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Hajek’s univariate stochastic comparison result is generalised to multivariate stochastic sum processes with univariate convex data
functions and for univariate monotonic nondecreasing convex data functions for processes with and without drift, respectively.
As a consequence strategies for a class of multivariate optimal control problems can be determined by maximizing variance. An
example is passport options written onmultivariate traded accounts.The argument describes a narrow path between impossibilities
of generalisations to jump processes or impossibilities of more general data functions.

1. Introduction and Statement of Results

Mean stochastic comparison results may have applications in
many areas beyond mathematical finance. However, it seems
that they were first applied in order to find optimal strategies
for passport options in the univariate case in [1], where the
result in [2] is used. More general univariate processes are
considered in [3]. Anyway, path continuity seems to be essen-
tial as it can be shown that Hajek’s comparison result cannot
be generalised to Poisson processes even in the univariate
case (cf. [4]).More recent research on controlled options with
applications of Hamilton-Jacobi-Bellman equations can be
found in [5]. However the results for passport options are still
univariate. Multivariate problems are essentially different as
optimal strategies may depend on the correlations between
processes. For example, if

Π𝑞 =

𝑛

∑

𝑖=1

𝑞𝑖𝜎𝑖𝑆𝑖, where 𝑑𝑆𝑖 = 𝜎𝑖𝑆𝑖𝑑𝑊𝑖, 𝑆 (0) = 𝑥 ∈ R
𝑛 (1)

is a trading account with 𝑛 lognormal processes (𝑆𝑖)1≤𝑖≤𝑛,
where correlations of Brownian motions 𝑊𝑖 are encoded to
be (𝜌𝑖𝑗)1≤𝑖,𝑗≤𝑛, and 𝑞𝑖 ∈ [−1, 1] are bounded trading positions,
then the solution of an optimal control problem

sup
−1≤𝑞𝑖≤1, 1≤𝑖≤𝑛

𝐸
𝑥
(𝑓 (Π𝑞)) ,

𝑓 convex, exponentially bounded,
(2)

for the trading positions 𝑞𝑖 ∈ [−1, 1] reduces under mild
assumptions to the maximization of the basket volatility; that
is,

sup
−1≤𝑞𝑖≤1, 1≤𝑖≤𝑛

√∑
𝑛

𝑖,𝑗=1
𝜌𝑖𝑗𝑞𝑖𝑞𝑗𝜎𝑖𝜎𝑗𝑆𝑖𝑆𝑗

∑
𝑛

𝑖=1
𝑆𝑖

. (3)

Hence, signs of correlations (and space-time dependence of
the signs of correlations) can change an optimal strategy
essentially. This indicates also that multivariate mean com-
parison results are significant extensions of univariate results.

Applications of the extension ofHajek’s results to stochas-
tic sumswere described in [6, 7], but a full proofwas not given
in these notes. Here we give a short complete proof of related
results. Hajek’s results are recovered by the different method
of proof.

In the following 𝐶(R) denotes the space of continuous
functions on the set of real numbers R, 𝑊 denotes a
standard 𝑁-dimensional Brownian motion, and 𝐸𝑥 denotes
the expectation of a process starting at 𝑥 ∈ R𝑛. Furthermore,
for an R𝑛-valued process (𝑋(𝑡))0≤𝑡≤𝑇 the 𝑖th component of
this process is denoted by (𝑋𝑖(𝑡))0≤𝑡≤𝑇. For processes without
drift we prove the following.

Theorem 1. Let 𝑇 > 0, 𝑓 ∈ 𝐶(R) be convex, and assume that
𝑓 satisfies an exponential growth condition. Assume that 𝑐𝑖 > 0
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are some positive real constants for 1 ≤ 𝑖 ≤ 𝑛. Furthermore, let
𝑋,𝑌 be Itô’s diffusions with 𝑥 = 𝑋(0) = 𝑌(0), where

𝑋 (𝑡) = 𝑋 (0) + ∫

𝑡

0

𝜎 (𝑋 (𝑠)) 𝑑𝑊 (𝑠) ,

𝑌 (𝑡) = 𝑌 (0) + ∫

𝑡

0

𝜌 (𝑌 (𝑠)) 𝑑𝑊 (𝑠) ,

(4)

with 𝑛 × 𝑛-matrix-valued bounded Lipschitz-continuous func-
tions 𝑥 → 𝜎𝜎

𝑇
(𝑥) and 𝑦 → 𝜌𝜌

𝑇. If 𝜎𝜎𝑇 ≤ 𝜌𝜌
𝑇, then for

0 ≤ 𝑡 ≤ 𝑇 we have

𝐸
𝑥
(𝑓(

𝑛

∑

𝑖=1

𝑐𝑖𝑋𝑖 (𝑡))) ≤ 𝐸
𝑥
(𝑓(

𝑛

∑

𝑖=1

𝑐𝑖𝑌𝑖 (𝑡))) . (5)

Here, the symbol ≤ refers to the usual order of positive matri-
ces. Furthermore, if in addition 𝑓󸀠󸀠 ̸= 0 (in the sense of
distributions), then this result holds with strict inequalities.

For processes with drift we prove the following.

Theorem 2. Let 𝑇 > 0, 𝑓 ∈ 𝐶(R) be nondecreasing and con-
vex, and assume that 𝑓 satisfies an exponential growth con-
dition. Assume that 𝑐𝑖 > 0 are some positive real constants for
1 ≤ 𝑖 ≤ 𝑛. Furthermore, let𝑋,𝑌 be Itô’s diffusions with nonzero
drifts with 𝑥 = 𝑋(0) = 𝑌(0), where

𝑋(𝑡) = 𝑋 (0) + ∫

𝑡

0

𝜇 (𝑋 (𝑠)) 𝑑𝑠 + ∫

𝑡

0

𝜎 (𝑋 (𝑠)) 𝑑𝑊 (𝑠) ,

𝑌 (𝑡) = 𝑌 (0) + ∫

𝑡

0

] (𝑌 (𝑠)) 𝑑𝑠 + ∫
𝑡

0

𝜌 (𝑌 (𝑠)) 𝑑𝑊 (𝑠) ,

(6)

with bounded Lipschitz-continuous drift functions 𝜇 ≤ ] and
𝑛 × 𝑛-matrix-valued bounded Lipschitz-continuous functions
𝑥 → 𝜎𝜎

𝑇
(𝑥) and 𝑦 → 𝜌𝜌

𝑇. If 𝜇 ≤ ] and 𝜎𝜎𝑇 ≤ 𝜌𝜌𝑇, then for
0 ≤ 𝑡 ≤ 𝑇 we have

𝐸
𝑥
(𝑓(

𝑛

∑

𝑖=1

𝑐𝑖𝑋𝑖 (𝑡))) ≤ 𝐸
𝑥
(𝑓(

𝑛

∑

𝑖=1

𝑐𝑖𝑌𝑖 (𝑡))) . (7)

Here, 𝜇 ≤ ] is understood componentwise. Furthermore, if in
addition 𝑓󸀠󸀠 ̸= 0 (in the sense of distributions), then this result
holds with strict inequalities.

Remark 3. Bounded Lipschitz-continuity, that is, the condi-
tion that for some 𝐶 > 0

|𝑏 (𝑥)| +
󵄨󵄨󵄨󵄨󵄨
𝜎𝜎
𝑇
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶,

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏 (𝑦)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜎 (𝑥) − 𝜎 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝐶
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

(8)

holds for all 𝑥, 𝑦 ∈ R𝑛, implies existence of a 𝑡-continuous
solution in stochastic 𝐿2 sense of 𝑋. Similarly for 𝑌, proofs
are based on a generalisation of ODE-proofs to infinite
dimensional function spaces and can be found in elementary
standard textbooks such as [8].

2. Proof of Theorem 1

We first remark that the initial data function has to be uni-
variate: for a general multivariate data function 𝑓 the results
do not hold, because simple examples show that con-
vexity can be strongly violated in this general situation.
Since classical representations of the value functions in terms
of the probability density (fundamental solution) are not
convolutions we use the adjoint of the fundamental solution.
For this and other technical reasons we need some more
regularity of the data function and the diffusion matrix 𝜎𝜎𝑇
in order to treat the problem at an analytical level. We will
observe then that the pointwise result is preserved as we
consider certain data and coefficient function limits reducing
the regularity assumptions. First we need some regularity
assumptions which ensure existence of the fundamental
solution and the adjoint fundamental solution in a classical
sense, that is, have pointwise well-defined spatial derivatives
up to second order and a pointwise well-defined partial
time derivative up to first order (in the domain where it is
continuous). For the sake of possible generalisations in the
next section we consider the more general operator

𝐿 ≡
𝜕

𝜕𝑡
−

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗

𝜕
2

𝜕𝑥𝑖𝜕𝑥𝑗

−

𝑛

∑

𝑖=1

𝑏𝑖

𝜕

𝜕𝑥𝑖

− 𝑐. (9)

We include even the potential term coefficients 𝑐because such
a coefficient appears in the adjoint even if 𝑐 = 0. Recall that
the adjoint operator is given by

𝐿
∗
≡ −

𝜕

𝜕𝑡
+

𝑛

∑

𝑖,𝑗=1

𝑎
∗

𝑖𝑗

𝜕
2

𝜕𝑥𝑖𝜕𝑥𝑗

+

𝑛

∑

𝑖=1

𝑏
∗

𝑖

𝜕

𝜕𝑥𝑖

+ 𝑐
∗
, (10)

where

𝑎
∗

𝑖𝑗
= 𝑎𝑖𝑗,

𝑏
∗

𝑖
= 2

𝑛

∑

𝑗=1

𝑎𝑖𝑗,𝑗 − 𝑏𝑖,

𝑐
∗
= 𝑐 +

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗,𝑖𝑗 −

𝑛

∑

𝑖=1

𝑏𝑖,𝑖.

(11)

Here we use Einstein notation, that is, 𝑎𝑖𝑗,𝑗 fl (𝜕/𝜕𝑥𝑗)𝑎𝑖𝑗 and
𝑎𝑖𝑗,𝑗 fl (𝜕

2
/𝜕𝑥𝑖𝜕𝑥𝑗)𝑎𝑖𝑗,𝑖𝑗, and 𝑏𝑖,𝑖 fl (𝜕/𝜕𝑥𝑖)𝑏𝑖 for the sake of

brevity. In this section we will assume that 𝑏𝑖 ≡ 0 and 𝑐 ≡ 0.
Note that even in this restrictive situation we have 𝑏∗

𝑖
̸= 0 and

𝑐
∗
̸= 0. For our purposes it suffices to assume that the coef-

ficients are of spatial dependence (the generalisation to addi-
tional time dependence is straightforward). In order that the
adjoint exists in a classical sense we should have bounded
continuous derivatives.

We assume

(i)

𝑎𝑖𝑗 ∈ 𝐶
2
∩ 𝐻
2
, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛, (12)

where 𝐶𝑚 ≡ 𝐶𝑚(R𝑛) denotes the space of real-valued
𝑚-time continuously differentiable functions and𝐻𝑚
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denotes the standard Sobolev space of order𝑚 ≥ 0. In
the next section we assume in addition that 𝑏𝑖 ∈ 𝐶

1
∩

𝐻
1 for all 1 ≤ 𝑖 ≤ 𝑛. For the following considerations

concerning the adjoint we assume that 𝑐 ∈ 𝐶0 ∩ 𝐿2 if
a potential coefficient is considered.

(ii) We have uniform ellipticity; that is, there exists 0 <
𝜆 < Λ < ∞ such that

𝜆
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2
≤

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗 (𝑥) 𝑦𝑖𝑦𝑗 ≤ Λ
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2
, ∀𝑥, 𝑦 ∈ R

𝑛
. (13)

We use one observation concerning the adjoint. Note that the
adjoint equations are known in the context of probability the-
ory as the forward and backward Kolmogorov equations.The
derivation of these equations (cf. Feller’s classical treatment)
shows that the density and its adjoint are equal and that it is
possible to switch from a representation of Cauchy problem
solutions in terms of the backward density to an equivalent
representation in terms of the forward equations. For exam-
ple, forward and backward representations of option prices
for regime switching models are used in [9]. However, the
essential additional observation we need here is the relation
of partial derivatives of densities and their adjoint densities.
We use again Einstein’s notation for classical derivatives.

Lemma 4. Assume that conditions (12) and (13) hold and let
𝑝 be the fundamental solution of

𝐿𝑝 = 0, (14)

and let 𝑝∗ be the fundamental solution of
𝐿
∗
𝑝
∗
= 0. (15)

Then for 𝑠 < 𝑡 and 𝑥, 𝑦 ∈ R𝑛 𝑝, 𝑝∗ have spatial derivatives up
to order 2:

𝑝 (𝑡, 𝑥; 𝑠, 𝑦) = 𝑝
∗
(𝑠, 𝑦; 𝑡, 𝑥) ,

𝑝,𝑖 (𝑡, 𝑥; 𝑠, 𝑦) = 𝑝
∗

,𝑖
(𝑠, 𝑦; 𝑡, 𝑥) ,

𝑝,𝑖𝑗 (𝑡, 𝑥; 𝑠, 𝑦) = 𝑝
∗

,𝑖𝑗
(𝑠, 𝑦; 𝑡, 𝑥) .

(16)

Here, for 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑒𝑖 = (𝑒𝑖1, . . . , 𝑒𝑖𝑛) along with
𝑒𝑖𝑗 = 𝛿𝑖𝑗 (Kronecker 𝛿) and 𝑠 < 𝑡, 𝑥, 𝑦 ∈ R𝑛 we denote

𝑝,𝑖 (𝑡, 𝑥; 𝑠, 𝑦) = lim
ℎ↓0

𝑝 (𝑡, 𝑥 + ℎ𝑒𝑖; 𝑠, 𝑦) − 𝑝 (𝑡, 𝑥; 𝑠, 𝑦)

ℎ
,

𝑝,𝑖𝑗 (𝑡, 𝑥; 𝑠, 𝑦)

= lim
ℎ↓0

𝑝,𝑖 (𝑡, 𝑥 + ℎ𝑒𝑗; 𝑠, 𝑦) − 𝑝,𝑖 (𝑡, 𝑥; 𝑠, 𝑦)

ℎ
,

𝑝
∗

,𝑖
(𝑡, 𝑥; 𝑠, 𝑦)

= lim
ℎ↓0

𝑝
∗
(𝑠, 𝑦 + ℎ𝑒𝑖; 𝑡, 𝑥) − 𝑝

∗
(𝑠, 𝑦; 𝑡, 𝑥)

ℎ
,

𝑝
∗

,𝑖𝑗
(𝑡, 𝑥; 𝑠, 𝑦)

= lim
ℎ↓0

𝑝
∗

,𝑖
(𝑡, 𝑠, 𝑦 + ℎ𝑒𝑗; 𝑡, 𝑥) − 𝑝

∗

,𝑖
(𝑠, 𝑦; 𝑡, 𝑥)

ℎ
.

(17)

Proof. For 𝑞(𝜏, 𝑧) = 𝑝(𝜏, 𝑧; 𝑠, 𝑦) and 𝑟(𝜏, 𝑧) = 𝑝∗(𝜏, 𝑧; 𝑡, 𝑥) for
𝑠 < 𝜏 < 𝑡 we show that for 1 ≤ 𝑖, 𝑗 ≤ 𝑛

𝑞 (𝑡, 𝑥) = 𝑟 (𝑠, 𝑦) ,

𝑞,𝑖 (𝑡, 𝑥) = 𝑟,𝑖 (𝑠, 𝑦) ,

𝑞,𝑖𝑗 (𝑡, 𝑥) = 𝑟,𝑖𝑗 (𝑠, 𝑦)

(18)

hold. Let𝐵𝑅 be the ball of radius𝑅 around zero. As 𝑠 < 𝑡 there
exists 𝛿 > 0 such that 𝑠 + 𝛿 < 𝑡 − 𝛿 and using Green’s identity
Gaussian upper bounds of the fundamental solution and its
first-order spatial derivatives, 𝐿𝑞 = 0 and 𝐿∗𝑟 = 0, we get

0 = lim
𝑅↑∞

∫

𝑡−𝛿

𝑠+𝛿

∫
𝐵𝑅

𝜕

𝜕𝜏
(𝑞𝑟) (𝜏, 𝑧) 𝑑𝜏 𝑑𝑧

= ∫
R𝑛
𝑞 (𝑡 − 𝛿, 𝑧) 𝑝

∗
(𝑡 − 𝛿, 𝑧; 𝑡, 𝑥) 𝑑𝑧

− ∫
R𝑛
𝑟 (𝑡 + 𝛿, 𝑧) 𝑝 (𝑡 + 𝛿, 𝑧; 𝑠, 𝑦) 𝑑𝑧.

(19)

This leads to the identities

∫
R𝑛
𝑞,𝑖 (𝑡 − 𝛿, 𝑧) 𝑝

∗
(𝑡 − 𝛿, 𝑧; 𝑡, 𝑥) 𝑑𝑧

= ∫
R𝑛
𝑟,𝑖 (𝑡 + 𝛿, 𝑧) 𝑝 (𝑡 + 𝛿, 𝑧; 𝑠, 𝑦) 𝑑𝑧,

∫
R𝑛
𝑞,𝑖𝑗 (𝑡 − 𝛿, 𝑧) 𝑝

∗
(𝑡 − 𝛿, 𝑧; 𝑡, 𝑥) 𝑑𝑧

= ∫
R𝑛
𝑟,𝑖𝑗 (𝑡 + 𝛿, 𝑧) 𝑝 (𝑡 + 𝛿, 𝑧; 𝑠, 𝑦) 𝑑𝑧.

(20)

In the limit 𝛿 ↓ 0 we get the relations stated.

For technical reasons we need more approximations con-
cerning the data. As we are aiming at a pointwise comparison
result and we have Gaussian upper bounds it suffices to
consider approximating data which are regular convex in a
core region and decay to zero at spatial infinity. We have the
following.

Proposition 5. Let𝑓 ∈ 𝐶(R) be a real-valued continuous con-
vex function. Let 𝐵𝑅 ⊂ R𝑛 be the ball of finite radius 𝑅 around
the origin. Then there is a function 𝑓𝜖

𝑅
∈ 𝐶
2
∩ 𝐻
2 such that

(i)
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓

𝜖

𝑅
(𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝜖, ∀𝑥 ∈ 𝐵𝑅; (21)

(ii) the second (classically well-defined) derivative is strictly
positive; that is,

𝑓
󸀠󸀠
(𝑥) > 0, ∀𝑥 ∈ 𝐵𝑅. (22)

Proposition 5 can be proved by using regular polynomial
interpolation.Here the fact that classical derivatives of second
order exist for the convex continuous function 𝑓 almost
everywhere can be used. The function 𝑓𝜖,𝑅 is not convex in
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general of course, but it is convex in a core region 𝐵𝑅(𝑥). For
all 𝜖 > 0 and all 𝑅 > 0 using Lemma 4 and integration by
parts we get

V𝜖,𝑅
,𝑖𝑗
(𝑡, 𝑥) = ∫

R𝑛
𝑓
𝜖

𝑅
(

𝑛

∑

𝑖=1

𝑐𝑖𝑦𝑖)𝑝,𝑖𝑗 (𝑡, 𝑥; 0, 𝑦) 𝑑𝑦

= ∫
R𝑛
𝑓
𝜖

𝑅
(

𝑛

∑

𝑖=1

𝑐𝑖𝑦𝑖)𝑝
∗

,𝑖𝑗
(0, 𝑦; 𝑡, 𝑥) 𝑑𝑦

= ∫
R𝑛
𝑐𝑖𝑐𝑗 (𝑓

𝜖

𝑅
)
󸀠󸀠
(

𝑛

∑

𝑖=1

𝑐𝑖𝑦𝑖)𝑝
∗
(0, 𝑦; 𝑡, 𝑥) 𝑑𝑦.

(23)

Here for a univariate function 𝑔 ∈ 𝐶2 the symbol 𝑔󸀠󸀠 denotes
its second derivative. Since 𝑓𝜖(𝑧) > 0, for all 𝑧 ∈ 𝐵𝑅(𝑧), and
𝑝
∗
≥ 0 and by the standard Gaussian estimate

󵄨󵄨󵄨󵄨𝑝
∗
(𝜎, 𝜂; 𝜏, 𝜉)

󵄨󵄨󵄨󵄨 ≤
𝐶
∗

√𝜏 − 𝜎
𝑛 exp(−𝜆

∗

󵄨󵄨󵄨󵄨𝜂 − 𝜉
󵄨󵄨󵄨󵄨

2

𝜏 − 𝜎
) (24)

for some finite constants 𝐶∗, 𝜆∗ we get from (23)

∀𝑟 > 0, ∀𝑥 ∈ 𝐵𝑟, ∃𝑅0 > 𝑟 such that ∀𝑅 ≥ 𝑅0,

(V𝜖,𝑅
,𝑖,𝑗
(𝑡, 𝑥)) ≥ 0

(25)

which means that the Hessian is positive in a smaller core
region 𝐵𝑟 = {𝑥 | |𝑥| ≤ 𝑟} for 𝑅 large enough. Furthermore,
classical regularity theory (cf. [10] and references therein) tells
us that

∀𝜖 > 0, V𝜖 (𝑡, ⋅) ∈ 𝐶2,

∀𝜖 > 0, ∀𝑅 > 0, V𝜖,𝑅 (𝑡, ⋅) ∈ 𝐶2,
(26)

where V𝜖(𝑡, ⋅) = lim𝑅↑∞V
𝜖,𝑅
(𝑡, ⋅).

Remark 6. Actually, the regularity V𝜖(𝑡, ⋅) ∈ 𝐶2 follows from
the smoothness of the density 𝑝 for positive time and holds
in the more general context of highly degenerate parabolic
equations of second order (cf. [11]). In this paper we consider
equations with uniform elliptic second-order part, because
this implies that the density, its adjoint, and spatial derivatives
up to second order have spatial decay at infinity to zero. This
is not true in general for highly degenerate equations (cf.
[12]). Extensions to some classes of degenerate equations are
possible (cf. [10]).

It follows that

∀𝑥 ∈ R𝑛, ∀𝑡 ∈ [0, 𝑇] , ∃𝑅0 > 0 such that ∀𝑅 ≥ 𝑅0, ∀𝜖 > 0,

Tr𝐴 (𝑥)𝐷2V𝜖,𝑅 (𝑡, 𝑥) ≥ 0,
(27)

where 𝐴(𝑥) = (𝑎𝑖𝑗(𝑥)) is the coefficient matrix and 𝐷2V𝜖,𝑅(𝑡,
𝑥) is the Hessian of V𝜖,𝑅 evaluated at (𝑡, 𝑥). Hence,

∀𝑥 ∈ R𝑛, ∀𝑡 ∈ [0, 𝑇] , ∀𝜖 > 0,

Tr𝐴 (𝑥)𝐷2V𝜖 (𝑡, 𝑥) ≥ 0,
(28)

and as the 𝜖 ↓ 0 limit of the Hessian is well defined for 𝑡 ∈
(0, 𝑇] we get

∀𝑥 ∈ R𝑛, ∀𝑡 ∈ (0, 𝑇] , ∀𝜖 > 0,

Tr𝐴 (𝑥)𝐷2V (𝑡, 𝑥) ≥ 0.
(29)

Now consider matrices (𝑎V1
𝑖𝑗
) and (𝑎V2

𝑖𝑗
) where V1 and V2 solve

𝜕V1

𝜕𝑡
−∑

𝑖𝑗

𝑎
V1
𝑖𝑗

𝜕V1

𝜕𝑥𝑖𝜕𝑥𝑗

= 0,

𝜕V2

𝜕𝑡
−∑

𝑖𝑗

𝑎
V2
𝑖𝑗

𝜕V2

𝜕𝑥𝑖𝜕𝑥𝑗

= 0,

(30)

and V1(0, ⋅) = V2(0, ⋅). Note that 𝛿V = V1 − V2 satisfies

𝜕𝛿V (𝑡, 𝑥)
𝜕𝑡

= ∑

𝑖𝑗

(𝑎
V2
𝑖𝑗
− 𝑎

V1
𝑖𝑗
)
𝜕V1

𝜕𝑥𝑖𝜕𝑥𝑗

+∑

𝑖𝑗

𝑎
V2
𝑖𝑗

𝜕
2
𝛿V

𝜕𝑥𝑖𝜕𝑥𝑗

, (31)

where 𝛿V(0, 𝑥) = 0 for all 𝑥 ∈ R𝑛. We have the classical
representation

𝛿V (𝑡, 𝑥) = ∫
𝑡

0

∫
R𝑛
∑

𝑖𝑗

(𝑎
V2
𝑖𝑗
− 𝑎

V2
𝑖𝑗
) (𝑠, 𝑦)

𝜕
2V1

𝜕𝑥𝑖𝜕𝑥𝑗

(𝑠, 𝑦) 𝑝
V2
(𝑡, 𝑥, 𝑠, 𝑦) 𝑑𝑠 𝑑𝑦, (32)

where 𝑝V
2

is the fundamental solution of

𝜕𝛿V (𝑡, 𝑥)
𝜕𝑡

−∑

𝑖𝑗

𝑎
V2
𝑖𝑗

𝜕
2
𝛿V

𝜕𝑥𝑖𝜕𝑥𝑗

= 0. (33)

As ∑
𝑖𝑗
(𝑎

V2
𝑖𝑗
− 𝑎

V1
𝑖𝑗
)(𝑠, 𝑦)(𝜕V1/𝜕𝑥𝑖𝜕𝑥𝑗)(𝑠, 𝑦) ≥ 0 and 𝑝

V2(𝑡, 𝑥, 𝑠,

𝑦) ≥ 0 we conclude that 𝛿V ≥ 0. Now we have proved the
main theorem for 𝑎𝑖𝑗 ∈ 𝐶

2
∩ 𝐻
2. Next, for each 𝜖 > 0 and

𝑅 > 0 there exists amatrix (𝑎𝜖,𝑅
𝑖𝑗
)with components in𝐶2∩𝐻2,

where for all 𝑥 ∈ R𝑛

𝑎
𝜖,𝑅
(𝑥) = 𝜎

𝜖,𝑅
𝜎
𝜖,𝑅,𝑇

(𝑥) , (34)

with 𝜎𝜖,𝑅,𝑇(𝑥) being the transpose of 𝜎𝜖,𝑅, and where

sup
𝑥∈𝐵𝑅

󵄨󵄨󵄨󵄨󵄨
𝜎
𝜖,𝑅
(𝑥) − 𝜎 (𝑥)

󵄨󵄨󵄨󵄨󵄨
≤ 𝜖. (35)

Here 𝜎 is the original dispersion matrix related to the process
𝑋 of the main theorem (which is assumed to be bounded and
Lipschitz-continuous). Consider the following:

𝑋
𝜖,𝑅
(𝑡) = 𝑋 (0) + ∫

𝑡

0

𝜎
𝜖,𝑅
(𝑋
𝜖,𝑅
(𝑠)) 𝑑𝑊 (𝑠) . (36)

For 𝜌𝜖,𝑅(𝑥) which satisfies analogous conditions we define

𝑌
𝜖,𝑅
(𝑡) = 𝑌 (0) + ∫

𝑡

0

𝜌
𝜖,𝑅
(𝑌
𝜖,𝑅
(𝑠)) 𝑑𝑊 (𝑠) . (37)

Then the preceding argument shows that for 𝜎𝜖,𝑅𝜎𝜖,𝑅,𝑇 ≤

𝜌
𝜖,𝑅
𝜌
𝜖,𝑅,𝑇 and then for 0 ≤ 𝑡 ≤ 𝑇 we have

∀𝜖 > 0, ∀𝑟 > 0, ∀𝑥 ∈ 𝐵𝑟, ∃𝑅0 such that ∀𝑅 ≥ 𝑅0,

𝐸
𝑥
(𝑓
𝜖,𝑅
(

𝑛

∑

𝑖=1

𝑐𝑖𝑋
𝜖,𝑅

𝑖
(𝑡))) ≤ 𝐸

𝑥
(𝑓
𝜖,𝑅
(

𝑛

∑

𝑖=1

𝑐𝑖𝑌
𝜖,𝑅

𝑖
(𝑡))) .

(38)
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This leads to

∀𝑟 > 0, ∀𝑥 ∈ 𝐵𝑟, ∃𝑅0 such that ∀𝑅 ≥ 𝑅0,

𝐸
𝑥
(𝑓
𝑅
(

𝑛

∑

𝑖=1

𝑐𝑖𝑋
𝑅

𝑖
(𝑡))) ≤ 𝐸

𝑥
(𝑓
𝑅
(

𝑛

∑

𝑖=1

𝑐𝑖𝑌
𝑅

𝑖
(𝑡))) ,

(39)

where𝑋𝑅 are processes:

𝑋
𝜖,𝑅
(𝑡) = 𝑋 (0) + ∫

𝑡

0

𝜎
𝑅
(𝑋
𝑅
(𝑠)) 𝑑𝑊 (𝑠) , (40)

with a bounded continuous 𝜎𝑅 which satisfies

∀𝑥 ∈ 𝐵𝑅,

𝜎
𝑅
(𝑥) = 𝜎 (𝑥) = 0.

(41)

The process 𝑌𝑅 is defined analogously. Similarly 𝑓𝑅 is a limit
of functions 𝑓𝜖,𝑅 ∈ 𝐶2 ∩ 𝐻2 which equals 𝑓 on 𝐵𝑅. In (39)
𝑋
𝑅 can be replaced by 𝑋 and 𝑌𝑅 by 𝑌 by the probability

law of the processes, and a limit consideration for data which
equal for each 𝑅 the function 𝑓 on 𝐵𝑅 leads to the statement
of the theorem by an uniform exponential bound of the
data functions, the boundedness of the Lipschitz-continuous
coefficients, and the Gaussian law of the Brownian motion.

3. Additional Note for the Proof of Theorem 2

If 𝑤1 and 𝑤2 solve

𝜕𝑤
1

𝜕𝑡
−∑

𝑖𝑗

𝑎
𝑤
1

𝑖𝑗

𝜕𝑤
1

𝜕𝑥𝑖𝜕𝑥𝑗

+∑

𝑖

𝑏
𝑤
1

𝑖
(𝑥)

𝜕𝑤
1

𝜕𝑥𝑖

= 0,

𝜕𝑤
2

𝜕𝑡
−∑

𝑖𝑗

𝑎
𝑤
2

𝑖𝑗

𝜕𝑤
2

𝜕𝑥𝑖𝜕𝑥𝑗

+∑

𝑖

𝑏
𝑤
2

𝑖
(𝑥)

𝜕𝑤
2

𝜕𝑥𝑖

= 0,

(42)

and 𝑤1(0, ⋅) = 𝑤2(0, ⋅), note that 𝛿𝑤 = 𝑤1 − 𝑤2 satisfies

𝜕𝛿𝑤 (𝑡, 𝑥)

𝜕𝑡
= ∑

𝑖𝑗

(𝑎
𝑤
2

𝑖𝑗
− 𝑎
𝑤
1

𝑖𝑗
)
𝜕𝑤
1

𝜕𝑥𝑖𝜕𝑥𝑗

+∑

𝑖𝑗

𝑎
𝑤
2

𝑖𝑗

𝜕𝛿𝑤

𝜕𝑥𝑖𝜕𝑥𝑗

− 𝑏
𝑤
2

𝑖

𝜕𝛿𝑤

𝜕𝑥𝑖

+∑

𝑖

(𝑏
𝑤
2

𝑖
(𝑥) − 𝑏

𝑤
1

𝑖
(𝑥))

𝜕𝑤
1

𝜕𝑥𝑖

,

(43)

where 𝛿𝑤(0, 𝑥) = 0 for all 𝑥 ∈ R𝑛. Consider the following:

𝛿𝑤 (𝑡, 𝑥) = ∫

𝑡

0

∫
R𝑛
(∑

𝑖𝑗

(𝑎
𝑤
2

𝑖𝑗
− 𝑎
𝑤
1

𝑖𝑗
) (𝑠, 𝑦)𝑤

1

,𝑖,𝑗
(𝑠, 𝑦)

+∑

𝑖

(𝑏
𝑤
2

𝑖
(𝑥) − 𝑏

𝑤
1

𝑖
(𝑥))

𝜕𝑤
1

𝜕𝑥𝑖

)

⋅ 𝑝
𝑤
2

(𝑡, 𝑥, 𝑠, 𝑦) 𝑑𝑠 𝑑𝑦,

(44)

where 𝑝𝑤
2

is the fundamental solution of

𝜕𝛿𝑤

𝜕𝑡
−∑

𝑖𝑗

𝑎
𝑤
2

𝑖𝑗

𝜕𝛿𝑤

𝜕𝑥𝑖𝜕𝑥𝑗

+ 𝑏
𝑤
2

𝑖

𝜕𝛿𝑤

𝜕𝑥𝑖

= 0. (45)

As ∑
𝑖𝑗
(𝑎
𝑤
2

𝑖𝑗
− 𝑎
𝑤
1

𝑖𝑗
)(𝑠, 𝑦)(𝜕𝑤

1
/𝜕𝑥𝑖𝜕𝑥𝑗)(𝑠, 𝑦) ≥ 0 and 𝑝

𝑤2(𝑡,

𝑥, 𝑠, 𝑦) ≥ 0 we conclude that 𝛿𝑤 ≥ 0 if ∑
𝑖
(𝑏
𝑤
2

𝑖
(𝑥) −

𝑏
𝑤
1

𝑖
(𝑥))(𝜕𝑤

1
/𝜕𝑥𝑖)). As 𝑏

𝑤
2

𝑖
(𝑥) − 𝑏

𝑤
1

𝑖
(𝑥) ≥ 0 for all 𝑥 this con-

dition reduces to the monotonicity condition 𝜕𝑤1/𝜕𝑥𝑖 ≥ 0.
The truth of the latter monotonicity condition for the value
function 𝑤1 can be proved using the adjoint using the same
trick as in the preceding section.

Remark 7. These notes are from my lecture notes “Die Fun-
damentallösung Parabolischer Gleichungen und Schwache
Schemata Höherer Ordnung für Stochastische Diffusion-
sprozesse” of WS 2005/2006 in Heidelberg, which are not
published. The argument given there is published now upon
request, as research is going on concerning applications of
comparison principles. Originally the relevance of stochastic
comparison results was pointed out to the author by P.
Laurence and V. Henderson.Themain theorems proved here
are stated essentially in the conference notes in [6, 7] but
were not strictly proved there. In these notes applications to
American options and to passport options are considered.
For example, explicit solutions for optimal strategies related
to the optimal control problem of passport options and the
dependence of that strategy on correlations between assets
can be obtained. The proof given here can be applied in the
univariate case as well and recovers the result of Hajek in [1]
using the result of [2].
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