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In the present investigation, we study the propagation of plane waves in heat conducting micropolar fluid. The phase velocity,
attenuation coefficient, specific loss, and penetration depth are computed numerically and depicted graphically. In addition, the
fundamental solutions of the system of differential equations in case of steady oscillations are constructed. Some basic properties
of the fundamental solution and special cases are also discussed.

1. Introduction

Eringen [1] developed the theory of microfluids, in which
microfluids possess three gyration vector fields in addition
to its classical translatory degrees of freedom represented by
velocity field. Eringen introduced the micropolar fluids [2]
which are subclass of these fluids, in which the local fluid
elements possess rigid rotations without stretch. Micropolar
fluids can support couple stress, the body couples, and
asymmetric stress tensor and possess a rotational field,
which is independent of the velocity of fluid. Anisotropic
fluids, liquid crystals with rigid molecules, magnetic fluids,
cloud with dust, muddy fluids, biologicaltropic fluids, and
dirty fluids (dusty air and snow) over airfoil can be mod-
eled more realistically as micropolar fluids. Ariman et al.
[3, 4] studied microcontinuum fluid mechanics. Řı́ha [5]
discussed the theory of heat conducting micropolar fluid
with microtemperature. Eringen and Kafadar [6] developed
polar field theories. Brulin [7] discussed linear micropolar
media. Flow and heat transfer in a micropolar fluid past with
suction and heat sources were discussed by Agarwal and
Dhanapal [8]. Payne and Straughan [9] investigated critical
Rayleigh numbers for oscillatory and nonlinear convection
in an isotropic thermomicropolar fluid. Gorla [10] studied
combined forced and free convection in the boundary layer
flow of a micropolar fluid on a continuous moving vertical

cylinder. Eringen [11] investigated the theory of microstretch
and bubbly liquids. Aydemir and Venart [12] investigated the
flow of a thermomicropolar fluid with stretch. Yerofeyev and
Soldatov [13] discussed a shear surface wave at the interface of
an elastic body and a micropolar liquid. The theory of elastic
and viscoelasticmicropolar liquids was studied by Yeremeyev
and Zubov [14]. Hsia and Cheng [15] discussed longitudinal
plane waves propagation in elastic micropolar porous media.
Hsia et al. [16] studied propagation of transverse waves in
elastic micropolar porous semispaces.

Construction of fundamental solution of systems of
partial differential equations is necessary to investigate the
boundary value problems of the theory of elasticity and
thermoelasticity. The fundamental solutions in the classical
theory of coupled thermoelasticity were firstly studied by
Hetnarski [17, 18]. Hetnarski and Ignaczak [19] studied
generalized thermoelasticity. Svanadze [20–25] constructed
the fundamental solutions in the microcontinuum field the-
ories. Kumar and Kansal [26] investigated the fundamental
solution in the theory of thermomicrostretch elastic diffusive
solids. Fundamental solution in the theory of micropolar
thermoelastic diffusion with voids was studied by Kumar and
Kansal [27]. Recently, Kumar andKansal [28] discussed plane
waves and fundamental solution in the generalized theories
of thermoelastic diffusion. Kumar and Kansal [29] studied
propagation of plane waves and fundamental solution in the
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theories of thermoelastic diffusive materials with voids. The
information related to fundamental solutions of differential
equations is contained in the books of Hörmander [30, 31].

The main objective of the present paper is to study the
propagation of plane waves in heat conducting micropolar
fluid. Several qualitative characterizations of the wave field,
such as phase velocity, attenuation coefficient, specific loss,
and penetration depth, are computed and depicted graph-
ically for different values of frequency. The representation
of fundamental solution of system of equations in the case
of steady oscillations is obtained in terms of elementary
functions. Some particular cases have also been deduced.

2. Basic Equations

In three-dimensional space 𝐸3, let x = (𝑥
1
, 𝑥
2
, 𝑥
3
) be the

points of the Euclidean space, 𝑡 represents the time variable,
andDx = (𝜕/𝜕𝑥1, 𝜕/𝜕𝑥2, 𝜕/𝜕𝑥3).

Following Ciarletta [32], the basic equations for homoge-
neous, isotropic heat conducting micropolar fluids without
body forces, body couples, and heat sources are given by

𝐷
1
k + (𝜆 + 𝜇) ∇ (∇ ⋅ k) + 𝐾 (∇ ×Ψ) − 𝑏∇𝑇 − 𝑐0∇𝜙

∗

= 0,

𝐷
2
Ψ + (𝛼 + 𝛽)∇ (∇ ⋅Ψ) + 𝐾 (∇ × k) = 0,

𝐾
∗
∇
2
𝑇 − 𝑏𝑇

0
(∇ ⋅ k) = 𝜌

0
𝑎𝑇
0

𝜕𝑇

𝜕𝑡
,

𝜌
0

𝜕𝜙
∗

𝜕𝑡
= ∇ ⋅ k,

(1)

where

𝐷
1
= (𝜇 + 𝐾)Δ − 𝜌

0

𝜕

𝜕𝑡
,

𝐷
2
= 𝛾Δ − 𝐼

𝜕

𝜕𝑡
− 2𝐾,

(2)

where 𝜆, 𝜇, 𝐾, 𝛼, 𝛽, 𝛾, and 𝑐
0
are material constants of the

fluid. k and Ψ are the velocity vector and microrotation
velocity vector, 𝜌

0
is the density, 𝐼 is a scalar constant with

the dimension of moment of inertia of unit mass, 𝐾∗ is
the thermal conductivity, 𝑎𝑇

0
is the specific heat at constant

strain, 𝑇
0
is the absolute temperature, 𝑇 is the temperature

change, 𝜙∗ is the variation in specific volume, 𝑏 = (3𝜆 + 2𝜇 +
𝐾)𝛼
𝑇
, where 𝛼

𝑇
is the coefficient of linear thermal expansion,

and Δ is the Laplacian operator.
For convenience, the following nondimensional quanti-

ties are introduced:

𝑥


𝑖
= √

𝜔
∗

𝑐
2

1

𝑥
𝑖
,

V
𝑖
=

1

√𝜔∗𝑐
2

1

V
𝑖
,

𝜓


2
=
𝜌
0
𝑐
2

1

𝑏𝑇
0

𝜓
2
,

𝑡

= 𝜔
∗
𝑡,

𝜙
∗
= 𝜌
0
𝜙
∗
,

𝑇

=
𝑇

𝑇
0

,

(3)

where 𝜔∗ = 𝜆/𝐼, 𝑐
2

1
= (𝜆 + 2𝜇 + 𝐾)/𝜌

0
, and𝜔∗ is the

characteristic frequency of the medium.
Making use of (2) and (3) in basic equations (1) and after

suppressing the primes, we obtain

𝛿
1
Δk + grad div k + 𝛿

2
curlΨ − 𝛿

3
∇𝑇 − 𝛿

4
∇𝜙
∗
= 𝛿
5
k̇, (4)

𝛿
7
grad divΨ + ΔΨ − 2𝛿

6
Ψ + 𝛿

8
curl k = 𝛿

9
Ψ̇, (5)

Δ𝑇 = 𝛿
11
𝑇 + 𝛿
10
(∇ ⋅ k̇) , (6)

𝜕

𝜕𝑡
𝜙
∗
= (∇ ⋅ k) . (7)

Making use of (7) in (4), we obtain

𝛿
1
Δk̇ + grad div k̇ + 𝛿

2
curl Ψ̇ − 𝛿

3
∇�̇� − 𝛿

4
∇ (∇ ⋅ k)

= 𝛿
5
k̈,

(8)

where

𝛿
1
=
𝜇 + 𝐾

𝜆 + 𝜇
,

𝛿
2
=

𝐾𝑏𝑇
0

(𝜆 + 𝜇) 𝜔∗𝜌
0
𝑐
2

1

,

𝛿
3
=

𝑏𝑇
0

(𝜆 + 𝜇) 𝜔∗
,

𝛿
4
=

𝑐
0

(𝜆 + 𝜇) 𝜌
0
𝜔∗
,

𝛿
5
=

𝜌
0
𝑐
2

1

(𝜆 + 𝜇)
,

𝛿
6
=
𝐾𝑐
2

1

𝛾𝜔∗
,

𝛿
7
=
(𝛼 + 𝛽)

𝛾
,

𝛿
8
=
𝐾𝜌
0
𝑐
4

1

𝛾𝑏𝑇
0

,

𝛿
9
=
𝐼𝑐
2

1

𝛾
,

𝛿
10
=
𝑏𝑐
2

1

𝐾∗
,

𝛿
11
=
𝜌
0
𝑎𝑇
0
𝑐
2

1

𝐾∗
.

(9)



Journal of Fluids 3

For two-dimensional problem, we take

k = (V
1
(𝑥
1
, 𝑥
3
) , 0, V

3
(𝑥
1
, 𝑥
3
)) ,

Ψ = (0, Ψ
2
(𝑥
1
, 𝑥
3
) , 0) .

(10)

The relation between dimensionless velocity components V
1

and V
3
andnondimensional velocity potential functions𝜙 and

𝜓 is expressed as

𝑢
1
=
𝜕𝜙

𝜕𝑥
1

−
𝜕𝜓

𝜕𝑥
3

,

𝑢
3
=
𝜕𝜙

𝜕𝑥
3

+
𝜕𝜓

𝜕𝑥
1

.

(11)

Making use of (10)-(11) in (5), (6), and (8), we obtain

[(𝛿
1
+ 1)

𝜕

𝜕𝑡
− 𝛿
4
]∇
2
𝜙 − 𝛿
3

𝜕

𝜕𝑡
𝑇 − 𝛿
5

𝜕
2
𝜙

𝜕𝑡2
= 0,

(𝛿
1

𝜕

𝜕𝑡
∇
2
− 𝛿
5

𝜕
2

𝜕𝑡2
)𝜓 + 𝛿

2

𝜕Ψ
2

𝜕𝑡
= 0,

∇
2
Ψ
2
− 𝛿
8
∇
2
𝜓 − 2𝛿

6
Ψ
2
− 𝛿
9

𝜕Ψ
2

𝜕𝑡
= 0,

∇
2
𝑇 − 𝛿
11

𝜕

𝜕𝑡
𝑇 − 𝛿
10
∇
2
𝜙 = 0,

(12)

where ∇2 = 𝜕2/𝜕𝑥2
1
+ 𝜕
2
/𝜕𝑥
2

3
.

3. Solution of Plane Waves

For plane harmonic waves, we assume the solution of the
form

(𝜙, 𝜓, Ψ
2
, 𝑇)

= (𝜙, 𝜓, Ψ
2
, 𝑇) exp [𝜄 (𝜉 (𝑥

1
𝑙
1
+ 𝑥
3
𝑙
3
) − 𝜔𝑡)] ,

(13)

where 𝜔 is the circular frequency and 𝜉 is the complex wave
number. 𝜙, 𝜓, Ψ

2
, 𝑇 are undetermined amplitude vectors

that are independent of time 𝑡 and coordinates 𝑥
𝑚
(𝑚 = 1, 3).

𝑙
1
and 𝑙
3
are the direction cosines of the wave normal onto

𝑥
1
𝑥
3
-plane with the property 𝑙2

1
+ 𝑙
2

3
= 1.

Using (13) in (12), we obtain

[𝜉
2
(𝛿
∗

1
𝜄𝜔 + 𝛿

4
) + 𝛿
5
𝜔
2
] 𝜙 + 𝛿

3
𝜄𝜔𝑇 = 0,

(𝜄𝜔𝛿
1
𝜉
2
+ 𝛿
5
𝜔
2
) 𝜓 + 𝛿

2
𝜄𝜔Ψ
2
= 0,

(−𝜉
2
− 2𝛿
6
+ 𝛿
9
𝜄𝜔)Ψ
2
+ 𝛿
8
𝜉
2
𝜓 = 0,

(−𝜉
2
+ 𝛿
11
𝜄𝜔) 𝑇 + 𝛿

10
𝜉
2
𝜙 = 0.

(14)

The system of (14) will have nontrivial solution, if the
determinant of the coefficients𝜙, 𝜓, Ψ

2
, 𝑇 vanishes which on

expansion yield

𝐺
1
𝜉
4
+ 𝐺
2
𝜉
2
+ 𝐺
3
= 0,

𝐺
4
𝜉
4
+ 𝐺
5
𝜉
2
+ 𝐺
5
= 0,

(15)

where
𝐺
1
= (𝛿
∗

1
𝜄𝜔 + 𝛿

4
) ,

𝐺
2
= −𝛿
11
𝜄𝜔 (𝛿
∗

1
𝜄𝜔 + 𝛿

4
) + 𝛿
5
𝜔
2
+ 𝛿
3
𝛿
10
𝜄𝜔,

𝐺
3
= −𝛿
5
𝛿
11
𝜄𝜔
3
,

𝐺
4
= −𝛿
1
𝜄𝜔,

𝐺
5
= −𝛿
5
𝜔
2
+ 𝛿
1
𝜄𝜔 (𝛿
9
𝜄𝜔 − 2𝛿

6
) − 𝛿
2
𝛿
8
𝜄𝜔,

𝐺
6
= 𝛿
5
𝜔
2
(𝛿
9
𝜄𝜔 − 2𝛿

6
) .

(16)

Solving (15), we obtain eight roots of 𝜉, in which four roots
of 𝜉, that is, 𝜉

1
, 𝜉
2
, 𝜉
3
, and 𝜉

4
, correspond to positive 𝑥

3
-

direction and other four roots of 𝜉, that is, −𝜉
1
, −𝜉
2
, −𝜉
3
, and

−𝜉
4
, correspond to negative 𝑥

3
-direction. Now and after, we

will restrict our work to positive𝑥
3
-direction. Corresponding

to roots 𝜉
1
, 𝜉
2
, 𝜉
3
, and 𝜉

4
there exist four waves in descending

order of their velocities, that is, two coupled longitudinal
waves and two coupled transverse waves.

The expressions for phase velocity, attenuation coefficient,
specific loss, and penetration depth of above waves are
derived as follows.

(i) Phase Velocity. The phase velocities are given by

𝑉
𝑖
=

𝜔

Re (𝜉𝑖)


; 𝑖 = 1, 2, 3, 4, (17)

where 𝑉
1
, 𝑉
2
, 𝑉
3
, 𝑉
4
are the phase velocities of two coupled

longitudinal waves and two coupled transverse waves, respec-
tively.

(ii) Attenuation Coefficient. The attenuation coefficients are
defined as

𝑄
𝑖
= Im (𝜉

𝑖
) ; 𝑖 = 1, 2, 3, 4, (18)

where 𝑄
1
, 𝑄
2
, 𝑄
3
, 𝑄
4
are the attenuation coefficients of

two coupled longitudinal waves and two coupled transverse
waves, respectively.

(iii) Specific Loss. The specific loss is the ratio of energy (𝑊)
dissipated in taking a specimen through a rate of stress cycle,
to the elastic energy (𝑊) stored in the specimen when the
rate of strain is maximum.The specific loss is the most direct
method of defining internal friction for a material. For a
sinusoidal plane wave of small amplitude, Kolsky [33] shows
that the specific loss (𝑊/𝑊) equals 4𝜋 times the absolute
value of the imaginary part of 𝜉 to the real part of 𝜉; that is,

𝑆
𝑖
= (

𝑊

𝑊
)

𝑖

= 4𝜋



Im (𝜉
𝑖
)

Re (𝜉
𝑖
)



; 𝑖 = 1, 2, 3, 4, (19)

where 𝑆
1
, 𝑆
2
, 𝑆
3
, 𝑆
4
are the specific loss of two coupled longi-

tudinal waves and two coupled transverse waves, respectively.

(iv) Penetration Depth. The penetration depths are defined by

𝑃
𝑖
=

1

Im (𝜉𝑖)


; 𝑖 = 1, 2, 3, 4, (20)
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where 𝑃
1
, 𝑃
2
, 𝑃
3
, 𝑃
4
are the penetration depths of two cou-

pled longitudinal waves and two coupled transverse waves,
respectively.

4. Steady Oscillations

Let us assume the solution of the form

(k (𝑥, 𝑡) ,Ψ (𝑥, 𝑡) , 𝑇𝑓 (𝑥, 𝑡)) = Re [(k,Ψ, 𝑇𝑓) 𝑒−𝜄𝜔𝑡] , (21)

where 𝜔 > 0 is the frequency of oscillation.
Making use of (21) into (5), (6), and (8), the system of

equations of steady oscillations is obtained as

(𝛿
1
Δ + 𝜄𝛿

5
𝜔) k + 𝛿∗grad div k + 𝛿

2
curlΨ + 𝛿

3
∇𝑇
𝑓

= 0,

(Δ + 𝜇
∗
)Ψ + 𝛿

7
grad divΨ + 𝛿

8
curl k = 0,

[Δ + 𝛿
11
𝜄𝜔] 𝑇
𝑓
− 𝛿
10
div k = 0,

(22)

where 𝜇∗ = 𝛿
9
𝜄𝜔 − 2𝛿

6
, 𝛿
∗
= 1 − 𝜄𝛿

4
/𝜔.

The matrix differential operator is taken as

F (Dx) =

𝐹
𝑔ℎ
(Dx)

7×7
, (23)

where

𝑓
𝑚𝑛
(Dx) = [𝛿1Δ + 𝜄𝛿5𝜔] 𝛿𝑚𝑛 + 𝛿

∗ 𝜕
2

𝜕𝑥
𝑚
𝜕𝑥
𝑛

,

𝐹
𝑚+3,𝑛

(Dx) = 𝛿2

3

∑

𝑟=1

𝜀
𝑚𝑟𝑛

𝜕

𝜕𝑥
𝑟

,

𝐹
𝑚7
(Dx) = 𝛿3

𝜕

𝜕𝑥
𝑚

,

𝐹
𝑚+3,𝑛+3

(Dx) = [Δ + 𝜇
∗
] 𝛿
𝑚𝑛
+ 𝛿
7

𝜕
2

𝜕𝑥
𝑚
𝜕𝑥
𝑛

,

𝐹
𝑚+3,𝑛

(Dx) = −𝛿8

3

∑

𝑟=1

𝜀
𝑚𝑟𝑛

𝜕

𝜕𝑥
𝑟

,

𝐹
𝑚+3,7

(Dx) = 𝐹7,𝑛+3 = 0,

𝐹
77
(Dx) = (Δ + 𝛿11𝜄𝜔) ,

𝐹
7𝑛
(Dx) = −𝛿10

𝜕

𝜕𝑥
𝑛

,

𝑚, 𝑛 = 1, 2, 3.

(24)

The above system of (22) can be represented in the following
form:

F (Dx)V (x) = 0, (25)

where V = (k,Ψ, 𝑇𝑓) is a seven component vector function
on 𝐸3.

Let us assume that

𝛿
1
̸= 0. (26)

F is an elliptic differential operator Hörmander [30], if
condition (26) is fulfilled.

Definition 1. The fundamental solution of the system of (21)-
(22) (the fundamental matrix of operator F) is the matrix
𝐺(x) = ‖𝐺

𝑔ℎ
(x)‖
7×7

, satisfying condition [30]

F (Dx)G (x) = 𝛿 (x) I (x) . (27)

Here 𝛿 is the Dirac delta, I = ‖𝛿
𝑔ℎ
‖
7×7

is the unit matrix, and
x ∈ 𝐸3.

Now further G(x) in terms of elementary functions is
constructed.

5. Fundamental Solution of System of
Equation of Steady Oscillations

We consider the following system of equations:

𝛿
1
Δk + 𝛿∗grad div k + 𝛿

8
curlΨ − 𝛿

10
∇𝑇
𝑓
+ 𝜄𝛿
5
𝜔k

= H,
(28)

(Δ + 𝜇
∗
)Ψ + 𝛿

7
grad divΨ + 𝛿

2
curl k = H, (29)

𝛿
3
div k + (Δ + 𝛿

11
𝜄𝜔) 𝑇
𝑓
= 𝐿, (30)

whereH,H are three-component vector function on𝐸3 and
𝐿 is scalar function on 𝐸3.

The system of (28)–(30) can be written as

Ftr (Dx)V (x) = Q (x) , (31)

where Ftr is the transpose of matrix F, Q = (H,H, 𝐿), and
x ∈ 𝐸3.

The following equations are obtained by applying the
operator div to (28) and (29):

[Δ𝛿
∗

1
+ 𝛿
5
𝜄𝜔] div k − 𝛿

10
Δ𝑇
𝑓
= divH, (32a)

[Δ𝛿
∗

7
+ 𝜇
∗
] divΨ = divH, (32b)

𝛿
3
div k + (Δ + 𝛿

11
𝜄𝜔) 𝑇
𝑓
= 𝐿, (32c)

where 𝛿
1
+ 1 = 𝛿

∗

1
, 𝛿
7
+ 1 = 𝛿

∗

7
.

Equations (32a) and (32c) can be written as

Γ
1
(Δ) div k = Φ

1
, (33)

Γ
1
(Δ) 𝑇
𝑓
= Φ
2
, (34)

where

Γ
1
(Δ) = 𝑒

∗det


Δ𝛿
∗

1
+ 𝛿
5
𝜄𝜔 −𝛿

10
Δ

𝛿
3

Δ + 𝛿
11
𝜄𝜔



, 𝑒
∗
=
1

𝛿
∗

1

, (35)

Φ
1
= 𝑒
∗
{(Δ + 𝛿

11
𝜄𝜔) divH + 𝛿

10
Δ𝐿} , (36)

Φ
2
= 𝑒
∗
{−𝛿
3
divH + (Δ𝛿∗

1
+ 𝜄𝜔𝛿
5
) 𝐿} . (37)
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It can be seen that

Γ
1
(Δ) =

2

∏

𝑚=1

(Δ + 𝜆
2

𝑚
) , (38)

and 𝜆2
𝑚
, 𝑚 = 1, 2, 3 are the roots of the equation Γ

1
(−𝑘) = 0

(with respect to 𝑘).
From (32b), it is seen that

(Δ + 𝜆
2

5
) divΨ = 1

𝛿
∗

7

divH, (39)

where 𝜆2
5
= 𝜇
∗
/𝛿
∗

7
.

Applying the operatorsΔ+𝜇∗ and 𝛿
8
curl to (28) and (30),

respectively, we obtain

(Δ + 𝜇
∗
) (𝛿
1
Δk + 𝛿∗grad div k + 𝛿

5
𝜄𝜔
2k)

+ 𝛿
8
(Δ + 𝜇

∗
) curlΨ

= (Δ + 𝜇
∗
) [H + 𝛿

10
grad𝑇𝑓] ,

(40)

𝛿
8
(Δ + 𝜇

∗
) curlΨ = −𝛿

2
𝛿
8
curl curl k + 𝛿

8
curlH. (41)

Now

curl curl k = grad div k − Δk. (42)

Using (41) and (42) in (40), we obtain

{[(Δ + 𝜇
∗
) 𝛿
1
+ 𝛿
8
] Δ + 𝛿

5
𝜄𝜔 (Δ + 𝜇

∗
)} k

= − [(Δ + 𝜇
∗
) 𝛿
∗
− 𝛿
2
𝛿
8
] grad div k

+ (Δ + 𝜇
∗
) [H + 𝛿

10
grad𝑇𝑓] − 𝛿

8
curlH.

(43)

Applying the operator Γ
1
(Δ) to (43) and using (33)-(34), we

obtain

Γ
1
(Δ) {[(Δ + 𝜇

∗
) 𝛿
1
+ 𝛿
8
] Δ + 𝛿

5
𝜄𝜔 (Δ + 𝜇

∗
)} k

= − [(Δ + 𝜇
∗
) 𝛿
∗
− 𝛿
2
𝛿
8
] gradΦ

1

+ (Δ + 𝜇
∗
) Γ
1 (Δ) [H


+ 𝛿
10
grad𝑇𝑓]

− Γ
1
(Δ) 𝛿
8
curlH.

(44)

The above equation can be rewritten as

Γ
1
(Δ) Γ
2
(Δ) k = Φ, (45)

where

Γ
2 (Δ) = 𝑓

∗det


𝛿
1
Δ + 𝛿
5
𝜄𝜔 𝛿

8
Δ

−𝛿
2

Δ + 𝜇
∗



, 𝑓
∗
=
1

𝛿
1

, (46)

Φ

= 𝑓
∗
{− [(Δ + 𝜇

∗
) 𝛿
∗
− 𝛿
8
] gradΦ

1

+ (Δ + 𝜇
∗
) [Γ
1
(Δ)H + 𝛿

10
gradΦ

2
]

− 𝛿
8
Γ
1 (Δ) curlH


} .

(47)

It can be seen that

Γ
2
(Δ) = (Δ + 𝜆

2

3
) (Δ + 𝜆

2

4
) , (48)

where 𝜆2
3
, 𝜆
2

4
are the roots of the equation Γ

2
(−𝑘) = 0 (with

respect to 𝑘).
Applying the operators 𝛿

2
curl and (𝛿

1
Δ + 𝛿

5
𝜄𝜔) to (29)

and (30), respectively, we obtain

(𝛿
1
Δ + 𝛿
5
𝜄𝜔) 𝛿
2
curl k = 𝛿

2
curlH

− 𝛿
2
𝛿
8
curl curlΨ,

(49)

(Δ + 𝜇
∗
) (𝛿
1
Δ + 𝛿
5
𝜄𝜔)Ψ

+ 𝛿
7
(𝛿
1
Δ + 𝛿
5
𝜄𝜔) grad divΨ

+ 𝛿
2
(𝛿
1
Δ + 𝛿
5
𝜄𝜔) curl k = (𝛿

1
Δ + 𝛿
5
𝜄𝜔)H.

(50)

Now

curl curlΨ = grad divΨ − ΔΨ, (51)

Using (47) and (51) in (50), we obtain

(Δ + 𝜇
∗
) (𝛿
1
Δ + 𝛿
5
𝜄𝜔)Ψ

+ 𝛿
7
(𝛿
1
Δ + 𝛿
5
𝜄𝜔) grad divΨ + 𝛿

2
curlH

− 𝛿
2
𝛿
8
(grad divΨ − ΔΨ) = (𝛿

1
Δ + 𝛿
5
𝜄𝜔)H.

(52)

The above equation may also be written as

[(Δ + 𝜇
∗
) (𝛿
1
Δ + 𝛿
5
𝜄𝜔) + 𝛿

2
𝛿
8
Δ]Ψ

= − [𝛿
7
(𝛿
1
Δ + 𝛿
5
𝜄𝜔) − 𝛿

2
𝛿
8
] grad divΨ

− 𝛿
2
curlH + (𝛿

1
Δ + 𝛿
5
𝜄𝜔)H.

(53)

Applying operator (Δ + 𝜆2
5
) to (53) and using (39), we obtain

(Δ + 𝜆
2

5
) [𝛿
1
Δ
2
+ Δ (𝛿

1
𝜇
∗
+ 𝛿
5
𝜄𝜔 + 𝛿

2
𝛿
8
) + 𝛿
5
𝜄𝜔𝜇
∗
]

⋅Ψ = − [𝛿
7
(𝛿
1
Δ + 𝛿
5
𝜄𝜔) − 𝛿

2
𝛿
8
] grad 1

𝛿
∗

7

divH

− 𝛿
2
(Δ + 𝜆

2

5
) curlH + (Δ + 𝜆2

5
) (𝛿
1
Δ + 𝛿
5
𝜄𝜔
2
)

⋅H.

(54)

The above equation can also be written as

Γ
2
(Δ) (Δ + 𝜆

2

5
)Ψ = Φ


, (55)

where

Φ

= 𝑓
∗
{− [𝛿
7
(𝛿
1
Δ + 𝛿
5
𝜄𝜔) − 𝛿

2
𝛿
8
]
1

𝛿
∗

7

grad divH

− 𝛿
2
(Δ + 𝜆

2

5
) curlH

+ (Δ + 𝜆
2

5
) (𝛿
1
Δ + 𝛿
5
𝜄𝜔)H} .

(56)
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From (34), (45), and (55), we obtain

Θ (Δ)V (x) = Φ̂ (x) , (57)

where

Φ̂ = (Φ

,Φ

, Φ
2
) ,

Θ (Δ) =

Θ
𝑔ℎ
(Δ)
7×7

,

Θ
𝑚𝑚
(Δ) = Γ

1
(Δ) Γ
2
(Δ) =

4

∏

𝑞=1

(Δ + 𝜆
2

𝑞
) ,

Θ
𝑚+3,𝑛+3

(Δ) = Γ
2
(Δ) (Δ + 𝜆

2

5
) ,

Θ
𝑔ℎ (Δ) = 0,

Θ
77
(Δ) = Γ

1
(Δ) ,

𝑚, 𝑛 = 1, 2, 3, 𝑔, ℎ = 1, 2, 3, . . . , 7, 𝑔 ̸= ℎ.

(58)

Equations (37), (47), and (56) can be rewritten in the form

Φ

= [𝑓
∗
(Δ + 𝜇

∗
) Γ
1
(Δ) 𝐽 + 𝑞

11
(Δ) grad div ]H

+ 𝑞
21 (Δ) curlH


+ 𝑞
31 (Δ) grad 𝐿,

(59)

Φ

= 𝑞
12 (Δ) curlH


+ 𝑓
∗
(Δ + 𝜆

2

5
) (𝛿
1
Δ + 𝛿
5
𝜄𝜔) 𝐽

+ 𝑞
22 (Δ) grad divH


,

(60)

Φ
2
= 𝑞
13
(Δ) divH + 𝑞

33
(Δ) 𝐿, (61)

where J = ‖𝛿
𝑔ℎ
‖
3×3

is the unit matrix.
In (59)–(61), we have used the following notations:

𝑞
11
(Δ) = 𝑒

∗
𝑓
∗
{− [(Δ + 𝜇

∗
) 𝛿
∗
− 𝛿
8
] (Δ + 𝛿

11
𝜄𝜔)

− (Δ + 𝜇
∗
) 𝛿
10
𝛿
3
} ,

𝑞
21 (Δ) = −𝑓

∗
𝛿
8
Γ
1 (Δ) ,

𝑞
31 (Δ) = 𝑒

∗
𝑓
∗
{[𝛿
8
− (Δ + 𝜇

∗
) 𝛿
∗
] 𝛿
10

+ 𝛿
10
(Δ + 𝜇

∗
) (Δ𝛿
∗

1
+ 𝛿
5
𝜄𝜔)} ,

𝑞
12
(Δ) = −𝑓

∗
𝛿
2
(Δ + 𝜆

2

5
) ,

𝑞
22
(Δ) = −

𝑓
∗

𝛿
7

∗
[𝛿
7
(𝛿
1
Δ + 𝛿
5
𝜄𝜔) − 𝛿

2
𝛿
8
] ,

𝑞
13
(Δ) = −𝑒

∗
𝛿
3
,

𝑞
33 (Δ) = 𝑒

∗
(Δ𝛿
∗

1
+ 𝛿
5
𝜄𝜔) .

(62)

Now from (59)–(61), we have

Φ̂ (x) = Rtr
(Dx)Q (x) , (63)

where

R = 𝑅𝑚𝑛
7×7

,

𝑅
𝑚𝑛
(Dx) = 𝑓

∗
(Δ + 𝜇

∗
) Γ
1 (Δ) 𝛿𝑚𝑛

+ 𝑞
11 (Δ)

𝜕
2

𝜕𝑥
𝑚
𝜕𝑥
𝑛

,

𝑅
𝑚,𝑛+3

(Dx) = 𝑞12 (Δ)
3

∑

𝑟=1

𝜀
𝑚𝑟𝑛

𝜕

𝜕𝑥
𝑟

,

𝑅
𝑚7
(Dx) = 𝑞13 (Δ)

𝜕

𝜕𝑥
𝑚

,

𝑅
𝑚+3,𝑛

(Dx) = 𝑞21 (Δ)
3

∑

𝑟=1

𝜀
𝑚𝑟𝑛

𝜕

𝜕𝑥
𝑟

,

𝑅
𝑚+3,𝑛+3

(Dx) = 𝑓
∗
(Δ + 𝜆

2

5
) (𝛿
1
Δ + 𝛿
5
𝜄𝜔) 𝛿
𝑚𝑛

+ 𝑞
22
(Δ)

𝜕
2

𝜕𝑥
𝑚
𝜕𝑥
𝑛

,

𝑅
𝑚+3,7

(Dx) = 𝑅7,𝑚+3 (Dx) = 0,

𝑅
7𝑛
(Dx) = 𝑞31 (Δ)

𝜕

𝜕𝑥
𝑛

,

𝑅
77
(Dx) = 𝑞33 (Δ) ,

𝑚, 𝑛 = 1, 2, 3.

(64)

The following relation is obtained from (31), (57), and (61):

ΘV = RtrFtrV. (65)

The above relation implies that

RtrFtr = Θ,

F (Dx)R (Dx) = Θ (Δ) .
(66)

Let us assume that

𝜆
2

𝑚
̸= 𝜆
2

𝑛
̸= 0, 𝑚, 𝑛 = 1, 2, 3, 4, 5, 𝑚 ̸= 𝑛. (67)

Let

Y (x) = 𝑌𝑟𝑠 (x)
7×7

,

𝑌
𝑚𝑚 (x) =

4

∑

𝑛=1

𝑟
1𝑛
𝜍
𝑛 (x) ,

𝑌
𝑚+3,𝑚+3 (x) =

5

∑

𝑛=3

𝑟
2𝑛
𝜍
𝑛 (x) ,

𝑌
77 (x) =

2

∑

𝑛=1

𝑟
3𝑛
𝜍
𝑛 (x) ,

𝑌
𝑢V (x) = 0,

𝑚 = 1, 2, 3, V, 𝑤 = 1, 2, . . . , 7, V ̸= 𝑤,

(68)
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where

𝜍
𝑛
(x) = − 1

4𝜋 |x|
exp (𝜄𝜆

𝑛 |x|) , 𝑛 = 1, 2, . . . , 5,

𝑟
1𝑙
=

4

∏

𝑚=1,𝑚 ̸=𝑙

(𝜆
2

𝑚
− 𝜆
2

𝑙
)
−1

, 𝑙 = 1, 2, 3, 4,

𝑟
2V =

5

∏

𝑚=3,𝑚 ̸=V
(𝜆
2

𝑚
− 𝜆
2

V)
−1

, V = 3, 4, 5,

𝑟
3𝑔
=

2

∏

𝑚=1,𝑚 ̸=𝑔

(𝜆
2

𝑚
− 𝜆
2

𝑔
)
−1

, 𝑔 = 1, 2.

(69)

Now the following lemma will be proved.

Lemma 2. The matrix Y defined above is the fundamental
matrix of operator Θ(Δ); that is,

Θ (Δ)Y (x) = 𝛿 (x) I (x) . (70)

Proof. To prove the lemma, it is proved that

Γ
1
(Δ) Γ
2
(Δ) 𝑌
11
(x) = 𝛿 (x) , (71a)

Γ
2
(Δ) (Δ + 𝜆

2

5
) 𝑌
44
(x) = 𝛿 (x) , (71b)

Γ
1
(Δ) 𝑌
77
(x) = 𝛿 (x) . (71c)

We find that

𝑟
11
+ 𝑟
12
+ 𝑟
13
+ 𝑟
14
= 0,

4

∑

𝑗=2

𝑟
1𝑗
(𝜆
2

1
− 𝜆
2

𝑗
) = 0,

2

∑

𝑗=1

𝑟
1𝑗

4

∏

𝑚=3

(𝜆
2

𝑚
− 𝜆
2

𝑗
) = 0,

4

∑

𝑗=3

𝑟
1𝑗

3

∏

𝑚=1

(𝜆
2

𝑚
− 𝜆
2

𝑗
) = 0,

𝑟
14
(𝜆
2

1
− 𝜆
2

4
) (𝜆
2

2
− 𝜆
2

4
) (𝜆
2

3
− 𝜆
2

4
) = 1,

(Δ + 𝜆
2

𝑚
) 𝜍
𝑛
(x) = 𝛿 (x) + (𝜆2

𝑚
− 𝜆
2

𝑛
) 𝜍
𝑛
(x) ,

𝑚, 𝑛 = 1, 2, 3, 4.

(72)

Now consider

Γ
1
(Δ) Γ
2
(Δ) 𝑌
11
(x) = (Δ + 𝜆2

2
) (Δ + 𝜆

2

3
) (Δ + 𝜆

2

4
)

⋅

4

∑

𝑛=1

𝑟
1𝑛
[𝛿 (x) + (𝜆2

1
− 𝜆
2

𝑛
) 𝜍
𝑛
(x)] = (Δ + 𝜆2

2
) (Δ

+ 𝜆
2

3
) (Δ + 𝜆

2

4
)

4

∑

𝑛=2

𝑟
1𝑛
(𝜆
2

1
− 𝜆
2

𝑛
) 𝜍
𝑛
(x) = (Δ + 𝜆2

3
)

⋅ (Δ + 𝜆
2

4
)

4

∑

𝑛=2

𝑟
1𝑛
(𝜆
2

1
− 𝜆
2

𝑛
)

⋅ [𝛿 (𝑥) + (𝜆
2

2
− 𝜆
2

𝑛
) 𝜍
𝑛
(x)] = (Δ + 𝜆2

3
) (Δ + 𝜆

2

4
)

⋅

4

∑

𝑛=3

𝑟
1𝑛
(𝜆
2

1
− 𝜆
2

𝑛
) (𝜆
2

2
− 𝜆
2

𝑛
) 𝜍
𝑛
(x) = (Δ + 𝜆2

4
)

⋅

4

∑

𝑛=2

𝑟
1𝑛
(𝜆
2

1
− 𝜆
2

𝑛
) (𝜆
2

2
− 𝜆
2

𝑛
)

⋅ [𝛿 (𝑥) + (𝜆
2

3
− 𝜆
2

𝑛
) 𝜍
𝑛
(x)] = (Δ + 𝜆2

4
) 𝜍
4
(x)

= 𝛿 (x) .
(73)

In the similar way, (71b) and (71c) can be proved.
The following matrix is now introduced:

G (x) = R (Dx)Y (x) . (74)

From (66), (70), and (74), it is obtained that

F (Dx)G (x) = F (Dx)R (Dx)Y (x) = 𝛿 (x) I (x) . (75)

Hence, G(x) is a solution to (27).
Hence, the following theorem has been proved.

Theorem3. ThematrixG(x) defined by (60) is the fundamen-
tal solution of system of (22).

6. Basic Properties of the Matrix G(x)

Property 1. Each column of the matrixG(x) is the solution of
the system of (22) at every point x ∈ 𝐸3 except the origin.

Property 2. Thematrix G(x) can be written as

G = 𝐺𝑚𝑛
7×7

,

G
𝑚𝑛
(x) = R

𝑚𝑛
(Dx) 𝑌11 (x) ,

G
𝑚,𝑛+3

(x) = R
𝑚,𝑛+3

(Dx) 𝑌44 (x) ,

G
𝑚𝑝
(x) = R

𝑚𝑝
(Dx) 𝑌77 (x) ,

𝑚 = 1, 2, . . . , 7, 𝑛 = 1, 2, 3, 𝑝 = 7.

(76)

7. Numerical Results and Discussion

The following values of relevant parameters for numerical
computations are taken.

Following Singh andTomar [34], the values ofmicropolar
constants are taken as

𝜆 = 0.15 × 10
8Nsecm−2,

𝜇 = 0.03 × 10
8Nsecm−2,

𝐾 = 0.2 × 10
5Nsecm−2,

𝛾 = 0.0222 × 10
5Nsec,

𝜌
0
= 0.8 × 10

3 kgm−3,

𝐼 = 0.00400 × 10
−16Nsec2m−2.

(77)
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Figure 1: Variation of phase velocity with frequency 𝜔.
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Figure 2: Variation of phase velocity with frequency 𝜔.

Thermal parameters are taken as of comparable magnitude:

𝑇
0
= 0.196K,

𝐾
∗
= 0.89 × 10

2Nsec−1K−1,

𝑐
0
= 0.005 × 10

11N2sec2m−6,

𝑎 = 1.5 × 10
5m2sec−2K−2.

(78)

The variations of phase velocities, attenuation coefficients,
with respect to frequency have been shown in Figures 1–4 and
5–8, respectively. In Figures 1–8, solid line corresponds to heat
conducting micropolar fluid for𝐾 = 0.2 (MT1) and dash line
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Figure 3: Variation of phase velocity with frequency 𝜔.
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Figure 4: Variation of phase velocity with frequency 𝜔.

corresponds to heat conducting micropolar fluid for𝐾 = 0.4
(MT2).

7.1. Phase Velocity. It is noticed from Figures 1–4 that the
magnitudes of the phase velocities 𝑉

𝑖
, 𝑖 = 1, 2, 3, 4, for MT1

and MT2 increase with increase in frequency. The phase
velocity 𝑉

1
for MT1 is greater than the phase velocity for

MT2, while for𝑉
2
, 𝑉
3
, 𝑉
4
the behavior is reversed.This shows

that as the value of micropolar constant increases, the phase
velocity 𝑉

1
decreases, while other phase velocities increase.

There is slight difference in the phase velocity𝑉
2
for MT1 and

MT2.
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Figure 6: Variation of attenuation coefficient with frequency 𝜔.

7.2. Attenuation Coefficient. Figures 5–8 depict that the
magnitudes of attenuation coefficient 𝑄

𝑖
, 𝑖 = 1, 2, 3, 4, get

increased with increase in wave number 𝜔. It is noticed that,
with increase in the value of𝐾, the magnitude of attenuation
coefficient increases; that is, the values of attenuation coeffi-
cients forMT2 are greater than the values forMT1 that shows
the effect of micropolarity.

8. Conclusion

In the present paper, we have studied the propagation of plane
waves in heat conducting micropolar fluid. The magnitudes
of phase velocities and attenuation coefficients are depicted

9.6
9.8

10.0
10.2
10.4
10.6
10.8
11.0
11.2
11.4
11.6
11.8
12.0
12.2
12.4
12.6
12.8
13.0
13.2
13.4

At
te

nu
at

io
n 

co
effi

ci
en

tQ
3

5 10 15 20 25 30 35 40 45 500
Frequency

 MT1
 MT2
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Figure 8: Variation of attenuation coefficient with frequency 𝜔.

numerically and presented graphically with respect to fre-
quency. Appreciable micropolarity effect is observed on these
amplitudes. It is noticed that themagnitudes of phase velocity
𝑉
𝑖
, 𝑖 = 2, 3, 4, and attenuation coefficient 𝑄

𝑖
, 𝑖 = 1, 2, 3, 4,

for 𝐾 = 0.4 remain more than the magnitude for 𝐾 = 0.2.
This reveals that the more the value of micropolar constant,
the more the magnitude of phase velocity and attenuation
coefficient. The fundamental solution in heat conducting
micropolar fluid in case of steady oscillations in terms of
elementary functions is also constructed in the present study.
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