𝑒
−

→ 𝛾𝛾(𝛾).

1. Introduction

Quantum electrodynamics applies the point-like idealization
for leptons, which well describes in- and out-states of par-
ticles at the distances sufficiently large as compared with
their eventual sizes. In experiments onhigh energy scattering,
leptons are found structureless down to ∼10−16 cm. There
exist however experiments, in which particles approach each
other so close that their annihilation results in their complete
destruction. Study of the electromagnetic reaction 𝑒

+
𝑒
−

→

𝛾𝛾(𝛾), with using the data from VENUS, TOPAZ, ALEPH,
DELPHI, L3, and OPAL, reveals with the 5𝜎 significance the
existence of the minimal length 𝑙

𝑒
= 1.57 × 10−17 cm at the

scale 𝐸 = 1.253 TeV [1]. The annihilation reaction can be
a source of information about possible internal structure of
leptons, which requires an extended model for the electron.

In 1962 Dirac proposed to assume the electron to have
a finite size, with no a priori constraints fixing its size
and shape [2]. In his model the electron is visualized as a
spherical shell which serves as a source of electromagnetic
field and is supplied with a cohesive force (Poincaré stress) of
a nonelectromagnetic origin, needed to prevent the electron
from flying apart under the Coulomb repulsion [2].

The Kerr-Newman solution to the source-free Maxwell-
Einstein equations found in 1965 [3]:

𝑑𝑠
2
=

(2𝑚𝑟 − 𝑒
2
) − Σ

Σ

𝑑𝑡
2
+

Σ

Δ

𝑑𝑟
2
+Σ𝑑𝜃

2

−

2𝑎 (2𝑚𝑟 − 𝑒
2
) sin2𝜃

Σ

𝑑𝑡𝑑𝜙

+(𝑟
2
+ 𝑎

2
+

(2𝑚𝑟 − 𝑒
2
) 𝑎

2sin2𝜃
Σ

) sin2𝜃𝑑𝜙2;

Δ = 𝑟
2
− 2𝑚𝑟 + 𝑎

2
+ 𝑒

2
,

(1)

where Σ-function and the associated electromagnetic poten-
tial read

Σ = 𝑟
2
+ 𝑎

2cos2𝜃;

𝐴
𝑖
= −

𝑒𝑟

Σ

[1; 0, 0, − 𝑎sin2𝜃] ,
(2)

inspired the further search since Carter discovered in 1968
that the parameter 𝑎 couples with the mass 𝑚 to give the
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angular momentum 𝐽 = 𝑚𝑎 and independently couples with
the charge 𝑒 to give an asymptotic magnetic dipole moment
𝜇 = 𝑒𝑎, so that the gyromagnetic ratio 𝑒/𝑚 is exactly the same
as predicted for a spinning particle by the Dirac equation [4].

At the same time Carter discovered the big trouble of the
Kerr-Newman geometry just in the case appropriate for the
electron, 𝑎2+𝑒2 > 𝑚

2; when there are no Killing horizons, the
manifold is geodesically complete (except for geodesicswhich
reach the singularity), and any point can be connected to any
other point by both a future and a past directed time-like
curve. Closed time-like curves originate in the region where
𝑔
𝜙𝜙

< 0, can extend over the whole manifold and cannot be
removed by taking a covering space [4].

The source models for the Kerr-Newman exterior fields,
involving a screening or covering of causally dangerous
region and Poincaré stress of different origins, can be roughly
divided into disk-like [5–8], shell-like [9–12], bag-like [13–19],
and string-like ([20] and references therein). The problem of
matching the Kerr-Newman exterior to a rotating material
source does not have a unique solution, since one is free to
choose arbitrarily the boundary between the exterior and the
interior [5] as well as an interior model.

The Dirac proposal to approach the electron without a
priori constraints on its size and shape can be applied in
the context of the Coleman lump (physical soliton) as a
nonsingular, nondissipative solution of finite energy holding
itself together by its own self-interaction [21]. An appropriate
instrument to shed some light on the purely electromagnetic
reaction of 𝑒+𝑒− annihilation is nonlinear electrodynamics
coupled to gravity (NED-GR) (NED theories appear as low-
energy effective limits in certain models of string/M-theories
[22–24].).

Nonlinear electrodynamics was proposed by Born and
Infeld as founded on two basic points: to consider electro-
magnetic field and particles within the frame of one physical
entity which is electromagnetic field; to avoid letting physical
quantities become infinite [25]. In their theory a total energy
is finite and particles are considered as singularities of the
field, but it is also possible to obtain the finite electron radius
by introducing an upper limit on the electric field [25].

The Born-Infeld program can be realized in nonlin-
ear electrodynamics minimally coupled to gravity. Source-
free NED-GR equations admit regular causally safe axially
symmetric asymptotically Kerr-Newman solutions which
describe regular rotating charged black holes and electromag-
netic spinning solitons (lumps) [26, 27].

For any gauge-invariant Lagrangian L(𝐹), stress-energy
tensor of electromagnetic field

𝜅𝑇
𝜇

] = − 2L
𝐹
𝐹]𝛼𝐹
𝜇𝛼

+

1
2
𝛿
𝜇

]L; 𝜅 = 8𝜋𝐺, (3)

where 𝐹
𝜇] = 𝜕

𝜇
𝐴] − 𝜕]𝐴𝜇 (Greek indices run from 0 to 3)

andL
𝐹
= 𝑑L/𝑑𝐹, in the spherically symmetric case, has the

algebraic structure

𝑇
0
0 = 𝑇

1
1 (𝑝

𝑟
= −𝜌) , (4)

since the only essential components of𝐹
𝜇] are a radial electric

field 𝐹01 and a radial magnetic field 𝐹23. Regular spherically

symmetric solutions with stress-energy tensors specified by
(4) satisfying the weak energy condition (nonnegativity of
density as measured by any local observe) have obligatory
de Sitter center with 𝑝 = −𝜌 [28–31]. In NED-GR regular
spherical solutions the weak energy condition is always
satisfied and de Sitter vacuum provides a proper cut-off on
self-interaction divergent for a point charge [26, 32].They can
be transformed into regular axially symmetric solutions by
the Gürses-Gürsey algorithm [33, 34].

Here we outline the generic properties of regular rotating
charged black holes and solitons.

2. Basic Equations

Nonlinear electrodynamics minimally coupled to gravity is
described by the action

𝑆 =

1
16𝜋𝐺

∫𝑑
4
𝑥√−𝑔 [𝑅−L (𝐹)] ; 𝐹 = 𝐹

𝜇]𝐹
𝜇]
, (5)

where 𝑅 is the scalar curvature. The Lagrangian L(𝐹) is an
arbitrary function of 𝐹 which should have the Maxwell limit,
L → 𝐹,L

𝐹
→ 1 in the weak field regime.

Variation with respect to 𝐴
𝜇 and 𝑔

𝜇] yields the dynamic
field equations

∇
𝜇
(L
𝐹
𝐹
𝜇]
) = 0;

∇
𝜇

∗

𝐹
𝜇]

= 0;

∗

𝐹

𝜇]
=

1
2
𝜂
𝜇]𝛼𝛽

𝐹
𝛼𝛽
;

𝜂
0123

= −

1
√−𝑔

(6)

and the Einstein equation 𝐺
𝜇] = −𝜅𝑇

𝜇] with 𝑇𝜇] given by (3).
NED-GR equations do not admit regular spherically sym-

metric solutions with theMaxwell center [35], but they admit
regular solutions with the de Sitter center [32]. The question
of correct description ofNED-GR regular electrically charged
structures by the Lagrange dynamics is clarified in [36].
Regular solutions satisfying (4) are described by the metric

𝑑𝑠
2
= 𝑔 (𝑟) 𝑑𝑡

2
−

𝑑𝑟
2

𝑔 (𝑟)

− 𝑟
2
𝑑Ω

2
;

𝑔 (𝑟) = 1 − 2M (𝑟)

𝑟

; M (𝑟) = 4𝜋∫
𝑟

0
𝜌 (𝑥) 𝑥

2
𝑑𝑥,

(7)

with the electromagnetic density 𝜌(𝑟) = 𝑇
𝑡

𝑡
(𝑟) from (3).

This metric is asymptotically de Sitter as 𝑟 → 0, and
asymptotically Reissner-Nordström as 𝑟 → ∞ [32].

The regular spherical solutions generated by (4) belong to
the Kerr-Schild class [18, 37, 38] and can be transformed by
the Gürses-Gürsey algorithm [33] into regular axially sym-
metric solutions which describe regular rotating electrically
charged objects, asymptotically Kerr-Newman for a distant
observer [26, 34].
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In the Boyer-Lindquist coordinates the rotating metric
reads (in the units 𝐺 = 𝑐 = 1) [33]

𝑑𝑠
2
=

2𝑓 (𝑟) − Σ

Σ

𝑑𝑡
2
+

Σ

Δ

𝑑𝑟
2
+Σ𝑑𝜃

2

−

4𝑎𝑓 (𝑟) sin2𝜃
Σ

𝑑𝑡𝑑𝜙

+(𝑟
2
+ 𝑎

2
+

2𝑓 (𝑟) 𝑎
2sin2𝜃

Σ

) sin2𝜃𝑑𝜙2,

(8)

where Δ = 𝑟
2
+ 𝑎

2
− 2𝑓(𝑟). A function 𝑓(𝑟) = 𝑟M(𝑟)

comes from a spherically symmetric solution [33]. For the
Kerr-Newman geometry 2𝑓(𝑟) = 2𝑚𝑟 − 𝑒

2 is responsible for
causality violation related to regions where 𝑔

𝜙𝜙
< 0 in (1). For

NED-GR regular solutions satisfying the weak energy con-
dition,M(𝑟) is nonnegative function monotonically growing
from 4𝜋𝜌(0)𝑟3/3 as 𝑟 → 0 to 𝑚 − 𝑒

2
/2𝑟 as 𝑟 → ∞ [32].

This guarantees the causal safety on the whole manifold due
to 𝑓(𝑟) ≥ 0 and 𝑔

𝜙𝜙
> 0 in (8).

The coordinate 𝑟 is defined as an affine parameter along
either of two principal null congruences, and the surfaces of
constant 𝑟 are the oblate confocal ellipsoids of revolution

𝑟
4
− 𝑟

2
(𝑥

2
+𝑦

2
+ 𝑧

2
− 𝑎

2
) − 𝑎

2
𝑧
2
= 0, (9)

which degenerate, for 𝑟 = 0, to the equatorial disk

𝑥
2
+𝑦

2
≤ 𝑎

2
,

𝑧 = 0,
(10)

centered on the symmetry axis and bounded by the ring 𝑥2 +
𝑦
2
= 𝑎

2 (𝑟 = 0, 𝜃 = 𝜋/2) [39].

3. Geometry

TheCartesian coordinates𝑥,𝑦, and 𝑧 are related to the Boyer-
Lindquist coordinates 𝑟, 𝜃, and 𝜙 by

𝑥
2
+𝑦

2
= (𝑟

2
+ 𝑎

2
) sin2𝜃;

𝑧 = 𝑟 cos 𝜃.
(11)

The anisotropic stress-energy tensor responsible for (8) can
be written in the form [33]

𝑇
𝜇] = (𝜌 +𝑝

⊥
) (𝑢
𝜇
𝑢] − 𝑙𝜇𝑙]) + 𝑝⊥𝑔𝜇] (12)

in the orthonormal tetrad

𝑢
𝜇

=

1
√±ΔΣ

[(𝑟
2
+ 𝑎

2
) 𝛿
𝜇

0 + 𝑎𝛿
𝜇

3 ] ,

𝑙
𝜇

= √
±Δ

Σ

𝛿
𝜇

1 ,

𝑛
𝜇

=

1
√Σ

𝛿
𝜇

2 ,

𝑚
𝜇

=

−1
√Σ sin 𝜃

[𝑎sin2𝜃𝛿𝜇0 + 𝛿
𝜇

3 ] .

(13)

The sign plus refers to the regions outside the event horizon
and inside the Cauchy horizon where vector 𝑢𝜇 is time-like,
and the signminus refers to the regions between the horizons
where vector 𝑙𝜇 is time-like. Vectors𝑚𝜇 and 𝑛𝜇 are space-like
in all regions.

The eigenvalues of the stress-energy tensor (3) in the
corotating frame where each of ellipsoidal layers rotates with
the angular velocity 𝜔(𝑟) = 𝑢

𝜙
/𝑢
𝑡
= 𝑎/(𝑟

2
+ 𝑎

2
) [18] are

defined by

𝑇
𝜇]𝑢
𝜇

𝑢
]
= 𝜌 (𝑟, 𝜃) ;

𝑇
𝜇]𝑙
𝜇

𝑙
]
= 𝑝
𝑟
= −𝜌;

𝑇
𝜇]𝑛
𝜇

𝑛
]
= 𝑇
𝜇]𝑚
𝜇

𝑚
]
= 𝑝
⊥
(𝑟, 𝜃) ,

(14)

in the regions outside the event horizon and inside the
Cauchy horizon where density is defined as the eigenvalue of
the time-like eigenvector 𝑢𝜇.They are related to function𝑓(𝑟)
[18] as 𝜅Σ2

𝜌 = 2(𝑓󸀠𝑟 − 𝑓); 𝜅Σ2
𝑝
⊥
= 2(𝑓󸀠𝑟 − 𝑓) − 𝑓

󸀠󸀠
Σ [18].

This gives

𝜅𝜌 (𝑟, 𝜃) =

𝑟
4

Σ
2 𝜌 (𝑟) ;

𝜅 (𝑝
⊥
+𝜌) = 2( 𝑟

4

Σ
2 −

𝑟
2

Σ

)𝜌 (𝑟) −

𝑟
3

2Σ
𝜌
󸀠

(𝑟)

=

2𝑟2

Σ
2 (

Σ𝑟

4
󵄨
󵄨
󵄨
󵄨
󵄨
𝜌
󸀠󵄨󵄨
󵄨
󵄨
󵄨
− 𝜌𝑎

2cos2𝜃) ,

(15)

where 𝜌(𝑟) is a relevant spherically symmetric density profile.
The prime denotes the derivative with respect to 𝑟.

3.1. Horizons, Ergospheres, and Ergoregions. Horizons are
defined by zeros of function Δ(𝑟) given by

Δ (𝑟) = 𝑟
2
+ 𝑎

2
− 2𝑓 (𝑟) = 𝑎

2
+ 𝑟

2
𝑔 (𝑟) . (16)

Δ = 𝑎
2 at zero points of the metric function 𝑔(𝑟

ℎ
) = 0 and

changes from Δ = 𝑎
2 as 𝑟 = 0 to Δ → ∞ as 𝑟 → ∞.

Ergosphere is a surface of a static limit 𝑔
𝑡𝑡
= 0 given by

𝑔
𝑡𝑡
(𝑟, 𝜃) = 𝑟

2
+ 𝑎

2cos2𝜃 − 2𝑓 (𝑟) = 0. (17)

It follows that 𝑧2 = (2𝑟2𝑓(𝑟)−𝑟4)/𝑎2. Each point of the ergos-
phere belongs to some of confocal ellipsoids (9) covering the
whole space as the coordinate surfaces 𝑟 = const. At the 𝑧-axis
(16) and (17) are identical, so that theminor axis of ergosphere
is equal to 𝑟

+
.

For black holes ergoregions (the regions where 𝑔
𝑡𝑡

<

0) exist for any density profile. Black holes have at most
two horizons. Ergoregions exist between the event horizon
and ergosphere. Solitons are objects without horizons; they
can have two, one, or no ergospheres, this depends on the
particular form of a density profile 𝜌(𝑟) and on the values of
parameters [27].

3.2. De Sitter Vacuum Interiors. Rotation transforms the de
Sitter center to the de Sitter equatorial disk (10) which exists
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in each regular axially symmetric geometry. In the limit 𝑟 →

0, on disk (10), 𝑟2/Σ → 1 [26]. For the spherical solutions
regularity requires 𝜌(𝑟) < ∞, 𝑟𝜌󸀠(𝑟) → 0, and 2𝑓(𝑟) →

𝜅𝜌(0)𝑟4/3 as 𝑟 → 0 [32], so that disk 𝑟 = 0 is intrinsically flat
[26]. Equation (15) gives in this limit the equation of state on
the disk

𝑝
⊥
+𝜌 = 0 󳨀→ 𝑝

⊥
= 𝑝
𝑟
= −𝜌, (18)

which represents the rotating de Sitter vacuum [26].
Equation (15) implies a possibility of generic violation

of the weak energy condition (WEC) which was reported
for several particular models of regular rotating objects [18,
40–42]. WEC can be violated beyond the vacuum surface
E(𝑟, 𝑧) = 0 on which 𝑝

⊥
+ 𝜌 = 0 and the right-hand side

in (15) can change its sign [27]. It can be expressed through
the pressure of a related spherical solution, 𝑝

⊥
= −𝜌 − 𝑟𝜌

󸀠
/2

[32], which gives [27]

𝜅 (𝑝
⊥
+𝜌) =

𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
𝜌
󸀠
󵄨
󵄨
󵄨
󵄨
󵄨

2Σ2 E (𝑟, 𝑧) = 0;

E (𝑟, 𝑧) = (𝑟
4
− 𝑧

2
𝑃 (𝑟)) ; 𝑃 (𝑟) =

2𝑎2

𝑟
󵄨
󵄨
󵄨
󵄨
𝜌
󸀠
󵄨
󵄨
󵄨
󵄨

(𝜌 − 𝑝
⊥
) .

(19)

The existence of vacuum surfaces is directly stipulated by
fulfillment of the dominant energy condition (𝜌 ≥ 𝑝

𝑘
) for

related spherical solutions. Each vacuum E-surface contains
the de Sitter disk as a bridge and is entirely confined within
the 𝑟
∗
-ellipsoid whose minor axis coincides with |𝑧|max for

theE-surface [27].The squared width of theE-surface𝑊2
E =

(𝑥
2
+ 𝑦

2
)E = (𝑎

2
+ |𝑧|√𝑃(𝑟))(1 − |𝑧|/√𝑃(𝑟)). For regular

solutions 𝑟𝜌
󸀠

→ 0, 𝑝
⊥

→ −𝜌 as 𝑟 → 0 [32], and
𝑃(𝑟) → 𝐴

2
𝑟
−(𝑛+1) with the integer 𝑛 ≥ 0 as 𝑟 → 0. Function

𝑊E(𝑧) has the cusp at approaching the disk and at least two
symmetric maxima between 𝑧 = ±𝑟

∗
and 𝑧 = 0 [27].

In Figure 1 [27] E-surface is plotted for the electromag-
netic soliton with the regularized Coulomb profile [32]:

𝜌 =

𝑞
2

(𝑟
2
+ 𝑟

2
𝑞
)

2 ; 𝑟
𝑞
=

𝜋𝑞
2

8𝑚
. (20)

Its width in the equatorial plane𝑊E = 𝑎 and the height𝐻E =

|𝑧|max = √𝑎𝑟𝑞
. For the electron𝑊E = 𝜆

𝑒
/2, where 𝜆

𝑒
≃ 3.9 ×

10−11 cm,𝐻E ≃ 0.038𝜆
𝑒
and 𝜂 = 𝑊E/𝐻E = √𝑎/𝑟

𝑞
≃ 13.2.

4. Electromagnetic Fields

Nonzero field components compatible with the axial symme-
try are 𝐹01, 𝐹02, 𝐹13, and 𝐹23. In geometry with the metric (8)
they are related by

𝐹31 = 𝑎sin2𝜃𝐹10;

𝑎𝐹23 = (𝑟
2
+ 𝑎

2
) 𝐹02.

(21)

The field invariant 𝐹 = 𝐹
𝜇]𝐹
𝜇] in the axially symmetric case

reduces to

𝐹 = 2(
𝐹
2
20

𝑎
2sin2𝜃

−𝐹
2
10) . (22)

X

Y

Z

√rqa

√rqa + a2

p⊥ + 𝜌 > 0

p⊥ + 𝜌 = 0

Figure 1: Electromagnetic 𝑒-lump from nonlinear electrodynamics
coupled to gravity [27].

In terms of the 3 vectors, denoted by Latin indices
running from 1 to 3 and defined as

𝐸
𝑗
= {𝐹
𝑗0} ;

𝐷
𝑗

= {L
𝐹
𝐹
0𝑗
} ;

𝐵
𝑗

= {
∗

𝐹

𝑗0
} ;

𝐻
𝑗
= {L

𝐹

∗

𝐹0𝑗} ,

(23)

the field equations (6) take the formof theMaxwell equations.
The electric induction 𝐷 and the magnetic induction 𝐵 are
related with the electric and magnetic field intensities by [26]

𝐷
𝑗

= 𝜖
𝑗

𝑘
𝐸
𝑘

;

𝐵
𝑗

= 𝜇
𝑗

𝑘
𝐻
𝑘

,

(24)

where 𝜖𝑘
𝑗
and 𝜇

𝑘

𝑗
are the tensors of the electric and magnetic

permeability given by [26]

𝜖
𝑟

𝑟
=

(𝑟
2
+ 𝑎

2
)

Δ

L
𝐹
;

𝜖
𝜃

𝜃
= L
𝐹
;

𝜇
𝑟

𝑟
=

(𝑟
2
+ 𝑎

2
)

ΔL
𝐹

;

𝜇
𝜃

𝜃
=

1
L
𝐹

.

(25)

The dynamical equations (6) are satisfied by the functions
[26]

𝐹10 =
𝑞

Σ
2L
𝐹

(𝑟
2
− 𝑎

2cos2𝜃) ;

𝐹02 =
𝑞

Σ
2L
𝐹

𝑎
2
𝑟 sin 2𝜃;

𝐹31 = 𝑎sin2𝜃𝐹10;

𝑎𝐹23 = (𝑟
2
+ 𝑎

2
) 𝐹02

(26)
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in the weak field limit L
𝐹

= 1, where they coincide with
the Kerr-Newman fields [4, 16], and an integration constant
𝑞 is identified as the electric charge. For the electron 𝑞 = −𝑒,
𝑚𝑎 = ℏ/2 [4], 𝑎 = 𝜆

𝑒
/2, where 𝜆

𝑒
= ℏ/(𝑚

𝑒
𝑐) is the Compton

wavelength. In the observer region 𝑟 ≫ 𝜆
𝑒
,

𝐸
𝑟
= −

𝑒

𝑟
2 (1−

ℏ
2

𝑚
2
𝑒
𝑐
2
3cos2𝜃
4𝑟2

) ;

𝐸
𝜃
=

𝑒ℏ
2

𝑚
2
𝑒
𝑐
2
sin 2𝜃
4𝑟3

;

𝐵
𝑟

= −

𝑒ℏ

𝑚
𝑒
𝑐

cos 𝜃
𝑟
3 = 2𝜇

𝑒

cos 𝜃
𝑟
3 ;

𝐵
𝜃
= −𝜇
𝑒

sin 𝜃
𝑟
4 .

(27)

The Planck constant appears here due to ability, discovered by
Carter, of the Kerr-Newman solution to present the electron
as seen by a distant observer. In terms of the Coleman lump
(27) describes the following situation: the leading term in 𝐸

𝑟

gives the Coulomb law as the classical limit ℏ = 0; the higher
terms represent the quantum corrections.

With taking into account connection between the field
components (21), we have four dynamical equations (6)
for two field components, 𝐹01, 𝐹02, and the nonlinearity
function L

𝐹
. Condition of compatibility of system of four

equations for three function reduces to the constraint on the
nonlinearity which has the form [27]

𝜕

𝜕𝑟

(

1
𝐿
𝐹

𝜕𝐿
𝐹

𝜕𝜃

)

𝜕

𝜕𝜃

(

1
𝐿
𝐹

𝜕𝐿
𝐹

𝜕𝑟

)

+

4𝑎2sin2 (𝜃)
Σ
2

1
𝐿
2
𝐹

[𝑟

𝜕𝐿
𝐹

𝜕𝑟

+ cot (𝜃)
𝜕𝐿
𝐹

𝜕𝜃

]

2
= 0.

(28)

The functions (26) present asymptotic solutions to the
dynamical equations (6) in the limitL

𝐹
→ ∞ andL

𝐹
Σ
2
→

∞. In this limit they satisfy the system (6) and the condition
of their compatibility (28) [27].

5. Interior Dynamics and Elementary
Superconductivity

The relation connecting density and pressure with the elec-
tromagnetic fields reads [26]

𝜅 (𝑝
⊥
+𝜌) = 2L

𝐹
(𝐹

2
10 +

𝐹
2
20

𝑎
2sin2𝜃

) . (29)

In the limit L
𝐹

→ ∞, (6) have asymptotic solutions (26)
[26, 27]. It results in [26]

𝜅 (𝑝
⊥
+𝜌) =

2𝑞2

L
𝐹
Σ
2 . (30)

Equation of state on the disk (18) dictated by geometry for
regular spinning solutions requires 𝑝

⊥
+𝜌 = 0. It follows that

L
𝐹
Σ
2
→ ∞ and hence L

𝐹
→ ∞, since Σ → 0 on the

disk.
The magnetic induction 𝐵 vanishes in this limit, so that

𝐵 → 0 on the disk [26].The electric permeability in (25) goes
to infinity; the magnetic permeability 𝜇 = L

𝐹

−1 vanishes, so
that the de Sitter vacuumdisk has both perfect conductor and
ideal diamagnetic properties.

In electrodynamics of continued media the transition to
a superconducting state corresponds to the limits 𝐵 → 0
and 𝜇 → 0 in a surface current 𝑗

𝑠
= ((1 − 𝜇)/4𝜋𝜇)[𝑛𝐵]

where 𝑛 is the normal to the surface; the right-hand side
then becomes indeterminate, and there is no condition
which would restrict the possible values of the current [43].
Definition of a surface current for a charged surface layer is
4𝜋𝑗
𝑘
= [𝑒
𝛼

(𝑘)
𝐹
𝛼𝛽
𝑛
𝛽
] [5], where [⋅] denotes a jump across the

layer; 𝑒𝛼
(𝑘)

are the tangential base vectors associated with the
intrinsic coordinates on the disk 𝑡, 𝜙, 0 ≤ 𝜉 ≤ 𝜋/2; 𝑛

𝛼
=

(1 + 𝑞
2
/𝑎

2
)
−1/2 cos 𝜉𝛿1

𝛼
is the unit normal directed upwards

[5]. With using asymptotic solutions (26) and magnetic
permeability 𝜇 = 1/L

𝐹
, we obtain the surface current [44]

𝑗
𝜙
= −

𝑞

2𝜋𝑎
√1 +

𝑞
2

𝑎
2 sin

2
𝜉

𝜇

cos3𝜉
.

(31)

At approaching the ring 𝑟 = 0, 𝜉 = 𝜋/2, both terms in the
second fraction go to zero quite independently. As a result
the surface currents on the ring can be any and amount to a
nonzero total value [26, 44].

The superconducting current (31) replaces the Kerr ring
singularity of the Kerr-Newman geometry and can be con-
sidered as a source of the Kerr-Newman fields. This kind
of a source is nondissipative, so that electrovacuum solitons
present actually 𝑒-lumps in accordance with the Coleman
definition of the lump as a nonsingular, nondissipative
solution of finite energy holding itself together by its own self-
interaction [21]. Lifetime of 𝑒-lump is unlimited.

De Sitter disk exists in the interior of any regular charged
black hole and soliton. When a related spherical solution
satisfies the dominant energy condition, it exists as a bridge
inside the E-surface, defined by 𝑝

⊥
+ 𝜌 = 0. It follows that

L
𝐹

→ ∞ by virtue of (30). The magnetic permeability
vanishes and electric permeability goes to infinity, so thatE-
surface displays the properties of a perfect conductor and
ideal diamagnetic. Also magnetic induction vanishes on E-
surface by virtue of the asymptotic solutions (26), so that
the Meissner effect occurs there [26]. Within E-surface, in
cavities between its upper and down boundaries and the
bridge, negative value of (𝑝

⊥
+𝜌) in (29) wouldmean negative

values for electric and magnetic permeabilities inadmissi-
ble in electrodynamics of continued media [43]. The case,
favored by the underlying idea of nonlinearity replacing a
singularity and suggested by vanishing ofmagnetic induction
on the surrounding E-surface, is extension of L

𝐹
→ ∞

to its interiors. Then we have de Sitter vacuum core, 𝑝 =

−𝜌, with the properties of a perfect conductor and ideal
diamagnetic and magnetic fields vanishing throughout the
whole core, and the weak energy condition is satisfied for
regular rotating charged black holes and solitons.
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6. Summary and Discussion

Nonlinear electrodynamics minimally coupled to gravity
admits the regular axially symmetric solutions asymptotically
Kerr-Newman for a distant observer, which describe regular
charged rotating black holes and electromagnetic solitons.

The basic generic feature of all these objects is the interior
de Sitter vacuum disk with 𝑝 = −𝜌 in the corotating frame,
which has properties of a perfect conductor and ideal diamag-
netic. Superconducting current flows on the equatorial ring
replacing the Kerr singularity of the Kerr-Newman geometry.
This current serves as a nondissipative source of the Kerr-
Newman external fields and can be responsible for practically
unlimited lifetime of the electron.

In the case when related spherical solution satisfies the
dominant energy condition, de Sitter disk is incorporated
as a bridge in the vacuum E-surface with the equation of
state 𝑝 = −𝜌, properties of the perfect conductor and ideal
diamagnetic, and vanishing magnetic induction. This allows
extending these properties to the interior of the E-surface,
since otherwise the violation of the weak energy condition in
its interiorwould lead to the negative values of the electric and
magnetic permeabilities, inadmissible in electrodynamics of
continued media. As a result the weak energy condition is
satisfied for regular rotating objects of this type.

Mass parameter𝑚 in a NED-GR spinning solution is the
electromagnetic mass [26, 32], related to interior de Sitter
vacuum and breaking of space-time symmetry from the de
Sitter group for any solution specified by (4) [30]. This has
been tested by application of Casimir invariants of the de
Sitter group in the region surrounding the interaction vertex
for the sub-eV particles, which predicts TeV scale for gravito-
electroweak unification and explains the experimental results
known as a negative mass-squared difference for neutrino
[45].

This conforms with the Higgs mechanism for generation
of mass via spontaneous breaking of symmetry of a scalar
field vacuum. The Higgs field is involved in mass generation
in its false vacuum state satisfying 𝑝 = −𝜌. Then the
space-time symmetry around the interaction vertex is the
de Sitter group, while in the observer region it is Poincaré
group (strictly speaking another de Sitter with much less
value of the cosmic vacuumdensity), which requires breaking
of symmetry in between to the Lorentz radial boosts only
[30]. Generation of mass by the Higgs mechanism must thus
involve breaking of space-time symmetry [44].

Interior de Sitter vacuum can explain the appearance of
the minimal length in the reaction 𝑒

+
𝑒
−

→ 𝛾𝛾(𝛾). The
definite feature of annihilation process is that at its certain
stage a region of interaction is neutral and spinless. We can
roughly model it by a spherical bag with de Sitter vacuum
interior asymptotically Schwarzschild as 𝑟 → ∞. For such
a structure there exists a zero gravity surface at which the
strong energy condition (𝜌 + ∑

𝑘
≥ 0) is violated and beyond

which gravity becomes repulsive [29, 46]. The related length
scale 𝑟

𝑠
≃ (𝑟

2
0𝑟𝑔)

1/3 appears in any geometry with de Sitter
interior and Schwarzschild exterior [28, 47]. Adopting for de
Sitter interior the vacuum expectation value V = 246GeV
responsible for the electron mass [48], we get de Sitter radius

𝑟0 = 1.37 cm. Radius 𝑟
𝑠
at the energy scale 𝐸 ≃ 1.253 TeV is

𝑟
𝑠
≃ 0.86× 10−16 cm, so that the scale 𝑙

𝑒
= 1.57× 10−17 cm fits

inside a region where gravity is repulsive. Regular NED-GR
solutions provide a de Sitter cutoff on electromagnetic self-
energy, which can be qualitatively estimated by 𝑒2/𝑟4

𝑐
≃ 𝜅𝜌0 =

3/𝑟20 . It gives the length scale 𝑟
𝑐
at which electromagnetic

attraction is balanced by de Sitter gravitational repulsion 𝑟
𝑐
≃

1.05 × 10−17 cm, sufficiently close to the experimental value
𝑙
𝑒
for such a rough estimate [1]. The minimal length scale 𝑙

𝑒

can be thus understood as a distance of the closest approach
of annihilating particles at which electromagnetic attraction
is stopped by the gravitational repulsion due to interior de
Sitter vacuum.
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