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In radial basis function approximation, the shape parameter can be variable. The values of the variable shape parameter strategies
are selected from an interval which is usually determined by trial and error. As yet there is not any algorithm for determining an
appropriate interval, although there are some recipes for optimal values. In this paper, a novel algorithm for determining an interval
is proposed. Different variable shape parameter strategies are examined.The results show that the determined interval significantly
improved the accuracy and is suitable enough to count on in variable shape parameter strategies.

1. Introduction

Radial basis function methods are the tools for interpolating
amultivariate data set, approximating a function, and solving
partial differential equations [1–5]. A radial basis function,
say 𝜑(𝑟), is a continuous univariate function that has been
realized by composition with the Euclidean norm in R𝑑.
Radial basis functions (RBFs)may contain a parameter called
the shape parameter. Most well-known RBFs have a shape
parameter, such as Multiquadric (MQ), Inverse Multiquadric
(IMQ), andGaussian parameters. Awell-knownRBFwithout
a shape parameter is thin-plate spline (TPS). This class of
RBFs approximates with polynomial convergence rate, but
three mentioned RBFs approximate with spectral conver-
gence rate. This point leads to applying RBFs with a shape
parameter, even though we know that the value of the shape
parameter is an issue. In these radial basis functions, the value
of the shape parameter plays an important role for the accu-
racy of the procedure. An important problem is determining
the optimal value for the shape parameter. Several articles
have been dedicated to introducing different algorithms to
compute a constant value, as an optimal or a good value, for
the shape parameter [6–15]. Kansa and Carlson showed that
instead of a fixed shape parameter variable shape parameters
are also useful [16].They distribute some values in an interval

to use them in variable shape parameter. Moreover, there
are some articles applying the variable shape parameter in
various problems [17–20]. But in many of them there is not
any criterion to select the interval of the shape parameters. In
fact the selected interval to distribute the shape parameters
is user-defined as the selection of the value in constant shape
parameter.

In this paper, we focus on the selection of a valid interval
in variable shape parameter. An algorithm is suggested to
obtain this interval. To show the efficiency of the proposed
interval, it is investigated in different variable shape parame-
ter strategies.

2. Shape Parameter in MQ-RBF
Approximation

In the RBF methods, a function 𝑢(𝑥) is approximated by
𝑢
∗
(𝑥) as in the following:

𝑢
∗
(𝑥) =

𝑁

∑

𝑗=1

𝜆𝑗𝜑 (
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩2
) . (1)

By interpolation conditions

𝑢 (𝑥𝑖) = 𝑓𝑖, 𝑗 = 1, . . . , 𝑛, (2)
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a system of linear equations is obtained as the matrix form
𝐴𝜆 = 𝑓, where 𝑎𝑖𝑗 = 𝜑(𝑟𝑖𝑗) and 𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖2. If the
Multiquadric (MQ) radial basis function 𝜑(𝑟) = (1 + 𝑟2𝜀2)1/2
is used, the method is called MQ-RBF approximation. In
this paper, the MQ is applied throughout the methods and
examples.

In MQ-RBF approximation, 𝑢∗(𝑥) is presented as the
following form:

𝑢
∗
(𝑥) =

𝑁

∑

𝑗=1

𝜆𝑗 (1 + 𝑟
2

𝑗
𝜀
2
)
1/2

, (3)

where 𝑟𝑗 = ‖𝑥−𝑥𝑗‖2 and 𝜀 is the shape parameter. Sometimes,
to show the dependence of 𝜀 in the accuracy of 𝑢∗, the
approximate function is written as 𝑢∗(𝑥; 𝜀).

Now consider a boundary value problem defined by

𝐿𝑢 (𝑥) = 𝑓 (𝑥) , on Ω,

𝐵𝑢 (𝑥) = 𝑔 (𝑥) , in 𝜕Ω,
(4)

where 𝐿 is a linear differential operator and 𝐵 is a linear
boundary operator.Ω is the domain of the problem and 𝜕Ω is
the boundary of the domain. Suppose that {𝑥𝑖 | 𝑖 = 1, . . . , 𝑁}
are a set of 𝑁 distinct centre nodes in the domain such that
{𝑥𝑖 | 𝑖 = 1, . . . , 𝑁1} are interior centre nodes and {𝑥𝑖 | 𝑖 =
𝑁1 + 1, . . . , 𝑁} are boundary centres.

By substituting the approximation of 𝑢 given by RBF
approximation (1), problem (4) can be written as

𝑁

∑

𝑗=1

𝜆𝑗𝐿𝜑 (
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩
) = 𝑓 (𝑥) , (5)

𝑁

∑

𝑗=1

𝜆𝑗𝐵𝜑 (
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩
) = 𝑔 (𝑥) . (6)

By substituting the centres {𝑥𝑖 | 𝑖 = 1, . . . , 𝑁1} and {𝑥𝑖 |
𝑖 = 𝑁1 + 1, . . . , 𝑁} in (5) and (6), respectively, the system of
equations𝐻𝜆 = 𝐹 is obtained, where

𝐻 = [
𝐿𝜑

𝐵𝜑
] ,

𝐹 = [
𝑓

𝑔
] .

(7)

And the entries are defined as follows:

𝐻𝑖𝑗 =
{

{

{

𝐿𝜑 (
󵄩󵄩󵄩󵄩󵄩
𝑥𝑖 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩
) , 𝑖 = 1, . . . , 𝑁1,

𝐵𝜑 (
󵄩󵄩󵄩󵄩󵄩
𝑥𝑖 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩
) , 𝑖 = 𝑁1 + 1, . . . , 𝑁,

for 𝑗 = 1, . . . , 𝑁,

𝐹𝑖 =
{

{

{

𝑓 (𝑥𝑖) , 𝑖 = 1, . . . , 𝑁1,

𝑔 (𝑥𝑖) , 𝑖 = 𝑁1 + 1, . . . , 𝑁.

(8)

By solving the system of equations 𝐻𝜆 = 𝐹, the unknown
variables 𝜆𝑖 (𝑖 = 1, . . . , 𝑁) are determined.

2.1. Variable Shape Parameter Strategies. The shape param-
eter in radial basis function approximation is usually a
predefined constant parameter. It is acknowledged that in
many cases using variable shape parameter strategies results
in more accurate approximation [16, 17, 19]. A variable
shape parameter strategy uses different values of the shape
parameter at different centre points:

𝑢
∗
(𝑥) =

𝑁

∑

𝑗=1

𝜆𝑗 (1 + 𝑟
2

𝑗
𝜀
2

𝑗
)
1/2

, (9)

where 𝜀𝑗 is the shape parameter corresponding to the data
point 𝑥𝑗. Applying interpolation conditions (2) to 𝑢∗(𝑥)
results in the following system:

𝐴𝜆 = 𝑓, (10)

where in 𝐴, the matrix of interpolation, each column has the
same shape parameter, corresponding to each centre. InMQ-
RBF, the interpolation matrix is as follows:

𝐴 =

[
[
[
[
[

[

√1 + 𝑟2
11
𝜀2
1
⋅ ⋅ ⋅ √1 + 𝑟2

1𝑛
𝜀2
𝑛

.

.

. d
.
.
.

√1 + 𝑟2
𝑛1
𝜀2
1
⋅ ⋅ ⋅ √1 + 𝑟2

𝑛𝑛
𝜀2
𝑛

]
]
]
]
]

]

. (11)

Kansa and Hon [21] showed that the coefficient matrices in
global radial basis function approximation tend to become
progressively more ill-conditioned, but the variable shape
parameter can improve the conditioning of the coefficient
matrix. In fact, using variable shape parameter leads to more
distinct entries in the RBF matrices which in turn lead to
lower condition numbers.

Although variable shape parameter strategy is very accu-
rate, the coefficient matrix is no longer symmetric.This is the
cost that should be paid for improving the accuracy.

In variable shape parameter, 𝜀𝑗 should be varied in
a predetermined interval [𝜀min, 𝜀max]. There are different
approaches to distribute the values of the variable shape
parameter over an interval. Kansa and Carlson presented
some variable shape parameter strategies with different shape
parameters at different centres [16]. Their distributions of
parameters are in the forms of increasing linearly, decreasing
linearly, and exponentially varying shape parameter, respec-
tively, as follows:

𝜀𝑗 = 𝜀min + (
𝜀max − 𝜀min
𝑁 − 1

) × 𝑗, (12)

𝜀𝑗 = 𝜀max − (
𝜀min − 𝜀max
𝑁 − 1

) × 𝑗, (13)

𝜀𝑗 =
[

[

𝜀
2

min (
𝜀
2

max
𝜀2min

)

(𝑗−1)/(𝑁−1)

]

]

1/2

. (14)

Their empirical results demonstrated that in comparisonwith
the constant shape parameter the variable shape parameter
can significantly reduce theRMS errors ofMQ interpolations.
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They had shown that variable form of the MQ improves the
accuracy of the interpolant in the interior regions where the
fitted function varies relatively rapidly [16].

Sarra and Sturgill introduced a random variable shape
parameter strategy in interpolations and two-dimensional
linear elliptic boundary value problems as follows [19]:

𝜀𝑗 = 𝜀min + (𝜀max − 𝜀min) × rand (1,𝑁) , (15)

where rand (1,𝑁) is a Matlab function that returns 1 × 𝑁
matrix of pseudorandom values induced from a uniform
distribution on the unit interval. They showed that the
randomvariable shape parameter produces themost accurate
results, if the centres are uniformly spaced.

Recently, some other strategies have been applied to
generalized Multiquadric RBF, ((𝑥 − 𝑥𝑗)

2
+ 𝑐
2

𝑗
)
𝛽𝑗 . In [20]

trigonometric variable shape parameter 𝑐 and exponent 𝛽 are
presented as follows:

𝛽𝑗 = 𝛽min + (𝛽max − 𝛽min) × sin (𝑗) , 𝑗 = 1, . . . , 𝑛,

𝑐𝑗 = 𝑐min + (𝑐max − 𝑐min) × sin (𝑗) , 𝑗 = 1, . . . , 𝑛.
(16)

Another strategy for variable shape parameter has been
introduced by Sanyasiraju and Satyanarayana [18]. They
introduced a meshless scheme with a variable shape parame-
ter for steady convection-diffusion equation.Theyminimized
an error function to generate a variable shape parameter for
each centre node.

3. Selection of an Interval in Variable
Shape Parameter

In addition to selecting a suitable strategy, there is another
important problem in variable shape parameter approach:
distribution of the values in an appropriate interval. In [20],
by using the classical variable MQ as (𝑐2

𝑗
+ 𝑟
2
)
𝛽, an interval

such as [𝑐min, 𝑐max] is introduced, where 𝑐min = 1/√𝑁 and
𝑐max = 3/√𝑁 (the shape parameter of classical form of the
MQ is shown by 𝑐). 𝑁 is the total number of nodes in one-
dimensional approximations and is the node number of a
row or a column in two-dimensional approximations. Sarra
and Sturgill emphasize the importance of the length of the
interval, 𝑘 = 𝜀max − 𝜀min, they take 𝑘 = 1, and they study
the errors by trial and errors, while 𝜀max and 𝜀min vary in a
meaningful range [19]. Kansa and Carlson [16] consider a set
of shape parameters which minimizes an error function over
some evaluation points. To find these values, the following
objective function is minimized:

𝑧 =

𝑀

∑

𝑚=1

󵄩󵄩󵄩󵄩𝑓exact (𝑥𝑚) − 𝑓MQ (𝑥𝑚)
󵄩󵄩󵄩󵄩
2
, (17)

where

𝑓MQ (𝑥𝑚) =
𝑁

∑

𝑗=1

𝜆𝑗 (
󵄩󵄩󵄩󵄩󵄩
𝑥𝑚 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩
+ 𝑐
2

𝑗
)
1/2

(18)

and 𝑥𝑚 (𝑚 = 1, . . . ,𝑀) are evaluation points to compute the
RMS error. They used two approaches to find the optimal set

for the shape parameters. In the first approach, a nonlinear
system of normal equations is obtained by least square
approach:

𝜕𝑧

𝜕𝑐𝑗

= 0, 𝑗 = 1, . . . , 𝑁. (19)

In the second one, the sum of squares over the evaluation
points is minimized. For more details refer to [16].

In [19, 20], it is seen that the proposed values for 𝜀max
and 𝜀min are empirical. In Kansa’s approach a set of optimal
shape parameters has been obtained, but the shortage of this
approach is that the exact function 𝑓exact is needed. Kansa
stated that the purpose of his report was some empirical
observations to developments in the theory of the variable
shape parameters. Therefore his approach is not applicable
in practice. In this paper, we apply a new algorithm to find
a reliable interval for the shape parameters.

3.1. Proposed Algorithm. In this section the algorithm is
introduced.

Suppose that 𝑢∗(𝑥; 𝜀) = ∑𝑛
𝑗=1
𝜆𝑗𝜑(𝑟𝑗) approximates the

function 𝑢(𝑥), over a domain𝐷. In Section 2, it was noted that
the accuracy of 𝑢∗(𝑥; 𝜀) depends on 𝜀. For all valid values of 𝜀,
keeping 𝑥∗ ∈ 𝐷 fixed, the corresponding values of 𝑢∗(𝑥∗; 𝜀)
should be convergent to 𝑢(𝑥∗). Therefore

𝑢
∗
(𝑥; 𝜀) 󳨀→ 𝑢 (𝑥) , ∀𝑥 ∈ 𝐷. (20)

If the curve 𝐶 is the plot of 𝑢∗(𝑥∗; 𝜀) as a function of the
shape parameter 𝜀 versus the shape parameter, then 𝐶 will be
horizontal over an interval, say 𝑅𝜀. This interval is a suitable
range for the valid values of the shape parameter. According
to this idea, the proposed algorithm to find an appropriate
interval for the shape parameter can be summarized as
follows.

Algorithm

(1) Let 𝜀 = [𝜀1, 𝜀2, . . . , 𝜀𝑁]
𝑡.

(2) For 𝑘 = 1 to𝑁.
(3) Plot the curve of 𝑢∗ versus 𝜀.

Do evaluate the value of 𝑢∗(𝑥∗; 𝜀𝑘).
(4) Select the subinterval 𝑅𝜀, over which the curve is

almost parallel to 𝜀 axis.

The interval 𝑅𝜀 or a subset of this interval can be applied
in the variable shape parameter strategies as [𝜀min, 𝜀max]. The
approximate function is recomputed by using the proposed
interval.

4. Numerical Examples

In this section to demonstrate the reliability and the efficiency
of the algorithm in various types of variable shape parameter
strategies, three examples, for interpolation in one- and
two-dimensional spaces, are presented. Also two boundary
value problems in two-dimensional spaces are investigated.
Through all the examples we use the uniform centre nodes.
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Figure 1: The plots of 𝑓∗
1
(𝑥
∗
; 𝜀) for 𝑥∗ = 0.1, 𝑥∗ = 0.5, and 𝑥∗ = 0.9 (a, b, and c) versus the shape parameters 𝜀 ∈ [1, 8] and 𝜀 ∈ [4, 8] (d, e,

and f).
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Figure 2: The plots of 𝑓∗
2
(𝑥
∗
; 𝜀) for 𝑥∗ = 0.1, 𝑥∗ = 0.5, and 𝑥∗ = 0.9 (a, b, and c) versus the shape parameters 𝜀 ∈ [0.1, 8] and 𝜀 ∈ [1, 8] (d, e,

and f).
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Figure 3:The error functions for approximation of 𝑓1(𝑥) (a) and 𝑓2(𝑥) (b) by constant, exponential, linear, and random shape parameters in
the proposed intervals.

To validate the numerical accuracy, two error functions such
as Max error and RMS error are calculated:

Max-Error = max
1≤𝑖≤𝑀

(
󵄨󵄨󵄨󵄨𝑢
∗
(𝑥𝑖) − 𝑓 (𝑥𝑖)

󵄨󵄨󵄨󵄨) ,

RMS-Error = √ 1
𝑀

𝑀

∑

𝑖=1

(𝑢∗ (𝑥𝑖) − 𝑓 (𝑥𝑖))
2
,

(21)

where 𝑥𝑖 (𝑖 = 1, . . . ,𝑀) are some evaluation points.
In random variable shape parameter strategy, due to the

nature of random selection, the results may be different.
In all of the numerical results, to reduce this impact, the
average error of ten time successive runs is provided, when
the random variable shape parameter strategy is used.

4.1. One- and Two-Dimensional Interpolation. The test func-
tions in one-dimensional interpolation are

𝑓1 (𝑥) = arccos (𝑥) ,

𝑓2 (𝑥) = 𝑒
𝑥
3

+ cos (2𝑥) ,

𝑥 ∈ [0, 1] .

(22)

First, the algorithm is applied to find an interval for each test
function and then the approximate function is recomputed by
using the variable shape parameter strategy in the proposed
interval. To compare the results, the obtained accuracy is
compared with the accuracy of approximate functions com-
puted by using variable shape parameter in different intervals.

Figures 1(a), 1(b), and 1(c) show the curve of 𝑓∗
1
(𝑥
∗
; 𝜀)

versus shape parameter 𝜀 in the interval [1, 8] for three
different 𝑥∗ ∈ 𝐷 = [0, 1], using 60 centre nodes. The curve is
almost parallel to 𝜀 axis, over the interval [4, 8]. The interval
can be selected as [𝜀min, 𝜀max] ⊆ [4, 8], in variable shape

parameter. By rerunning the “plot command” on subinterval
[4, 8], a more accurate interval is obtained by Figures 1(d),
1(e), and 1(f). By considering 𝜀min = 6 and 𝜀max = 7, the error
functions in interpolation of 𝑓1 by constant, exponential,
linear, and random shape parameter strategies are plotted in
Figure 3(a). 40 evaluation points and 60 centre points are
applied. In this figure, the impact of different distribution
strategies is shown. To illustrate the influence of the interval
[𝜀min, 𝜀max], which is the aim of this study, the results of
applying the proposed interval for two strategies (random
and exponential) are shown in Figure 4.

The plots in Figure 4 show that the proposed interval
obtained by the algorithm is reliable and accurate for variable
shape parameter strategies. By selecting the shape parameters
in the proposed range the accuracy significantly improved.

By visual inspection, in Figures 2(a), 2(b), and 2(c),
𝑓
∗

2
(𝑥
∗
; 𝜀) as a function of the shape parameter 𝜀 has the

same value in the interval [1, 8]. By rerunning the plots
in [1, 8], Figures 2(d), 2(e), and 2(f) demonstrate that the
suitable interval can be selected as [6, 7]. Using the interval
[𝜀min, 𝜀max] = [6, 7] in variable shape parameter, the error
functions obtained by constant, exponential, linear, and
random shape parameter strategies are shown in Figure 3(b).
To demonstrate the reliability of this interval, the error
functions obtained by exponential and random variable
shape parameter in the intervals [0.5, 1.5], [2, 3], [4, 5], and
[6, 7] are plotted in Figure 4. The errors demonstrate that
using the proposed interval [6, 7], obtained by the proposed
algorithm, results in better accuracy.

It is noted that, for various test points 𝑥∗, the optimum
range may be a little different. The experimental results show
that the proposed interval may not be the optimal one to
approximate in the whole domain, but it is a valid interval.
Therefore, in next examples, the results of only one test point
𝑥
∗
∈ 𝐷 are plotted.
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Figure 4:The error functions by random (a, c) and exponential (b, d) variable shape parameters in different intervals for approximating𝑓1(𝑥)
(a, b) and 𝑓

2
(𝑥) (c, d).

In two-dimensional interpolation consider the test func-
tion

𝑓3 (𝑥, 𝑦) = 𝑒
𝑥+2𝑦 (23)

in the rectangle 𝐷 = [−0.5, 0.5] × [−0.5, 0.5]. Using 144
centre points, the algorithm is applied for an arbitrary point
(𝑥
∗
, 𝑦
∗
) = (0.2778, 0.0556) ∈ 𝐷. Figure 5(a) shows the curve

obtained in step (3) of the algorithm. The plot demonstrates

that the appropriate interval can be chosen as [𝜀min, 𝜀max] =
[0.5, 1.5]. The error function of approximate function by
using linear variable shape parameter in this interval is shown
in Figure 6. Also some numerical results are summarized in
Table 1.

4.2. Boundary Value Problems. To illustrate the accuracy
and the efficiency of the algorithm, two linear boundary
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Table 1: The comparison of the RMS error and Max error for different intervals.

[𝜀min, 𝜀max]
Exponential Random

RMS error Max error RMS error Max error

𝑓3

Proposed interval [0.5, 1.5] 4.79e − 6 2.32e − 5 7.15e − 7 1.72e − 6

Some other intervals
[1, 2] 1.00e − 4 4.61e − 4 2.89e − 5 6.84e − 5
[3, 4] 4.10e − 4 2.29e − 3 1.56e − 3 5.44e − 3
[4, 5] 6.81e − 4 3.74e − 3 6.35e − 4 3.32e − 3

Problem (12)

Proposed interval [0.4, 1] 2.69e − 5 7.82e − 5 5.13e − 5 9.22e − 5

Some other intervals
[1, 2] 1.50e − 3 2.84e − 3 9.28e − 4 2.02e − 3
[2, 3] 2.01e − 3 3.57e − 3 4.69e − 3 9.07e − 3
[4, 5] 4.93e − 3 7.58e − 3 4.73e − 3 7.02e − 3

Problem (13)

Proposed interval [0.2, 1] 2.40e − 9 6.86e − 9 2.25e − 12 5.09e − 12

Some other intervals
[1, 2] 1.17e − 4 2.04e − 4 1.04e − 6 1.76e − 6
[2, 3] 1.67e − 4 3.03e − 4 7.23e − 4 2.56e − 3
[3, 4] 4.18e − 4 6.70e − 4 1.17e − 3 2.25e − 3

f∗
3 (x∗, y∗; 𝜀)

f3(x
∗, y∗)

3 41 2 5 60
𝜀

1.4748

1.475

1.4752

1.4754

1.4756

1.4758

(a)

u∗(x∗, y∗; 𝜀)

u(x∗, y∗)

0.755

0.757

0.759

0.761

0.763

0.765

1 2 3 4 5 60
𝜀

(b)

u∗(x∗, y∗; 𝜀)

u(x∗, y∗)

2 31 40
𝜀

0.998

0.9981

0.9982

0.9983

0.9984

0.9985

0.9986

0.9987

(c)

Figure 5: Plot of 𝑓∗
3
(𝑥
∗
, 𝑦
∗
; 𝜀) (a) and the solution of problems (12) and (13), 𝑢∗(𝑥∗, 𝑦∗; 𝜀) (resp., (b) and (c)), versus the shape parameter 𝜀.
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Figure 6: The error function of the approximation of 𝑓3(𝑥, 𝑦) by linear variable shape parameter in the intervals [0.5, 1.5] (a) and [4, 5] (b).
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Figure 7: The error function of the approximation of problem (24) by random variable shape parameters in intervals [0.4, 1] (a) and [2, 3]
(b).

value problems are considered. First consider the following
BVP:

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = −2𝜋
2 sin (𝜋𝑥) cos (𝜋𝑦) , (𝑥, 𝑦) ∈ Ω,

𝑢 (𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ Γ = 𝜕Ω,

(24)

whereΩ = [0, 1]×[0, 1] and Γ is the boundary of the domain.
The exact solution is 𝑢(𝑥, 𝑦) = sin(𝜋𝑥) cos(𝜋𝑦). Using
100 centre points, the algorithm is applied to approximate
the solution of problem (24). The plot of 𝑢(𝑥∗, 𝑦∗), for a
predetermined (𝑥∗, 𝑦∗) = (0.7143, 0.5714) ∈ Ω, versus shape
parameter 𝜀 is shown in Figure 5(b).The curve determines the
appropriate interval [𝜀min, 𝜀max] = [0.4, 1]. The comparison
of the error functions by applying this interval to various
shape parameter strategies with those obtained by some other
intervals is shown in Figure 7 and Table 1. Numerical results
demonstrated that one can achieve good numerical results by
choosing the interval [0.4, 1] determined by the algorithm.

The algorithm is also performed for the following prob-
lem:

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 𝑓 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∈ Ω = [−0.5, 0.5] × [−0.5, 0.5] ,

𝑢 (𝑥, 𝑦) = 𝑔 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Γ = 𝜕Ω,

(25)

where 𝑓 and 𝑔 are specified such that the exact solution is

𝑢 (𝑥, 𝑦) =
65

65 + (𝑥 − 0.2)
2
+ (𝑦 + 0.1)

2
. (26)

Using 100 centre points and an arbitrary point (𝑥∗, 𝑦∗) =
(0.2143, 0.2143) ∈ Ω, Figure 5(c) illustrates that the interval
[0.2, 1] can be selected for applying in the variable shape
parameter strategies. The absolute error of the approximate
solution by applying this interval, which has been shown in
Figure 8, indicates that the proposed interval significantly
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Figure 8:The error function of the approximation of problem (25) by random variable shape parameter in intervals [0.2, 1] (a) and [2, 3] (b).

increases the accuracy of the results. The results of Table 1
illustrate the impact of applying a suitable interval in different
variable shape parameter strategies.

5. Conclusion

In this paper, a new algorithm is suggested to determine
an interval for variable shape parameter strategies. By dis-
tributing the values of the shape parameters in the proposed
interval, it was shown that the new numerical results will be
more accurate. To show the efficiency of the proposed interval
for different strategies, some famous variable shape parame-
ter strategies were investigated. The results demonstrate that
in one- and two-dimensional interpolation problems and
in two-dimensional boundary value problems the algorithm
works well.
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