
Research Article
Stochastic Search Algorithms for Identification,
Optimization, and Training of Artificial Neural Networks

Kostantin P. Nikolic

Faculty of Management, 21000 Novi Sad, Serbia

Correspondence should be addressed to Kostantin P. Nikolic; kpnikolic@gmail.com

Received 6 July 2014; Revised 19 November 2014; Accepted 19 November 2014

Academic Editor: Ozgur Kisi

Copyright © 2015 Kostantin P. Nikolic.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents certain stochastic search algorithms (SSA) suitable for effective identification, optimization, and training of
artificial neural networks (ANN). The modified algorithm of nonlinear stochastic search (MN-SDS) has been introduced by the
author. Its basic objectives are to improve convergence property of the source defined nonlinear stochastic search (N-SDS) method
as per Professor Rastrigin. Having in mind vast range of possible algorithms and procedures a so-called method of stochastic direct
search (SDS) has been practiced (in the literature is called stochastic local search-SLS).TheMN-SDS convergence property is rather
advancing over N-SDS; namely it has even better convergence over range of gradient procedures of optimization. The SDS, that is,
SLS, has not been practiced enough in the process of identification, optimization, and training of ANN. Their efficiency in some
cases of pure nonlinear systems makes them suitable for optimization and training of ANN.The presented examples illustrate only
partially operatively end efficiency of SDS, that is, MN-SDS. For comparative method backpropagation error (BPE) method was
used.

1. Introduction

The main target of this paper is a presentation of a specific
option of direct SS and its application in identification and
optimisation of linear and nonlinear objects or processes.
Themethod of stochastic search was introduced by Ashby [1]
related to gomeostat. Till 60th of last century the said gomeo-
stat of Ashby’s was adopted mostly as philosophic concept in
cybernetics trying to explain the question of stability of rather
complex systems having impacts of stochastic nature [2].

The stochastic direct search (SDS) had not been noticed
as advanced concurrent option for quite a long time. The
researches and developments works of Professor Rastrigin
and his associates promoted the SS to be competing method
for solving various problems of identification and optimiza-
tion of complex systems [3].

It has been shown that SDS algorithms besides being
competing are even advancing over well-known methods.
Parameter for comparing is a property of convergence dur-
ing solving the set task. For comparing purposes gradient
methods were used in reference [4].The SDSmethod showed
remarkable advance. For systems with noise certain numer-
ical options offer the method of stochastic approximation

(MSA) [5]. In some cases procedures of SDS aremore efficient
than MSA [6].

During the last 20 years, vast interests have been shown
for advanced SDS, especially on the casewhere classical deter-
ministic techniques do not apply. Direct SS algorithms are
one part of the SSA family.The important subjects of random
search were being made: theorems of global optimization,
convergence theorems, and applications on complex control
systems [7–9].

The author has been using SDS algorithms (in several
of his published papers) regarding identification of complex
control systems [10], as well as synthesis and training of
artificial neural networks [11–13].

Through experience in application of certain SDS basic
definition the authorwasmotivated to introduce the so-called
modified nonlinear SDS (MN-SDS) applicable as numerical
method for identification and optimization of substantial
nonlinear systems. The main reason is rather slow conver-
gence of N-SDS of basic definition and this deficiency has
been overcome.

The application of SDS is efficient for both determined
and stochastic description of systems.

Hindawi Publishing Corporation
Advances in Artificial Neural Systems
Volume 2015, Article ID 931379, 16 pages
http://dx.doi.org/10.1155/2015/931379

2 Advances in Artificial Neural Systems

The SDS algorithm is characterized by introduction
of random variables. An applicable option is generator of
random numbers [14, 15].

The previously said is enhanced by well-developed mod-
ern computer hardware and software providing suitable
ambient conditions for creation and implementation of SDS
methods and procedures.

2. Method and Materials

2.1. Definition of SDS Method. The solving of theoretical
and/or practical problems usually requests firstly an identifi-
cation task followed by final stage, that is, a system optimiza-
tion. The analysis and synthesis of systems always consider
the previously said [16, 17].

Methods of SDS are ones of competing options for
numerical procedures providing solution for identification
and optimization of complex control systems [18], but so
ANN. Let us start with an internal system description in
general form [19]:

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥, 𝑢, 𝑠, 𝑎, 𝑡) ; 𝑡

0
≥ 0, 𝑥 (𝑡

0
) = 𝑥
0
, (1)

𝑦 = 𝑔 (𝑥, 𝑛, 𝑏, 𝑡) , (2)

ℎ
1
(𝑥, 𝑛, 𝑐) = 0, (3)

ℎ
2
(𝑥, 𝑛, 𝑑) ≥ 0, (4)

where 𝑓(⋅) and 𝑔(⋅) are nonlinear vector functions; ℎ
1
(⋅) and

ℎ
2
(⋅) are vector functions of constrains (variables and param-

eters); 𝑥 is system state vector, 𝑢 is control vector, and 𝑠 is
vector of disturbance; 𝑎, 𝑏, 𝑐, 𝑑 are parameters describing the
system structure such as constants, matrices, and vectors; 𝑡 is
real time; 𝑛 is noise usually added in (2).

A parameters identification of the above system antici-
pates certainmeasurements of the system variables observing
the criteria function:

𝑄 = 𝑄 (𝑥, 𝑢, 𝑦) . (5)

The criteria function 𝑄 in (5) is without involvement
of constrains ℎ

1
(⋅) and ℎ

2
(⋅); in case that constrains are not

possible to avoid, 𝑄
ℎ
is introduced [20]:

𝑄
ℎ
= 𝑄 +

𝑖=𝑚

∑

𝑖=1

𝜆
𝑖
ℎ
1,𝑖 (⋅) +

𝑗=𝑙

∑

𝑗=1

𝜆
𝑗
ℎ
2,𝑗 (⋅)

𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, 3, . . . , 𝑙,

(6)

where 𝜆
𝑖
and 𝜆

𝑗
are Langrage multiplicators and 𝜆

𝑖
> 0, a

𝜆
𝑗
{0 for ℎ

2,𝑗
≥ 0; Λ

𝑗
for ℎ
2,𝑗
< 0, Λ

𝑗
> 0} [20].

When 𝜆
𝑖
and 𝜆

𝑗
are rather large and tend to∞, then both

𝑄
ℎ
and 𝑄 tend to the same value for variables 𝑥, 𝑢, 𝑠, that is,

corresponding optimal parameters.
Further for the purpose of simplicity of this presentation

a function 𝑄 from (5) is to be used and to be the function of
one vector variable 𝑥, so 𝑄 = 𝑄(𝑥).

Methods of optimization start with iterative form where
from current state x

𝑖
system transfers into x

𝑖+1
by the follow-

ing rule:

x
𝑖+1

= x
𝑖
+ 𝛼𝐹 (𝑄) . (7)

So, 𝛼𝐹(𝑄) is a function stepping into new state where 𝛼 >
0 is a step and 𝐹(𝑄) is vector function of guiding search. For
iterative optimization by using gradient method [21]:

𝐹 (𝑄) = − grad𝑄, grad𝑄 = ∇𝑄,

x
𝑖+1
=x
𝑖
− 𝛼 grad𝑄, 0 < 𝛼 < 1.

(8)

In case of SDS the relation (7) gets the next form:

x
𝑖+1

= x
𝑖
+ 𝛼𝐹 (𝜉, 𝑄) , (9)

where the direction of search is function of 𝑄 and random
vector 𝜉 (Figure 1).

If it is introduced terms

Δx
𝑖+1

= x
𝑖+1
− x
𝑖
,

Δ𝑄
𝑖
= 𝑄
𝑖
− 𝑄
𝑖−1

(10)

the general expression (9) gives some of basic algorithm of
SDS.

2.1.1. Nonlinear SDS. Consider

Δx
𝑖+1

≜
{

{

{

−Δx
𝑖
, Δ𝑄

𝑖
≥ 0; Δ𝑄

𝑖
= 𝑄
𝑖
− 𝑄
𝑖−1

𝛼𝜁
𝑖
, Δ𝑄

𝑖
< 0; 𝛼 > 0, 𝜁

𝑖
= ort 𝜉

𝑖
.

(11)

2.1.2. Linear SDS. Consider

Δx
𝑖+1

≜
{

{

{

Δx
𝑖
, Δ𝑄

𝑖
< 0

𝛼𝜁
𝑖
, Δ𝑄

𝑖
≥ 0; 𝛼 > 0, 𝜁

𝑖
= ort 𝜉

𝑖
.

(12)

Some of the more complex forms of SDS are as follows.

2.1.3. SDS Stochastic Gradient. Consider

x
𝑖+1

≜ x
𝑖
− 𝛼𝜁
𝑖
, 𝛼 ≥ 0,

𝜁
𝑖
≜ dir

𝑃

∑

𝑃=1

𝜉
𝑖
sign (Δ𝑄

𝑃
) ;

𝜁𝑖
 = 1,

Δ𝑄
𝑃
≜ 𝑄
𝑃
(x
𝑖
+ 𝜎𝜁
𝑃
) − 𝑄
𝑃
(x
𝑖
− 𝜎𝜁
𝑃
)

𝑝 = 1, 2, 3, . . . , 𝑃,

(13)

where 𝑝 is number of tests before effective step forward.

2.1.4. SDS Fastest Descent. Iterative procedure for a SDS
fastest descent is

Δx
𝑖+1

≜

{{{{

{{{{

{

Δx
𝑖
, 𝑄

𝑖−1
< 0,

−Δx
𝑖−1
+ 𝛼𝜁
𝑖−1
; Δ𝑄 ≥ 0

−𝛼𝜁
𝑖
+ 𝛼𝜁
𝑖+1
; Δx

𝑖
̸= Δx
𝑖−1
, Δ𝑄 ≥ 0.

(14)

Advances in Artificial Neural Systems 3

𝜁3𝜉3

1

P3

−1

−1

−1

1

1

𝜁2𝜉2

→
𝜁

→
𝜉

P2

P1

(E)

P: axis-parameters

(Ω)

Ω: parameters space

(0, 0, 0)

𝜁1 𝜉1

P∈Ω∈R3

R3: space of real numbers
E: Euklids space, n = 3

→
𝜉= [𝜉1, 𝜉2, 𝜉3]

T

→
𝜁= [𝜁1, 𝜁2, 𝜁3]

T

Ort
→
𝜉=

→
𝜁

= 1
→
𝜁| |

(R3)

(a)

𝜁3𝜉3 P3

(0, 0, 0)

(0, 0, 1) (0, 1, 1)

𝜉 = (1, 1, 1)

(1, 0, 0)

(0, 1, 0)

(1, 1, 0)P1

P2

𝜁2𝜉2

(E)𝜁1 𝜉1

P∈Ω∈R3

(Ω)

(R3)

(b)

𝜁3𝜉3 P3

(−1, −1, 1)

(1, −1, 1)

(−1, 1, 1)

(1, 1, 1)

(0, 0, 0)

(1, −1, −1) (1, 1, −1)

(−1, 1, −1)

𝜁2𝜉2

𝜁1𝜉1

P1

P2

(−1, −1, −1)

(E)
P∈Ω∈R3

(Ω)

(R3)

(c)

Figure 1: A random variable 𝜉; (a) on sphere radius |𝑟| = 1, (b) on cube edge |𝑎| = 1, and (c) on cube edge |𝑎| = 2; dimension 𝑛 = 3.

The graphic presentation of SDS behavior in the space of
gradient 𝑄 is given in Figure 2.

Gradient is starting from point 𝑃
1
, linear SDS starts from

point 𝑃
2
, nonlinear SDS starts from point 𝑃

3
, and SDS-

statistic gradient starts from point 𝑃
5
(vector pairs marked

dash opposes failure tests). The gradient-fastest descend is
presented from starting point 𝑃

1
. SDS fastest descend is not

presented in Figure 2 (it is similar to linear SDS from 𝑃
2
).

The random vector 𝜉
𝑛
is created on 𝑛-dimensional sphere

𝑟
𝑛
; |𝑟
𝑛
| = 1, or on 𝑛-dimensional cube; 𝑛 is system dimension

in Euclide space 𝐸. A presentation is shown in Figures 1(a),
1(b), and 1(c) for 𝑛 = 3.

The SSA properties used for ranking with other compet-
itive methods (gradient, fastest descend, Gaus-Zeidel, and
scanning and others) are

(i) local: describing algorithm in 𝑖-step,
(ii) nonlocal: describing algorithm from start to the final

stage of optimization.

Themain property is dissipation, that is, losses in one step
of search and displacement on hipper-surface of the function
𝑄. The said properties describe the algorithm convergence,
that is, the method itself.

4 Advances in Artificial Neural Systems

(1)

(2) (3)

𝛾

,R

→
𝜉i

→
𝜉i

P4

P5

G
ra

d
Q

Grad Q

Grad
Q

G
ra

d
Q

Gra
d Q

P3
P2

X2

X1

P1

(0, 0)

Gradient fa
stest d

esce
nt

−G
radQ

𝜉
(i,J)
R

→

→
−𝜉
(i,J)
R

Figure 2: SDS algorithms in gradient field.

The convergence𝐾
𝑛
is defined by expression:

𝐾
𝑛
=

𝑀(𝑁
𝑖
)

𝑀 (Δ𝑄

𝑖
)

, (15)

that is, ratio of math expectation of test number 𝑁
𝑖
in 𝑖-

iteration over relative change of Δ𝑄
𝑖
(criteria function 𝑄)

[22].
Reciprocal value of relation (15) gives an average value 𝑞

of 𝑄 in 𝑖-step of searching.
The local SDS property includes probability of failing step

of searching:

𝑝 = 𝑃 {𝑄 (𝑥) < 𝑄 (𝑥 + Δ𝑥)} , (16)

where 𝑥 is vector of initial state and Δ𝑥 is working step of
state change in 𝑥+Δ𝑥. The probability of failing step is rather
important regarding choosing of algorithm for real process
optimisation.

So, the choice of optimal algorithm from local property
point of view guides to compromise of choice of three:

(𝐾, 𝑞, 𝑝) . (17)

Besides local properties the relevant ones are properties
describing the search in whole [23] which are

(i) total number of steps, that is, number of effective steps
𝑁,

(ii) accuracy, that is, allowed error the procedure is
ending 𝜀 or relative error 𝛿 in %.

The SDS option choice is guided by the above indicated
local characteristics properties (𝐾, 𝑞, 𝑝) as well as nonlocal
ones (𝑁, 𝜀).

It is necessary also to observe that the dispersion 𝐷(Δ𝑄)
ofΔ𝑄 could be useful in some statistical estimation of search-
ing procedure properties. Also, it is necessary to notice that
dispersion depends on how the vector 𝜉 is generated (hipper
sphere or cube) [23].

Finally, it is worthwhile to mention that the choice of
algorithm is subject to request to have procedures (identifica-
tion and optimization) effective, having in minds that system
model or criteria function is nonlinear. Substantially non-
linear process models so, described by (1) not having linear
approximation which simulates original behavior (1) within
narrow range of variables and parameters change against
defined error limits. SDS methods are effective in this case
so [22, 23].

2.2.ModifiedNonlinear SDS:TheDefinition. Goodproperties
of SDS as per (11) are simplicity, reliability, and applicability
over nonlinear systems but slow convergence during the opti-
mization procedure shows weak point. A rough explanation
of nonlinear SDS of basic definition within gradient field 𝑄
is shown in Figure 2, with starting point 𝑃3. Comparing with
regular gradient method this SDS becomes competitive when
the system dimension is over 𝑛 > 12 [24].

By increasing the system dimension the probability for
acceptable tests decrease indicating that the target is reached
after rather numerous tests and effective steps𝑁.The stochas-
tic gradient is SDS having competitive performance during
optimisation of nonlinear systems; however, the algorithm
itself accumulates information and becomes fed up in numer-
ical proceeding.

The idea to have failed tests converted onto useful accu-
mulated information guides toward the so-called modified
nonlinear SDS. The previously said is shown in Figure 2.
For the 3 failed tests from starting point 𝑃

4
it effects vector

𝜉
𝑖,𝑅

to turn over toward the target under angle 𝛾. So, if the
accumulation of failed tests is 𝐽, between 𝑖 and 𝑖+1 successful
steps on hyper area of 𝑄 then:

𝐽

∑

𝑗=1

𝜉
(𝑖)

𝑗
= 𝜉
(𝑖,𝐽)

𝑅
; ort 𝜉(𝑖,𝐽)

𝑅
= 𝜁
(𝑖,𝐽)

𝑅
. (18)

Now it is possible to form the next form of SSA search:

Δx
𝑖+1

=
{

{

{

𝛼𝜁
𝑖
, Δ𝑄

𝑖
< 0,

−𝛼𝜁
(𝑖,𝐽)

𝑅
+ 𝛼𝜁
𝑖+1
, Δ𝑄

𝑖+1
< 0,

(19)

where 𝜁
𝑖+1

= ort 𝜉
𝑖+1

is successful test after 𝐽 failed, +𝛼𝜁(𝑖,𝐽)
𝑅

,
Δ𝑄
𝑗
= 𝑄
𝑗
− 𝑄
𝑗−1

≥ 0; 𝑗 = 1, 2, 3, . . . , 𝐽, generate of
accumulation information in MN-SDS algorithm and possi-
bly being used so:

−𝛼𝜉
(𝑖,max)
𝑗

+ 𝛼𝜉
𝑖+1
, (20)

where 𝜁(𝑗,max)
𝑖

corresponds to max |𝑄(𝑗)
𝑖
|.

A modification defined by (18) and (19) is naturally
linked on basically defined nonlinear SDS and further on will
be referred to as MN-SDS. At certain extent MN-SSA pos-
sesses property of nonlinear algorithm, linear SDS with
accumulation and extrapolation and stochastic gradient.

Having inmind thatMN-SDS explore accumulated infor-
mation some sort of self-learning features are obtained
(specifically when all data are memorized) leading to the

Advances in Artificial Neural Systems 5

conclusion that stochastic probability of testing depends on
accumulated information:

𝑃

= 𝑝

(
x
w
) , (21)

where, memory vector, could be defined as

w = ∫𝑝

(
x
w
)𝑑𝑥. (22)

This brings that searching is guided within the vicinity
of the best probe or test [23]; a memory vector indicates
adaptation features and can be calculated for 𝑙 step like

w(𝑙)
𝑖
= 𝑘w(𝑙−1)
𝑖−1

+ 𝜒𝜁
𝑖
Δ𝑄
(𝑙−1)

𝑖
, (23)

where

Δ𝑄
(𝑙−1)

𝑖
= 𝑄
(𝑙−1)

𝑖+1
− 𝑄
(𝑙−1)

𝑖
, (24)

where 𝑘 is coefficient of erasing and𝜒 is coefficient of learning
intensity or self-learning.

Now the vector guidance toward the target is

𝜁
(sl)
𝑙
= ort (w + 𝜉) = w + 𝜉

|w + 𝜉|
, (25)

where 𝜁(sl)
𝑖

is corrected direction by self-learning (sl) on 𝑙-step;
𝑙 = 1, 2, 3, . . . , 𝐿, 𝐿 ≤ 𝐽, “steps of accumulation” (𝐽 failed test
after 𝑖 step).

In practice the optimisation starts without self-learning
option. In that senseMN-SDS regardless of the range of accu-
mulated information of failed tests not memorized enables
sampling of those most useful ones.

3. Theoretical Importance for Application of
MN-SDS on ANN

3.1. Basic Theoretical Notes of MN-SDS. The main result
achieved by MN-SDS is improved convergence compared to
that of nonlinear SSA of basic definition (Section 2.1, relation
(11)).

For the SSA purposes uniform distribution of random
numbers 𝜉

𝑖
within chosen interval [𝑎, 𝑏] of real axes is used.

Most often it is interval [−1, +1], Figure 1. More complex
distribution produces difficulties in numerical calculation
[25].

By increasing of systemdimension the probability𝑃(𝜉
𝑖
) of

each testing is decreased; 𝜉
𝑖
∈ 𝜉, 𝜉 = [𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑖
, . . . , 𝜉

𝑛
]
𝑇.

The consequence of the previously said is less and less
successful testings producing more steps toward the target.

The idea to use failed SDS tests for increase of efficiency
of nonlinear SDS initiated creation of the so-called modified
nonlinear SDS (MN-SDS). In fact failed tests give accu-
mulated information for increasing of N-SDS convergence.
Rearranged iterative procedure for minimization of criteria
function𝑄mentioned in Section 2.2 brought rather effective
procedure, that is, MN-SDS.

TheMN-SDS procedure provides acceptable choice refer-
ring to the set of three characteristics (𝐾, 𝑞, 𝑝), number of
steps𝑁, and set-up error 𝜀 during aiming the target.

Kn
(2n)

K
(grad)
2n

K
(grad)
n

N

MN-SDS

(N
-SDS)

(n + 1)

A

B

C

D

E

Straight line AE→ K
(grad)
2n

Straight line AD→ K
(grad)
n

Area between are BC and line BD → KMN-SDS
n

20

18

16

14

12

10

8

6

4

2

0
1 2 3 4 5 6 7 8 9 10 11 12 n

Figure 3: Comparability of convergence MN SDS and N-SDS with
gradient.

The convergence𝐾
𝑛
for N-SDS algorithmwith prediction

[23, 26] for system dimension 𝑛 is given by the following
relations:

𝐾
𝑛
=
√𝜋 (𝑛 − 1) Γ ((𝑛 − 1) /2)

Γ (𝑛/2)
. (26)

This is shown like curve ABC in Figure 3.The curve𝐴𝐵𝐶
is the boundary case for search with MN-SDS algorithm
when after 𝑖-step exist only one failed test [24]. In the same
Figure 3 it is given𝐾

𝑛
for gradient method with single testing

(AD) and in case pair (2𝑛) testing (AE). Sum feathers in
Figure 3 has been taken over reference [24].

Nonlinear SSA (N-SDS) of basic definition (the curve
𝐴𝑁𝐷 in Figure 3) has better local convergence than gradient
method when system dimension is 𝑛 > 12. MN-SDS
confirms that SS algorithms overcome gradient method in
efficiency whenever system dimension rapidly increases; 𝑛 >
3. SDS numerical procedures are simple, specifically when
𝑃(𝜉) is uniform distribution by system dimension increase.
In case very large number of dimensions the concerns in
term of efficiency between SDS methods and the gradient
method changed in the favor of the gradient [24]. MN-SDS
its advantages over gradient procedures retains much longer
than most SDS algorithms.

It is worthwhile to recognise when to use SDS or some
other optimisationmethod. In that sense in Figure 4 is shown
that gradient procedure is more effective within the vicinity
of the optimum (Figure 4 has been taken over on [26]).
The MN-SDS in certain situation incorporate features of
nonlinear SSA and stochastic gradient (SG-SDS). The
stochastic gradient is based on accumulation of numerous
information and as such it targets optimum with the same
efficiency as regular gradient method. Regular-determined

6 Advances in Artificial Neural Systems

0.0

2

4

6

8

10

12

14

16

3 2010 30

(1)

(2)

(3)

(1) Area of gradient advance

(2) Area of SSA advance

(3) Area of application of both methods

𝜌

n

𝜌 = distance from target

𝛼-searching step

𝜌 = r/𝛼; r = |x − xopt|

Figure 4: The applicability areas of gradient and SDS methods.

gradient method could be considered as specific case of
stochastic gradient [26].

It is necessary to mention that random numbers gen-
erator should pass more strict tests whenever the system
dimension is large [25]. Figure 5 shows diagram of MN-
SDS numerical procedure. The random vector generator 𝜉 is
shown as outside device just to point necessity of such
generator. The said generator is SW-software solution within
the computer system in form an application package [15].

3.2. SDS Implementation for ANN Training. Hereinafter an
implementation of MN-SDS over multilayer ANN with
feedforward information flow through network will be con-
sidered (FANN).

The FANN properties (well adopted by researchers and
designers) enable wide range of ANN to be transformed into
FANN.

The SDS, that is, MN-SDS, can be applied on both FANN
model forms, oriented graph and matrix form.

For MN-SDS the first mentioned form is more practical
having in mind available heuristic options offering a more
efficient MN-SDS.

In this part of the paper and onward a multilayer FANN
will be observed as shown in Figure 6.

After adjustment of symbols (in expression (19)) for an
ANN, the following form is obtained for MN-SDS:

Δ𝜔
𝑖+1

=

{{{{

{{{{

{

𝛼𝜁
𝑖
, Δ𝑄

𝑖
= 𝑄
𝑖
− 𝑄
𝑖−1

< 0,

𝛼𝜁
(𝑖)

𝑗
, Δ𝑄

𝑗
= 𝑄
𝑗
− 𝑄
𝑗−1

≥ 0,

−𝛼𝜁
(𝑖,𝐽)

𝑅
+ 𝛼𝜁
𝑖+1
, Δ𝑄

𝑖+1
= 𝑄
𝑖+1
− 𝑄
𝑖
< 0,

(27)

Start

Sort SSA
DEF-Q

𝜁0, x0, Q0

𝜉 Generator
𝜉

𝜉(i,J)R

i
→
i
+
1

i
→
i
+
1

Δxi, 𝜁i,R, ΔQi

MEM-1
xi, Qi
𝜁i
Δxi
ΔQi

∙ Creating 𝜁i

∙ Computation

ΔQi ≶ 0

Qi ≶ 𝜀ΔQi < 0

Qi > 𝜀

ΔQi ≥ 0

Qi ≤ 𝜀, i ≥ N

{ΔQ(j)i }
{𝜉(i)j }
{𝜉(i,j)R }
MEM-2

Print
QN ≤ 𝜀

{Qi},

{xi},

{𝜁i}

Stop

{Qi}, i = 1, 2, − 1),

{xi}, i = 1, 2,

{𝜁i}, i = 1, 2,

. . . , (N

. . . , N,

. . . , N.

𝜉 → 𝜁0, 𝜁n

Figure 5: Diagram of procedure for computer processing of MN-
SSA.

where Δ𝜔
𝑖+1

areincrement vector 𝜔
𝑖
in optimization process

iterationand 𝜁
𝑖
are random vectors of uniform distribution.

The cost function will stay 𝑄 observing that now 𝑄 =

𝑄(𝑡, 𝑦
(𝐿)
).

The vector of parameter 𝜔 is changed in pace with
iterative optimization procedure as follows:

𝜔
𝑖+1

= 𝜔
𝑖
+ Δ𝜔
𝑖
. (28)

The vector 𝜔 dimension is determined by the ANN level
complexity and also complexity of an optimization proce-
dure, that is, training:

dim𝜔 = dim 𝜉 = 𝑁
𝜔
; ort 𝜉 = 𝜁, 𝜁

 = 1, (29)

where 𝜉 vector has coordinates as random vector 𝑖

𝜉 = (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑁𝜔
)
𝑇
, (30)

where 𝑁
𝜔
is set of all parameters in parametric space, while

𝑇means transposition into columnmatrix. Gradient method
and so the backpropagation error (BEP) method use this
iterative relation:

𝜔
𝑖+1

= 𝜔
𝑖
− 𝛼 ⋅ ∇𝑄 (𝜔

𝑖
) . (31)

Advances in Artificial Neural Systems 7

Layer 0 Layer 1 Layer 2 Layer 1 Layer (L − 1) Layer L
u1k

u2k

u3k

unk

𝜔(0) 𝜔(1) 𝜔(1) 𝜔NL

𝜐1k
(y1k)
𝜐2k
(y2k)
𝜐3k
(y3k)

𝜐mk
(ymk)

(1)

𝜐(1)
i,j,k

𝜔(1)
i,j,k

∙

∙

∙

∙

...
...

...
...

...
...

(a)

u0, 𝜔0

u1

u2

un

𝜔1

𝜔2

𝜔n

Σ g 𝜐 𝜐

u0

u1

u2

un

𝜔0
𝜔1

𝜔2

𝜔n

... ...

≡

(b)

Figure 6: The FANN a general type (a) and used model of neuron (perceptron) (b) where 𝑢
0
= 1.

Stochastic methods (also including MN-SDS) instead of
∇𝑄(𝜔

𝑖
) use random vector 𝜉 which is heuristically chosen

enabling iterative parametric optimization with certain effi-
ciency measured by convergence range. Previously the rank
of MN-SDS compared to SSA of SDS type as well as other
gradient procedures has been set up.

An application of MN-SDS on the FANN (Figure 6) is
used known linear interaction function net(ℓ)

𝑗
and corre-

sponding output 𝑦(ℓ)
𝑗
:

net(ℓ)
𝑗
= ∑

𝑖

𝜔
(𝑙)

𝑖𝑗
𝑦
(ℓ−1)

𝑗
,

𝑦
(ℓ)

𝑗
= 𝑔
𝑗
(∑

𝑖

𝜔
(𝑙)

𝑖𝑗
𝑦
(ℓ−1)

𝑗
) ,

(32)

where is:

(i) 𝜔(𝑙)
𝑖𝑗
—components of weights of vector 𝜔,

(ii) 𝑖 = 1, 2, 3, . . . , 𝑁(𝑙−1)] —neurons in layer (𝑙 − 1),

(iii) 𝑗 = 1, 2, 3, . . . , 𝑁(𝑙)] —neurons in layer 𝑙,
(iv) ℓ = 0, 1, 2, . . . , 𝐿—all layers in network,
(v) 𝑁(𝑙−1)] and 𝑁

(𝑙)

] —number of neurons for adjacent
layers.

Application MN-SDS algorithm of the training FAAN
involve the introduction of random vector 𝜉 of the same size
as vector 𝜔:

dim𝜔 = dim 𝜉 = ∑

𝑙

∑

]
𝑁
(𝑙−1)

] 𝑁
(𝑙)

] +∑

𝑙

𝑁
(𝑙)

] . (33)

The correspondents between components 𝜔(𝑙)
𝑖𝑗

and 𝜉(𝑙)
𝑖𝑗

must
be make before of feedward numerical procedure:

𝜔
(𝑙)

𝑖𝑗
→ 𝜉
(𝑙)

𝑖𝑗
; Δ𝜔

(𝑙)

𝑖𝑗
→ 𝛼ort 𝜉(𝑙)

𝑖𝑗
. (34)

For the each training pair 𝑝
𝑘
= (𝑢
𝑘
, 𝑡
𝑘
) is made training; that

is, minimization of criteria function𝑄
𝑘
. In the set of training

there is 𝐾 pairs; 𝑝
𝑘
∈ 𝑃, 𝑘 = 1, 2, 3, . . . , 𝐾. If the training of

network performed for entire set 𝑃, then it is achieved an
epoch of training.

If in the FANN there are more outputs than only one,
previously it must be from an error for one output:

𝜀
(𝐿)

𝑠𝑘
= 𝑡
𝑠𝑘
− 𝑦
(𝐿)

𝑠𝑘
. (35)

After this it can to form criteria function 𝑄
𝑘
:

𝑄
𝑘
=
1

2
∑

𝑠

(𝜀
(𝐿)

𝑠𝑘
)
2

=
1

2
∑(𝑡
𝑠𝑘
− 𝑦
(𝐿)

𝑠𝑘
)
2

, (36)

where it is: 𝑠 = 1, 2, 3, . . . , 𝑚 and 𝑘 = 1, 2, 3, . . . , 𝐾.
The increment of Δ𝜔(𝑙)

𝑖𝑗
, by weights of the layer 𝑙, for one

step iteration can be presented as follows:

Δ𝜔
(𝑙)

𝑖𝑗
= 𝛼 ⋅ ort 𝜉(𝑙)

𝑖𝑗
; in MN-SDS method, (37a)

Δ𝜔
(𝑙)

𝑖𝑗
= −𝛼

𝜕𝑄
𝑘

𝜕𝜔
(𝑙)

𝑖𝑗

= −𝛼
𝜕𝑄
𝑘

𝜕net(ℓ)
𝑗

𝜕net(ℓ)
𝑗

𝜕𝜔
(𝑙)

𝑖𝑗

, in BPE method

(37b)

𝛿
(𝑙)

𝑗
=

𝜕𝑄
𝑘

𝜕net(ℓ)
𝑗

, (37c)

the indexes denoted the same in the previous expressions.
𝛿
(𝑙)

𝑗
is local gradient, an important characteristic in BPE

method [27, 44].
𝛿
(𝑙)

𝑗
can be calculated via SDS procedures (with applica-

tion the relations (37a) and (37b)) but only throughMN-SDS
or SDS gradient which gives the BPE primal version [27].

3.3. SDS Algorithms and FANN Synthesis. Synthesis of ANN
is engineering design. An ANN design starts with set-up of
an initial architecture based on experience and intuition of a
designer. In this Section 3.3 it was presented the formally
recommendations which are relatively good orientation in
design of FANN.

An ANN architecture is determined by the number of
inputs and outputs, neurons, and interlinks between them
and biases a perceptron is a neuronwith adjustable inputs and
activation function not necessary to be of step type-threshold.

Experience shows, that is quite clear that for solution of
complex problem it is necessary to create a complex ANN
architecture.

8 Advances in Artificial Neural Systems

0 1 2 3 layers

u1

u2

un

N(1)� N(2)
�h

N(3)y

y1

y2

ym

...
...

...
...

...
...

...
...

Figure 7: Basic FANN architecture of universal approximation.

Working with SDS various experiences have confirmed
the previously noticed. The SDS methods are more efficient
comparing to numerous known ones specifically when com-
plex optimization problems are in question specifically when
complexity is measured by system dimensions. Having in
mind the significance of multilayer of an FANN hereinafter
the structure shown in Figure 6 will be considered.

It is worthwhile to mention that successful optimization
process of an FANN does not mean that it would have
necessary features: first of all required capacity and properties
for generalization [29].

Capacity features (𝐶) is one of ANN properties to mem-
orize certain information during the process of training, that
is, learning.

An FANN property of generalization is basic paradigm of
its performance. In fact it is an essential property approving
that “network has learnt” and should provide valid answers to
inputs not within training pairs. In other words testing data
should have the same distribution as a set of training pairs.

The synthesis issue is an open problem. In [29, 30]
some theoretical results have been shown mostly for three
layer networks processing binary data. Some researches were
working to attempt and expand implementation on three-
layer (and multilayer) processing analogue information what
have brought the so-called universal approximator [31–33].

The name universal approximator is linked to a three-
layer network having perceptrons in hidden layer with non-
linear activation function (type sigmoid) and perceptrons at
outputs with linear activation function (Figure 7).

By introducing the following designations, for hidden
neurons 𝑁]ℎ, for other neurons 𝑁], for interlinks-synapses
𝑁
𝜔
, for threshold 𝑁

𝜃
, then by simplifying the theoretical

results of [29, 31–33] certain indicators are obtained as rel-
atively good orientation for creation of a FANN architecture.

When a starting network structure has been set up, then
its dimension is

𝑁𝑁
𝑑
= 𝑁
𝜔
+ 𝑁
𝜃
. (38)

The range of training pairs samples for𝐺 level of general-
ization above 90% (expressions (39), (40) and (41) represent

compress (in simple form) of ideas in references [29, 31–33])
is

𝑁
𝑝
= 𝑁𝑁

𝑑
× 10 = (𝑁

𝜔
+ 𝑁
𝜃
) 10. (39)

The FANN ability to memorize and capacity 𝐶 are
determined by relation

𝐶 =
𝑁
𝜔

𝑚
(40)

if the following condition is fulfilled

(𝑛 + 𝑁]ℎ) ≫ 𝑚; (41)

𝑛 and 𝑚 are number of network inputs and outputs respec-
tively (Figure 7).

In case of collision betweenANNdimension and required
training samples𝑁

𝑝
changing of𝑁𝑁

𝑑
is required. It is point

out that 𝑁] + 𝑁]ℎ is in collision with generalization 𝐺. For
training under the same conditions better generalization is
got for networks with less neurons number. The aforesaid
indicates that ANN capacity is reduced [34].

Previous consideration with fix configuration during
training procedures is characterized as static.

There are some methods approaching to optimization
dynamically; during training procedures network structures
are changed such as cascade correlation algorithm [35], tiling
algorithm [36], dynamic learning by simulated annealing
[37], and others. Most complex one is dynamic training by
simulated annealing [37, 38]. The aforesaid method resolves
numerous FANN synthesis problems.

Training with MN-SDS is processed through forward
phase. Numerical procedure is simple and gives enough
information SDS shows on dynamically approach in training,
optimization and syntheses of artificial neural networks.

3.4. Examples

Example 1 (searching by matrix type). This example is con-
cerned with the theory and system control [39]. Here is
presented to showwhen the SSmodel systemworks inmatrix
form as well as differences in the efficiency of algorithms
N SDS and MN-SDS.

The linearized multivariable system described in internal
presentation (see relation (1) and (2) (in Section 2.1)) is as
follows:

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑢 = 0,

𝑦 = 𝐶𝑥 + 𝐷𝑢,

(42)

where 𝐴, 𝐵, 𝐶,𝐷 are matrix of parameters of system; 𝑥, 𝑦, 𝑢
are vectors with corresponding dimensions.

If the static of the real system is described bymatrix form,
In the expression (42) 𝑑𝑥/𝑑𝑡 = 0, then the reduced

equations describing the steady-static behavior of the system
is:

𝑦 = 𝐶
V + 𝐷𝑢, (43)

Advances in Artificial Neural Systems 9

Table 1: Collection data of variables {𝑦
𝑖
}, {V
𝑗
}, {𝑢
𝑘
}.

] 1 2 3 4 5 6 7

{𝑦
𝑖
}

1,3 2,1 2,9 2,0 2,3 −0,8 −0,9
1,1 3,9 6,0 2,8 2,1 −0,6 −1,0
7,0 7,0 2,7 2,6 7,0 +0,8 −3,0
7,0 1,9 1,1 3,0 3,0 +2,0 −4,0

{V
𝑗
}

1,0 −1,0 2,0 1,0 −1,0 1,0 0,0
1,0 −1,0 2,0 1,0 1,0 0,0 0,0
0,0 −1,0 2,0 1,0 2,0 −1,0 0,0
0,0 1,0 2,0 1,0 1,0 0,0 −1,0
−1,0 0,0 2,0 1,0 0,0 1,0 −1,0

{𝑢
𝑘
}

−1,0 +1,0 −1,0 +1,0 0,0 −1,0 0,0
+1,0 0,0 +1,0 0,0 +1,0 −1,0 0,0

where 𝐶 and𝐷 are the matrix of parameters corresponding
to the static of the observed system.

The relation (43) in the developed form can represent
energy network with passive consumers:

[
[
[
[
[

[

𝑦
1

𝑦
2

𝑦
3

𝑦
4

]
]
]
]
]

]

=

[
[
[
[
[

[

𝑐
11

𝑐
12

𝑐
13

𝑐
14

𝑐
15

𝑐
21

𝑐
22

𝑐
23

𝑐
24

𝑐
25

𝑐
31

𝑐
32

𝑐
33

𝑐
34

𝑐
35

𝑐
42

𝑐
43

𝑐
44

𝑐
45

𝑐
41

]
]
]
]
]

]

[
[
[
[
[

[

V
1

V
2

V
3

V
4

]
]
]
]
]

]

+

[
[
[
[
[

[

𝑑
11

𝑑
12

𝑑
21

𝑑
22

𝑑
31

𝑑
32

𝑑
41

𝑑
42

]
]
]
]
]

]

[
𝑢
1

𝑢
2

] ,

(44)

where [𝑦], [V], and [𝑢] are sizes that can be traced through the
check in checkpoint; [V] includes certain set of all measurable
sizes in the system (42).

Linear forms type (44) are more complex in numerical
processes of form type:

𝑦 = 𝐶V; matrix 𝐶 is type 𝑚 × 𝑚. (45)

Checks consistency and livelihoods solutions [40]:

det𝐶
𝑚×𝑚

̸= 0 (46)

is inapplicable to form (44).
Having in mind the previously indicated, numerical

experiment for coefficients {𝑐
𝑖𝑗
} and {𝑑

𝑖𝑘
}; 𝑖 = 1, 2, 3, 4; 𝑗 =

1, 2, 3, 4, 5; 𝑘 = 1, 2 identification has been created. In fact the
procedures with SSA algorithm have been used. The data of
{𝑦
𝑖
} were collected by changing variables {V

𝑗
} and {𝑢

𝑘
} that

are in Table 1.
For identification of {𝑐

𝑖𝑗
} and {𝑑

𝑖𝑘
} matrix searching is

used with random matrix [𝜉,], generated on hipper sphere
in 𝐸-space with 𝑛 = 28 [25].

The current values of the sizes 𝑦, V, and 𝑢 monitored
through the checkpoint. At certain intervals performs reg-
istration thereof. With a certain number of the same is
formed by a collection of required data (Table 1). A series
of 28 randomly selected numbers filled matrix 𝐶 and 𝐷;
in each iteration of optimization process. The use of any of
the algorithms N-SDS or MN-SDS requires the formation of
error 𝜀: 𝜀

𝜐,𝑖
= 𝑦
(𝜉)

𝑖,𝜐
− 𝑦
(𝑀)

𝑖,𝜐
, 𝑖 = 1, 2, 3, 4; 𝜐 = 1, 2, 3, . . . , 𝑁; 𝑁

is number of last iteration 𝜐, and then coresponding function
criteria 𝑄

𝜐
is:

𝑄
𝜐
=
1

2
∑

𝑖

𝜀
2

𝜐,𝑖
=
1

2
∑

𝑖

(𝑦
(𝜉)

𝑖,𝜐
− 𝑦
(𝑀)

𝑖,𝜐
)
2

, (47)

where 𝑦(𝜉)
𝑖,𝜐

are components [𝑦] for the random selection
parameters and 𝑦(𝑀)

𝑖,𝜐
required measurement values.

For step iteration used 𝛼 = 0.1; 0,001; and 0,0001 respec-
tively. The initial random parameters of this procedure are

[𝑐
0,𝑖𝑗
]
4×5

=

[
[
[
[
[

[

0,100 0,201 0,302 0,403 0,500
0,500 0,503 0,501 0,500 0,504
1,010 1,005 1,009 1,010 2,000
1,012 1,011 1,006 2,018 2,001

]
]
]
]
]

]

;

[𝑑
0,𝑖𝑘
]
4×2

=

[
[
[
[
[

[

0,100 1,012
1,013 0,100
0,101 1,008
0,001 0,000

]
]
]
]
]

]

.

(48)

The final results after random procedure with N-SSA are

[𝑐
𝑁,𝑖𝑗
]
4×5

=

[
[
[
[
[

[

0,213 0,051 0,524 0,911 1,004
0,301 0,401 0,512 0,701 0,816
0,931 1,631 0,622 1,743 1,320
1,520 0,721 0,831 0,997 0,802

]
]
]
]
]

]

;

[𝑑
𝑁,𝑖𝑘

]
4×2

=

[
[
[
[
[

[

0,301 0,834
0,824 0,501
0,313 0,542
0,116 0,311

]
]
]
]
]

]

.

(49)

The accuracy of 𝛿 = 1% calls to have 𝛼 = 0, 0001 and
number of steps 𝑙 𝑁 ≥ 8000. There is no noise in system.

Implementation of MN-SDS is possible after transform-
ing of equation system (44) into matrix form:

[
[
[
[
[

[

𝑦
1

𝑦
2

𝑦
3

𝑦
4

]
]
]
]
]

]

= V
1

[
[
[
[
[

[

𝑐
11

𝑐
21

𝑐
31

𝑐
41

]
]
]
]
]

]

+ V
2

[
[
[
[
[

[

𝑐
12

𝑐
22

𝑐
32

𝑐
42

]
]
]
]
]

]

+ V
3

[
[
[
[
[

[

𝑐
13

𝑐
23

𝑐
33

𝑐
43

]
]
]
]
]

]

+ V
4

[
[
[
[
[

[

𝑐
14

𝑐
24

𝑐
34

𝑐
44

]
]
]
]
]

]

+ V
5

[
[
[
[
[

[

𝑐
15

𝑐
25

𝑐
35

𝑐
45

]
]
]
]
]

]

+ 𝑢
1

[
[
[
[
[

[

𝑑
11

𝑑
21

𝑑
31

𝑑
41

]
]
]
]
]

]

+ 𝑢
2

[
[
[
[
[

[

𝑑
12

𝑑
22

𝑑
32

𝑑
42

]
]
]
]
]

]

.

(50)

By application of MN-SDS method some 𝑁= 2,156 steps
are needed indicating that some 4 times less steps are required
for the same accuracy of 𝛿 = 1%.

10 Advances in Artificial Neural Systems

U01, 𝜔01

U1

U2

U02, 𝜔02

1

2

U03, 𝜔03

U04, 𝜔04

U05, 𝜔05

𝜔1,3

𝜔1,4

𝜔2,3

𝜔2,4

3

4

5

Layers 0 1 2 Layers

𝜔3,5

𝜔4,5

Y1

�1

g(·)

g(·)

g(·)

(a)

(b1) (b2)

0

0

1

1

0

1

0

1

Y1

0

1

1

0

−1

−1

1

1

−1

1

−1

1

Y1

−1

1

1

−1

U1 U2 U1 U2

(b)

Figure 8: Optimization, for example, training of multilayer ANN; XOR problem.

Example 2 (training of multilayer perceptron). This example
is linked to treatment of training of perceptron related to
“XOR” logic circuit by using of SDS procedures. The said
example had an important role in R&D works in the field of
artificial neural network. In fact Minsky and Pappert (1969)
confirmed that perceptron cannot “learn” to simulate XOR
logic circuit and not to expect much of ANN [41].

If from XOR true table training pairs are formed
(000, 011, 101, 110) then it is possible to obtain similar con-
clusion as Minsky and Pappert. If we observe the definition
of neuron (perceptron) as per McCulloch and Pitts [42] for
neuron with two inputs,

(1) 𝑜 ⋅ 𝜔
1
+ 𝑜 ⋅ 𝜔

2
< 𝜃; or 0 < 𝜃 (𝑡-𝑜 is 0),

(2) 𝑜 ⋅ 𝜔
1
+ 1 ⋅ 𝜔

2
> 𝜃; or 𝜔

2
> 𝜃 (𝑡-𝑜 is 1),

(3) 1 ⋅ 𝜔
1
+ 𝑜 ⋅ 𝜔

2
> 𝜃; or 𝜔

1
> 𝜃 (𝑡-𝑜 is 1),

(4) 1 ⋅ 𝜔
1
+ 1 ⋅ 𝜔

2
< 0; or 𝜔

1
+ 𝜔
2
< 0 (𝑡-𝑜 is 0),

where 𝑡-𝑜 are training outputs: 0, 1, 1, 0.
It is obvious that relations (2), (3), and (4) are excluding

each other. A perceptron cannot be trained to simulate XOR
logic circuit.

The aforesaid is understood as obstacle “in principum”.
The previously indicated somehow interrupted further

development of ANN more than 20 years up to works of
Hopfield [43] and others.

The problemhas been overcome by studying ofmultilayer
and recurrent ANN properties as well as creation of advance
numerical procedures for training of the same [27].

This example incorporates the results of training having
at least one hidden layer of neurons which could be trained
to simulate XOR logic circuit.

Figure 8(a) shows an FANN configuration having one
hidden layer of two neurons and one neuron at the ANN
output. That ANN can learn to simulate XOR logic circuit.

For training pairs two options can be used (Figures 8(b1)
and 8(b2)):

𝑃
𝑘
(𝑢
𝑘
, 𝑡
𝑘
) → 𝑃

1
(0, 0; 0) , 𝑃

2
(0, 1; 1) , 𝑃

3
(1, 0; 1) , 𝑃

4
(1, 1; 0) ,

𝑃

𝑘
(𝑢

𝑘
, 𝑡

𝑘
) → 𝑃

1
(−1, −1, −1) , 𝑃

2
(−1, 1; 1) , 𝑃

3
(1, −1; 1) ,

𝑃

4
(1, 1; −1) .

(51)

Further on results realized with training pairs 𝑃
𝑘
(𝑢
𝑘
, 𝑡
𝑘
)

shown in Figure 8(b1) shall be used. It is necessary to observe
that for some of variables should have fixed values since do
not contribute in solving the problem:

𝑈
01
= 𝑈
02
= 0, 𝜔

01
= 𝜔
02
= 0,

𝑈
03
= 𝑈
04
= 𝑈
05
= −1.

(52)

At the time of training it was shown that 𝜔
12
, 𝜔
13
, 𝜔
23
and

𝜔
24
have very little variations near number 1 and it is possible

to used

𝜔
12
= 𝜔
13
= 𝜔
23
= 𝜔
24
= +1. (53)

Values of all other 𝜔(𝑙)
0𝑗
and 𝜔(𝑙)

𝑖𝑗
are changeable parameters

where 𝑙 is indication of neuron layer. By that the dimension
of the random vector 𝜉 is decreased. For the first training pair
and activation function of logistic type

𝑔
1 (𝑥) =

1

[1 + exp (−𝑥)] (54)

training will be performed through BPEmethod [27, 28] and
MN-SDS; 𝑥 presents a linear function interaction of neuron
inputs.

The criteria function for both cases is

𝑄
𝑘
= 𝜀
𝑘
=
1

2

𝑚

∑

𝑠=1

(𝑦
𝑁𝐿

𝑠𝑘
− 𝑡
𝑠𝑘
)
2

. (55)

The SSA iterative procedures were used to minimize 𝑄
𝑘
;

the results are presented in Figure 9(a).The cost functions𝑄
𝑘

Advances in Artificial Neural Systems 11

0.4

0.6

0.8

1.0

(1) Gradient descent
(2) Nonlinear SDS

(3) Linear SDS
(4) MN-SDS

(1)

(2)

0.2

0
0.0

200 400 600 800 1000

(3)
(4)

Q/Qmax

N

(a)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

MN-SDS

0 50 100 200 250150

N

Q/Qmax

t.p. (1, 1, −1)
t.p. (1, −1, 1)

t.p. (−1, 1, 1)
t.p. (−1, −1, −1)

BPE t.p. (1, 1, −1)

(b)

Figure 9: Cost function; (a) for 𝑔
1
(𝑥) = 1/(1 + exp(−𝑥)), (b) for 𝑔

2
(𝑥) step function; BPI optimization is finished after 600 iterations.

are formed for the same training pairs and initial values, and
ponderation is done against the highest value of one of 𝑄

𝑘
.

In Figure 9(a) diagram has been singed with number 4, is
criteria function 𝑄 of training by NN-SDS method.

The results of training are shown so for a step activation
function (threshold):

𝑔
2
(𝑥) =

{

{

{

1, 𝑥 ≥ 0

0, 𝑥 < 0.

(56)

The method BPE is disabled since 𝑔
2
(𝑥) is not differen-

tiable. For application BPE in this case it must be to approx-
imate 𝑔

2
(𝑥) with logistic function 𝑆(𝑥) = 1/(1 + exp(𝑐𝑥));

𝑐 ≥ 100. The process optimization is finished after more
than 600 iterations (Figure 9(b)). The final results for MN-
SDS of the ponderation 𝑄 as shown in Figure 9(b); training
was done with set. SS procedure with MN-SDS has been
initiated with random parameters (weights): 𝜔

0,03
= 1.01;

𝜔
0,04

= 0.55; 𝜔
0,05

= 0.74; 𝜔
0,35

= 0.19; 𝜔
0,45

= 0.57.
Finally results after 𝑁 > 300 iterations are 𝜔

03,𝑁
= 1.50,

𝜔
04,𝑁

= 0.99, 𝜔
05,𝑁

= 0.51, 𝜔
35,𝑁

= −1.98, 𝜔
45,𝑁

= 0.98. with
relative error of 2%.

The randomvector of forward propagation iswith dimen-
sion 𝑛 = 5 is:

𝜉 ≡ (𝜉
1
, 𝜉
2
, 𝜉
3
, 𝜉
4
, 𝜉
5
)
𝑇
. (57)

Let us refer to an example when an activation function
𝑔
2
(𝑥) is given by relation (56), with training pairs 𝑃(𝑢

𝑘
, 𝑡

𝑘
).

Then it shows that a training procedure depends on choice of
training pairs as well. The minimization process of such case
is done rather faster (Figure 9(b)).

BPE methods implementation was made with known
procedures [27, 28]. BPE is used as comparative method.

In this paper MN-SDS and BPE use ECR (procedures
error correction rules) which are more convenient for
“online” ANN training [45].

Whenever the training coefficient (𝛼) is small then ECR
and GDR procedures provide the same results for parameters
estimation within set-up range of an acceptable error [44,
45]. GDR (gradient rules) is called “batch” optimization
procedure.

Example 3 (synthesis FANN to approximate model FSR). In
this example some of theoretical R&D results of [29–33] are
applied.

The real problem is approximated model of an ANN
training program related on technical term for process in
reactor inwhich the concentrate heated to powder so that will
behave like a fluid [46, 47].

When the said FSR is to be tempered either the first time
or after service attempts, there is a program of tempering to
temperature 𝑇 as per diagram (see Figure 10). After reaching
working temperature it is maintained by control system. The
tempering to 𝑇 = 600 ± 25

∘C is to be completed within
130min (range 𝐴𝐵). In Figure 10 the whole cycle is within
240min. The FSR was under operation 40 minutes (range
𝐵𝐶). Due to some maintenance problem the FSR is often
shut down (point 𝐶). Before next campaign the FSR should
be cooled down (range 𝐶𝐷) for maintenance purposes and
afterwards the tempering operation is repeated.

The mapping in real conditions have not enough data to
make FANN (Figure 11, [46]). There is not enough, to model
approximations over ANN that learns. Overall number of
pairs (𝑡

𝑘
, 𝑇
𝑘
) collected from the said diagram (Figure 10) is

80 pairs; sampling period is 3min. More frequent sampling
is not realistic. The task is to determine a FANN, which is to
give the best approximate model of the FSR within required
accuracy. The relative error of correct response should be
more than 3% of obtained measuring data.

On Figure 12 is given a starting architecture of FANN
𝑁𝑁
1
= (1-10-10-1): with one input and one output, with 10

neurons in the first and in second layers. Only neurons in the

12 Advances in Artificial Neural Systems

CB

D
A

0 30 60 90 120 150 180 210 240

600

500

400

300

200

100

NN5; MN-SDS
NN1; MN-SDS

NN5; BPE
NN1; BPE

T (∘C) (600 ± 25) (∘C)

B C

Figure 10: Plan introducing FSR in operative mode (AB), work
(BC), possibly down time (CD).

0 30 60 90 120 150 180

600

500

400

300

200

100

T (∘C) (600 ± 25) (∘C)

Figure 11: The real mapping data of FSR at operative environment.

Layers 0 1 2 3 Layers

t T(t)

N(0)� → 1 N(1)�L → 10 N(2)
�h
→ 10 N(3)�L → 1

Neurons
numbers

Neurons
numbers

...
...

...
...

...

S(x)

Figure 12:The initial structure of FANN for approximation model’s
tempering of FSR.

second layer has non-linear activation function. All neurons
has a linear interaction function.

Application of the relations ((39)–(41)) of Section 3.2 on
𝑁𝑁
1
gives:

𝑁𝑁
𝑑
= 120 + 21 = 141 interlinks between unknown

parameters and biases.

𝑁
𝑝
= 141 × 10 = 1410 required training pairs for

generalization 𝐺 > 90%!,

𝐶 = 120 memorized information under condition
that 𝑛 + 𝑁

𝑢ℎ
≫ 𝑚, 11 ≫ 1; condition is satisfied.

Table 2: Data defining program warming FSR (𝑡, 𝑇).

𝑡 [min] 𝑇 [∘C]
0 20
10 20
20 50
30 50
40 100
50 100
70 150
80 250
90 250
100 350
105 350
110 450
115 450
120 550
125 600
130 600
140 600
160 600
170 600
175 425
185 325
205 150
215 110
225 75
235 60
240 50

Based on the aforesaid there is overnumbered required
training pairs (1410 ≫ 80).

Basicmoments in conjunction approximationmodel FSR
through the use of MN-SDS in the training of FANN𝑁𝑁

1
=

(1-10-10-1) are that

(i) assignment training𝑁𝑁
1
does of 80 pairs of training

is achieved through the diagrams on Figure 10 that
define Table 2,

(ii) random vector 𝜉 replaces 𝜔
𝑖𝑗
and 𝜔

0𝑗
at expression

(32), so dim 𝜉 = 141, unknown parameters,
(iii) feedforward phase in layers for each training pair

achieved numerical value for net(ℓ)
𝑗

and 𝑦
(ℓ)

𝑗
, 𝑙 =

1, 2, 3, to the expression (32),
(iv) cost function for sequence for each training par 𝑄

𝑘
,

𝑘 = 1, 2, 3, . . . , 80, was calculated with the expression
(36). Figure 13 presents the trend of 𝑄

𝑘
for𝑁𝑁

1
,

(v) the procedure optimization, that is, training for
FANN𝑁𝑁

1
takes more than 1000 iterations.

Due to the big volume of numerical data in the paper, we
will not list all the details.

Out of the two ANN under training with same training
samples more strong generalization has network with less
number of neurons.

Advances in Artificial Neural Systems 13

1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 100 200 300 400 500 600 700 800

N

(1)

(2)(3)(4)

(1) BPE of NN1 = (1-10-10-1)
(2) MN-SDS of NN1 = (1-10-10-1)
(3) BPE of NN5 = (1-3-1)
(4) MN-SDS of NN5 = (1-3-1)

Q/Qmax

Figure 13: Trend cost functions multilayers FANN’s𝑁𝑁
1
and𝑁𝑁

5
.

1

1

1

1

1

2

3

4

5t T(t)

𝜔12

𝜔13

𝜔14

𝜔02

𝜔25

𝜔35

𝜔03
𝜔45

𝜔04

𝜔05

g(·)

g(·)

g(·)

Figure 14: Oriented graph of𝑁𝑁
5
= (1-3-1).

That is the reason to refer to less complex network
structures:

𝑁𝑁
2
= (1-5-5-1), 𝑁𝑁

3
= (1-3-3-1) and 𝑁𝑁

4
=

(1-2-2-1).
Structure 𝑁𝑁

4
eventually could be trained and have

certain generalization possibility since for𝑁𝑁
4

𝑁𝑁
𝑑
= 13 interlink, that is, unknown parameters,

𝑁
𝑝
= 130 required training pairs for 𝐺 > 90%; 130 >

80 !,

𝐶 = 𝑁
𝜔
/𝑚 = 8, condition 𝑛 +𝑁]ℎ ≫ 𝑚; 3 > 1, barely

accepted.

More acceptable solution is 𝑁𝑁
5
= (1-3-1), although it

presents a bared architecture FANN, since for𝑁𝑁
5

𝑁𝑁
𝑑
= 10, dimension of𝑁𝑁

5
,

𝑁
𝑝
= 100; there are not 100 but only 80 training pairs,

𝐶 = 6, condition 𝑛 + 𝑁]ℎ ≫ 𝑚; 4 ≫ 1, acceptable.

It has been possible to continue to a minimized architec-
ture 𝑁𝑁

6
= (1-2-1), but choice of 𝑁𝑁

5
= (1-3-1) provides

better performance of a hidden layer.
The closest solution is the FANN 𝑁𝑁

5
= (1-3-1),

Figure 14. In hidden layer this network has 3 perceptronswith
sigmoid type for activation function.

Having in mind that determining of an ANN, that is,
FANN architecture is always open problem then estimation
of an adopted structure is suitable after the final numerical
result including validity test of a network training.

Theoretical results for universal approximator are derived
for nonlinear activation, function of hidden neurons of type
𝑆(𝑥) = 1/(1 + exp(−𝑥)).

Since 2𝑆(𝑥) − 1 = tanh𝑥/2 bring an option to use tanh
function for a FANNmodel approximation.

Application the relation of net(ℓ)
𝑗

and𝑦(ℓ)
𝑗

in the expression
(32), for structure on Figure 14, 𝑁𝑁

5
= (1-3-1) in general

form:

𝑇 (𝑡) = 𝜔
25
tanh (𝜔

12
𝑡 + 𝜔
02
) + 𝜔
35
tanh (𝜔

13
𝑡 + 𝜔
03
)

+ 𝜔
45
tanh (𝜔

14
+ 𝜔
04
) + 𝜔
05
;

(58)

represents an approximation model of the temperature
regime of FSR.

Here will be presented numerical data and the results of
network training for𝑁𝑁

5
by MN-SDS only.

On the beginning of the numerical procedure for practi-
cal reasons 𝑡 and 𝑇 should be reduced 100 times.

The symbolic presentation of the vector unknow param-
eters 𝜔, in the network 𝑁𝑁

5
, at the beginning (𝜔

0
) and end

of training procedure (𝜔
𝑁
) is given by:

𝜔
0
= (𝜔
12

(0)
, 𝜔
13

(0)
, 𝜔
14

(0)
, 𝜔
25

(0)
, 𝜔
35

(0)
, 𝜔
45

(0)
, 𝜔
02

(0)
, 𝜔
03

(0)
, 𝜔
04

(0)
, 𝜔
05

(0)
)
𝑇

𝜔
𝑁
= (𝜔
12

(𝑁)
, 𝜔
13

(𝑁)
, 𝜔
14

(𝑁)
, 𝜔
25

(𝑁)
, 𝜔
35

(𝑁)
, 𝜔
45

(𝑁)
, 𝜔
02

(𝑁)
, 𝜔
03

(𝑁)
, 𝜔
04

(𝑁)
, 𝜔
05

(𝑁)
)
𝑇

.

(59)

The initial random value of the parameters 𝜔
0
is:

𝜔
0
= (0.1576, 0.9572, 0.4218, 0.8003, 0.7922, 0.9706,

0.9706, 0.4854, 0.1419, 0.9157)
𝑇
.

(60)

Random vector 𝜉 in this case is

𝜉 = (𝜉
1
, 𝜉
2
, 𝜉
3
, . . . , 𝜉

10
)
𝑇
. (61)

14 Advances in Artificial Neural Systems

Behind the training network𝑁𝑁
5
by algorithmMN-SDS

after 700 iterations (𝑁 > 700; 𝑄
𝑘,𝑁

< 𝜀, 𝜀 = 10
−4
) vector 𝜔

𝑁

of unknown parameters is given by
𝜔
𝑁
= (1.705, 3.847, 11.61, 3.159, −3.597, 0.731,

−1.670, −7.021, −13.23, 02939)
𝑇
.

(62)

Previous data characterize the approximation process
model tempering temperature of FSR (58), overtraining
FANN 𝑁𝑁

5
by the MN-SDS algorithm, with 5% of the

relative error. Trend of 𝑄
𝑘
for𝑁𝑁

5
is given on Figure 13.

Some responses to the test inputs for checking the validity
of the obtained model deviate a large error. Counting these
to interrelate (sharing) the total number received relatively
rough estimate of generalization capabilities appropriate
network. Based Figure 10 test values have special graphic
symbols (𝑂, 𝑋 for MN-SDS and Δ and ∇ for BPE). For a
training set of 80 pairs generalization𝐺 ability of the network
𝑁𝑁
5
is about 70%. For the network 𝑁𝑁

1
it is about 20%.

Previous values obtained training using MN-SDS.
Application BPE method gave the following values of

generalization: about 70% for network 𝑁𝑁
5
and below 20%

for the network𝑁𝑁
1
.

The previous presented FSRmodel could be used inmore
sophisticated option as an intelligent process monitoring.

4. Discussion

Why someone should go to the application of stochastic
search methods (SSMs) to solve problems that arise in the
optimization and training of ANN? Our answer to this
question is based on the demonstration that the SSMs,
including SDS (stochastic direct search), have proved to be
very productive in solving the problems of complex systems
of different nature.

In particular, previous experience with ANN and rela-
tively simple architecture suggest that they can exhibit quite a
complex behavior, which can be traced to (i) a large number
of neuron-perceptron elements in ANN system, (ii) the
complexity of the nonlinearity in the activation function of
neurons within ANN, (iii) the complexity of the neuron acti-
vation function model (i.e., higher level models), (iv) com-
plexity in the optimization procedure due to the large volume
of data in the training set, and (v) the complexity of the
specification of internal architecture of particular types of
ANN.

The features listed above require competitive methods
which can deal efficiently with such complexity.The SDS rep-
resent a combinatorial approach offering great potential via
certain heuristics and algorithms they provide for numerical
procedures.

For example, various methods based on the notion of
gradient and which are considered competitive when applied
to complex systems cannot avoid the linear scaling of con-
vergence in numerical implementations. In SDS, the trend is
roughly speaking proportional to √𝑛 where 𝑛 represents the
dimension of the vector of parameters in the parameter space
of a complex system.This indicates that, with increasing com-
plexity of the system, the relative advantage of SDS method

increases when compared to the gradient scheme. That
is the key conclusion of why code optimization and training
of ANN should employ SDS.

The author has previously used some algorithms belong-
ing to the SDS methodology, such as nonlinear SDS (N-SDS)
and statistical gradient (SG-SDS). Both of thesemethods have
exhibited poor convergence. By starting fromN-SDS,we have
designed MN-SDS which already for 𝑛 > 3 is superior to
gradient descent (with original N-SDS this is achieved only
for 𝑛 > 12).

In this paper, Section 2 overviewed the concept of SDS
and SSA and then introduced MN-SDS. Section 3 examined
the possibilities of MN-SDS algorithm and its application on
FANN as the target architecture. Section 3 also presents steps
in synthesis of FANN in order to emphasize that performed
optimization of FANN does not guarantee that the network
will achieve the required level of generalization (i.e., ability
to learn). Generally speaking the problem of syntheses ANN
remains open.

The present synthesis elements are simplified theoret-
ical results of the recent studies. This is illustrated by
Example 3, which is directly connected to practical applica-
tions. Example 2 should give an insight about the relationship
betweenN-SDS andMN- SDS, as well as connection between
MN-SDS and BPE methods, where the latter was used
as a reference. Example 1 confirms efficiency of MN-SDS
methods for problems outside of ANN.

Let us finally mention that there is an increasing interest
in using SSM, both from academia and industry. This is due
to the fact that SSM, and in a particular SDS, can find increas-
ing applications in economics, bioinformatics, and artificial
intelligence, where the last area is intrinsically linked toANN.

5. Conclusion

The central goal of this study is the presentation of stochastic
search approach applied to identification, optimization, and
training of artificial neural networks. Based on the author’s
extensive experience in using SDS approach to the problems
of identification and optimization of complex automatic
control system, a new algorithm based on nonlinear SDS (N-
SDS), which is termed MN-SDS, is proposed here. The MN-
SDS offers significant improvement in convergence proper-
ties compared to nonlinear N-SDS and some other SSA.

MN-SDS maintains all the other good features of the
existing SDS: a relatively easy adaptation to problem solving;
simple mathematical construction of algorithmic steps; low
sensitivity to noise.

The convergence properties of MN-SDS make it superior
tomajority of standard algorithms based on gradient scheme.
Note that convergence is the most suitable characteristics for
comparing the efficiency of algorithms for systems with the
same number of optimization parameters. For example,
already for more than three parameters theMN-SDS exhibits
better convergence properties than most other algorithms,
including those based on the gradient. This means that, in
certain optimization procedures and training, MN-SDS is
superior to widely used BPE method for ANN and in the
development of artificial intelligence.

Advances in Artificial Neural Systems 15

The MN-SDS in optimization and training of ANN
employs only feedforward phase flow of information in
FANN. The parameters that are used in optimization within
MN-SDS are changed using random number generator. The
efficiency ofMN-SDS in numerical experiments suggests that
it can be applied to very complex ANN.This study has shown
its application to feedforward ANN (FANN). The obtained
results were compared with results obtained with BPE
method, of course, when applied to the same problems.

Numerical experiments performed here can be imple-
mented even on simple multicore PC using MATLAB pack-
age.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The author has been using the achievements of Professor
Rastrigin courses and expresses his gratitude. Unfortunately
there are no possibilities for direct thanks for using some
elements for the figures out of the Professor’s books.

References

[1] W. R. Ashby, “Cybernetics today and its adjustment with tech-
nical sciences in the future,” in Computer Machine and Logical
Thinking, Compman and Hall, 1952.

[2] L. A. Rastrigin, “Ashby’s Gomeostat,” in Stochastics Search
Methods, pp. 50–58, Science, Moscow, Russia, 1965.

[3] L. A. Rastrigin, The Theory and Application Stochastics Search
Methods, Zinatne, Riga, Latvia, 1969.

[4] K. K. Ripa, “Comparison of steepest deescent and stochastics
search self-learningmethods,” in Stochastic SearchOptimization
Problems, Zinatne, Riga, Latvia, 1968.

[5] A. Dvorezky, “On stochastisc approximation,” in Proceedings
of the 3rd Berkeley Symposium on Mathematical Statistics and
Probability, vol. 1, University of California Press, Berkeley, Calif,
USA, 1956.

[6] L. A. Rastrigin and L. S. Rubinshtain, “Comparison of stochastic
search and stochastic approximation method,” in The Theory
and Application Stochastics Search Methods, pp. 149–156,
Zinatne, Riga, Latvia, 1968.

[7] A. A. Zhigljavsky, Theory of Global Random Search, Kluwer
Academic, Boston, Mass, USA, 1991.

[8] N. Baba, T. Shoman, and Y. Sawaragi, “A modified convergence
theorem for a random optimization method,” Information
Sciences, vol. 13, no. 2, pp. 159–166, 1977.

[9] J. C. Spall, “Introduction to stochastic search and optimization:
estimation, simulation and control,” Automation and Remote
Control, vol. 26, pp. 224–251, 2003.

[10] K. P.Nikolic, “An identification of complex industrial systems by
stochastic search method,” in Proceeding of the ETAN ’79, vol. 3,
pp. 179–186, 1979.

[11] K. P. Nikolic, “Neural networks in complex control systems and
stochastic search algorithms,” in Proceeding of the ETRAN ’09
Conference, vol. 3, pp. 170–173, Bukovička Banja, Aranđelovac,
Serbia, 2009.

[12] K. P. Nikolic and B. Abramovic, “Neural networks synthesis by
using of stochastic searchmethods,” inProceeding of the ETRAN
’04, pp. 115–118, Čačak, Serbia, 2004.

[13] K. P. Nikolic, B. Abramovic, and I. Scepanovic, “An approach to
synthesis and analysis of complex recurrent neural network,” in
Proceedings of the 8th Seminar on Neural Network Applications
in Electrical Engineering (NEUREL ’06), Belgrade, Serbia, 2006.

[14] J. A. Gentle, Random Number Generation and Monte Carlo
Method, Springer, New York, NY, USA, 2nd edition, 2003.

[15] C. B. Moler, Numerical Computing with MATLAB, SIAM,
Philadelphia, Pa, USA, 2003.

[16] P. Eykhoof, “Some fundamental aspects of process-parameter
estimation,” IEEE Transactions on Automatic Control, vol. 8, no.
4, pp. 347–357, 1963.

[17] C. S. Beighlar, Fundamental of Optimization, 1967.
[18] L. A. Rastrigin, Stochastic Model of Optimization of Multiple

Parameters Objects, Zinatne, 1965.
[19] J. T. Tou,Modren Control Theory, McGraw-Hill, New York, NY,

USA, 1964.
[20] J. Stanic, “Langrage’s method of multiplicators,” in Book Intro-

duction in Techno—Economic Theory of Process Optimization,
pp. 35–40, Faculty ofMechanical Engineering, Belgrade, Serbia,
1983.

[21] G. A. Korn, “Derivation operators,” inMathematical Handbook
for Scientists and Engineers, pp. 166–170, McGraw-Hill, New
York, NY, USA, 1961.

[22] L. A. Rastrigin, “Stochastic local search algorithms,” in Book
Stochastics Search Methods, pp. 64–102, Science, Moscow, Rus-
sia, 1968.

[23] L. A. Rastrigin, “Characteristics of effectiveness of stochastic
search method,” in Stochastics Search Methods, pp. 32–41,
Science Publishing, Moscow, Russia, 1986.

[24] L. A. Rastrigin, “Comparison of methods of gradient and
stochastics search methods,” in Book Stochastics Search Meth-
ods, pp. 102–108, Science, Moscow, Russia, 1968.

[25] K. P. Nikolic, “An approach of random variables generation for
an adaptive stochastic search,” in Proceeding of the ETRAN ’96,
pp. 358–361, Zlatibor, Serbia, 1996.

[26] L. A. Rastrigin, “Multistep algorithms in the central field,” in
Book Stochastics Search Methods, pp. 95–103, Science, Moscow,
Russia, 1968.

[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[28] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representation by error propagation,” in Parallel Dis-
tributed Processing Explorations in the Microstructures of Cog-
nition, D. E. Rumelhart and J. L. Mc Clelland, Eds., vol. 1, pp.
318–362, MIT Press, Cambridge, Mass, USA, 1986.

[29] E. E. Baum and D. Haussler, “What size net gives valid general-
ization?” Neural Computation, vol. 1, no. 1, pp. 151–160, 1989.

[30] E. B. Baum, “On the capabilities of multilayer perceptrons,”
Journal of Complexity, vol. 4, no. 3, pp. 193–215, 1988.

[31] K. Hornik, M. Stinchcombe, and H. White, “Universal approx-
imation of an unknown mapping and its derivatives using
multilayer feedforward networks,” Neural Networks, vol. 3, no.
5, pp. 551–560, 1990.

[32] K. Hornik, “Approximation capabilities of multilayer feedfor-
ward networks,”Neural Networks, vol. 4, no. 2, pp. 251–257, 1991.

16 Advances in Artificial Neural Systems

[33] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer
feedforward networks with a nonpolynomial activation func-
tion can approximate any function,”Neural Networks, vol. 6, no.
6, pp. 861–867, 1993.

[34] J. Flacher and Z. Obradović, “Constructively learning a near-
minimal neural network architecture,” in Proceedings of the
International Conference on Neural Networks, pp. 204–208,
Orlando, Fla, USA, 1994.

[35] S. E. Fahlman and C. Lobiere, “The Cascade-corellation learn-
ing architecture,” in Advances in Neural Information Processing
Systems, D. Touretzky, Ed., vol. 2, pp. 524–532, Morgan Kauf-
mann, San Mat, Calif, USA, 1990.

[36] M. Mezard and J.-P. Nadal, “Learning in feedforward layered
networks: the tiling algorithm,” Journal of Physics A: Mathemat-
ical and General, vol. 22, no. 12, pp. 2191–2203, 1989.

[37] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[38] S. Milenkovic, “The idea of adaptive selection of type preturba-
tions in the algorithm of simulated annealing,” in Proceedings
of the XXXVI YU Conference for ETRAN, vol. 2, pp. 67–74,
Kopaonik, Serbia, 1992.

[39] K. P. Nikolic, “An implementation of stochastic search for com-
plex systems identification and optimization,” in Proceedings of
the ETRAN ’82, vol. 3, pp. 221–227, Subotica, Serbia, 1982.

[40] G. A. Korn and T. M. Korn, Mathematical Handbook for
Scientists and Engineers, McGraw-Hill, New York, NY, USA,
1961.

[41] M. Minsky and S. Pappert, “Perceptrons,” in An Introduction to
Computational Geometry, MIT Press, Cambridge, Mass, USA,
1969.

[42] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” The Bulletin of Mathematical
Biophysics, vol. 5, pp. 115–133, 1943.

[43] J. J. Hopfield, “Neural network and physical systems with
emergent collective computational abilites,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 79, pp. 2554–2558, 1992.

[44] S. Haykin, “Summary of the back-propgation algorithm,” in
Book Neural Networks (A Comprehensive Foundation), pp. 153–
156, Macmillan College Publishing, New York, NY, USA, 1994.

[45] S. Milenkovic, “Algorithms for artificial neuron networks
training,” in Ph.D dissssertation: Annealing Based Dynamic
Learning in Second—Order Neuron Networks, (“Artificial Neuro
Networks” Library Disertatio—Andrejevic, Belgrad, 1997), pp.
29–44, Univecity of Nish, ETF, 1996.

[46] K. P. Nikolić, “An identification of non-linear objects of com-
plex industrial systems,” in Proceedings of ETRAN ’98—XLII
Conference for Electronics, Computers, Automation, and Nuclear
Engineering, pp. 359–362, Vrnjacka Banja, Yugoslavia, 1998.

[47] G. M. Ostrovsky and Yu. M. Volin, “The mathematical descrip-
tion of process in fluo-solid reactors,” in Methods of Optimiza-
tion of Chemical Reactors, pp. 30–47, Chemie, Moscow, Russia,
1967.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

