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We define a two-player combinatorial game in which players take alternate turns; each turn consists of deleting a vertex of a graph,
together with all the edges containing such vertex. If any vertex became isolated by a player’s move then it would also be deleted.
A player wins the game when the other player has no moves available. We study this game under various viewpoints: by finding
specific strategies for certain families of graphs, through using properties of a graph’s automorphism group, by writing a program
to look at Sprague-Grundy numbers, and by studying the game when played on random graphs. When analyzing Grim played on
paths, using the Sprague-Grundy function, we find a connection to a standing open question about Octal games.

1. Introduction

In this article we define a two-person game played on the
vertices of a graph and then study it to find strategies for either
player to win. The analysis of the game ends up depending
heavily on the family of graphs considered at the time.This is
why, in this article, we will consider a wide variety of tools
from game theory, combinatorics, and group theory, plus
some programming, to attack this problem. In the following
section we will cover some basic notation and definitions that
will be useful throughout the paper, as well as the actual game
play.

A graph𝐺 = (𝑉,E) is a set𝑉 of vertices and a set𝐸 of edges
connecting pairs of vertices. In this work we consider only
graphs that are finite, simple, and undirected. As customary,
the degree of a vertex V, denoted as deg(V), is the number of
edges that are incident with V.We say that a vertex V is isolated
if deg(V) = 0. A graph is said to be connected if, given any
two vertices 𝑢, V ∈ 𝑉(𝐺), there is a path in 𝐺 from 𝑢 to V.
Two graphs are said to be disjoint when their vertex sets are
disjoint; we will use the notation 𝐺∪𝐻 for the graph formed
by two disjoint graphs,𝐺 and𝐻.The join of two graphs𝐺 and
𝐻, denoted as 𝐺+𝐻, is the graph with vertex set𝑉(𝐺+𝐻) =

𝑉(𝐺)∪𝑉(𝐻) and edge-set 𝐸(𝐺+𝐻) = 𝐸(𝐺)∪𝐸(𝐻)∪{V𝑤; V ∈

𝑉(𝐺), 𝑤 ∈ 𝑉(𝐻)}. Finally, we will denote paths, cycles, and
wheels by 𝑃

𝑛
, 𝐶
𝑛
, and𝑊

𝑛
, respectively, where 𝑛 is the number

of vertices in the graph, and 𝐺 will denote the graph with
𝑉(𝐺) = 𝑉(𝐺) and edges connecting only vertices that were
not connected in 𝐺. More information about graphs may be
found in [1].

In order to define our game we rephrase well-known
notions in combinatorial game theory for a game played on
graphs. For further reading about game theory, we direct the
reader to [2].

Definition 1. A two-player game is said to be impartial if the
outcome of the game depends only on which player goes
first. A two-player game is said to be combinatorial if both
players have perfect information, there is no chance involved,
the game ends after a finite number of moves, the game is
impartial, and there is no draw. A two-player game is said to
be normal if the last player tomake a legal move is the winner.

Definition 2. Let𝐺 and𝐻 be graphs onwhich a combinatorial
game can be played.

(1) If 𝐻 is obtained from 𝐺 after a game move, then we
will call𝐻 a follower of 𝐺 in the game.
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(2) If, given a graph 𝐻, there is a strategy to win for the
next player making a move then we will say that 𝐻
is an N position (N is for the next one). If, given a
graph𝐻, the next playermaking amove does not have
a strategy to win then𝐻 is aP position (P is for the
previous one).

Remark 3. Not having a strategy to win means the other
player has a strategy to win. This follows from the Sprague-
GrundyTheorem; see [3, 4]. So, if 𝐺 is the starting graph and
Player 1 will move first, then 𝐺 being an N position means
Player 1 has a strategy to win the game, but if𝐺 is aP position
then Player 2 has a strategy to win the game.

Next we define our game, which we call Grim.

Definition 4. Given a graph𝐻, we define a legal move of Grim
on𝐻 by a player selecting and consequently deleting a vertex.
When this vertex is deleted all edges adjacent to this vertex
are also deleted, together with any other vertices (if any) that
have become isolated because of the move.

The game starts with Player 1 moving first on a prear-
ranged, starting position, graph 𝐺 (naturally, if 𝐺 had any
isolated vertices these would be deleted before the first player
canmove). After that, the two players alternate turns, making
legal moves on the follower that resulted from the previous
player’s move. They play until all vertices have been deleted.
We refer to the winner of the game or winner of the graph as
the player who makes the last legal move.

Remark 5. Grim is a normal combinatorial two-player game.
Given the nature of the game, we will also say it is a vertex
deletion game.

Note that changing the starting graphmay change theway
Grim is played completely. So, in this article we are not just
studying a specific game, but a family of games.This property
is commonplace in the study of games played on graphs, of
which there is a wide variety; see, for example, Node Kayles
in [5] and [6], Connect-it [7], and Take Turn [8] and other
similar games in [9–11].

Our interest in the subject of games played on graphs is
due to the papers by Fukuyama (see [12, 13]), where he studies
Nim on graphs.

Our study of Grim is split as follows. In Section 2 we
look at weighted graphs and prove that an extension of Grim
to these graphs is unnecessary, as the strategies that could
be used to play Grim in weighted graphs are the same as
those used to play Grim on certain unweighted graphs. In
Section 3 we find winning strategies for when Grim is played
on complete or complete multipartite graphs. In Section 4 we
look at how certain symmetries in a graph could be exploited
to guarantee a victory when Grim is played on such a graph.
In Section 5 we study paths, cycles, and other related graphs
by using Sprague-Grundy functions; in this way we discover
an interesting connection between Grim played on paths and
an open problem about Octal games. Finally, in Section 6 we
consider random graphs in order to learn whether Player 1
has an overall better chance of winning at Grim.

2. Weighted Graphs

It is not unusual to wonder whether a game played on graphs
could be extended to be played on graphs with weighted
vertices, maybe by thinking about the vertices of the graph
as heaps of chips/tokens that can be removed one at a time by
players. Of course, this way of playing Grim is similar to the
wayNim is played, and thus it has been considered in the past
(e.g., [14]). In this section we prove that the natural variation
of Grim on weighted graphs is nothing but regular Grim on
a different family of graphs.

When playing Grim on a weighted graph, we only allow
a vertex with weight 𝑡 to be deleted after it has been selected 𝑡
times or if it has been completely isolated.Thus, we can create
many different games from the same graph by giving each
vertex a new random weight.

As we studied these graphs, we discovered that we could
replace a vertex with weight 𝑡 with 𝑡 “regular” vertices that
do not share any edges. In order to prove such a claim the
concept of a blowup of a vertex becomes necessary.

Definition 6. Let 𝐺 be a graph with weighted vertices. Let V ∈
𝑉(𝐺) having weight one and 𝑡 ∈ N. A 𝑡-blowup of V is an
independent set 𝐼V = {V

1
, V
2
, . . . , V

𝑡
} of vertices of weight 1

that “takes the place” of V. More precisely, wherever there was
an edge joining V to𝑤 ∈ 𝑉(𝐺) there is an edge joining V

𝑗
with

𝑤, for all 𝑗 = 1, . . . , 𝑡.
The graph obtained by the 𝑡-blowup of V will be denoted

as 𝐺(𝑡V). Similarly, for V, 𝑤 ∈ 𝑉(𝐺) and 𝑠, 𝑡 ∈ N we denote
a “double blowup” 𝐺(𝑡V)(𝑠𝑤) as 𝐺(𝑡V, 𝑠𝑤). For multiple
blowups we extend in the natural way the notation set of
double blowups.

Note that 𝐺(1V) = 𝐺, for all V ∈ 𝑉(𝐺).

Lemma 7. Let 𝑡 ∈ N. Let 𝐺 be a graph with weighted vertices,
and let V ∈ 𝑉(𝐺) haveweight 𝑡.We denote by𝐺(V) the 𝑡-blowup
of the graph obtained by reducing the weight of V to one. Then,
the outcome of playing Grim on 𝐺 or on 𝐺(V) is the same.

Proof. Let 𝐼 = {V
1
, . . . , V

𝑡
} be the independent set used to

obtain 𝐺(V). There are two possible ways to delete V while
playing on 𝐺; thus we look at the following two cases.

Case 1. Try to isolate V in 𝐺. Using the same moves needed to
remove all of V’s neighbors in𝐺we can isolate every vertex in
𝐼 (in 𝐺(V)).

Case 2. Remove V in 𝐺 by repeatedly using it in the game. In
order to remove V from 𝐺, it has to be selected 𝑡 times. To
fully remove 𝐼 from 𝐺(V), each of the 𝑡 vertices in 𝐼 must be
selected and removed. Thus removing 𝐼 from 𝐺(V) requires
an equivalent process as that needed to remove V from 𝐺.

Therefore, game playwith V orwith 𝐼will involve the same
strategies. Finally, replacing V with 𝐼 will not affect the other
vertices in the graph, and thus it will not affect playing with
them.

An easy induction argument proves the main theorem of
this section.
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Theorem 8. Let 𝐺 be a weighted graph with 𝑉(𝐺) = {V
1
, . . . ,

V
𝑛
} and with 𝑡

𝑖
being the weight of vertex V

𝑖
, for all 𝑖 = 1, . . . , 𝑛.

We denote by 𝐺(V
1
, V
2
, . . . , V

𝑛
) the (𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
)-blowup of the

graph obtained by reducing (if possible) the weight of each
vertex of 𝐺 to one. Then, the outcome of playing Grim on 𝐺

or on 𝐺(V
1
, . . . , V

𝑛
) is the same.

We conclude that Grim on weighted graphs does not
need to be studied separately, and so from now on the game
discussed is always Grim played on unweighted graphs.

Before we move on, we would like to let the reader know
thatwewill often use theword graph tomean the game played
on that graph (as in “Player 1 wins graph 𝐺”). Most proofs in
the following sections somehow describe the specific strategy
to be used to win.

3. Complete and Complete
Multipartite Graphs

In this section we obtain specific strategies to win at Grim for
complete graphs and complete multipartite graphs. We start
with a theorem about complete graphs.

Lemma 9. Let 𝑛 ∈ N. Then, 𝐾
𝑛
is N position if and only if 𝑛

is even.

Proof. The case 𝑛 = 1 is immediate, as no game is ever played.
For 𝑛 > 1, all moves are equivalent in a complete graph, and a
move will always yield a complete graph, so the game always
lasts 𝑛 − 1moves.

Grim played on complete bipartite graphs will be ana-
lyzed next.

Theorem 10. Let𝑚, 𝑛 ∈ N. Then, the following hold.

(1) 𝐾
1,𝑛

is anN position.
(2) Assume 𝑚, 𝑛 > 1. Then, 𝐾

𝑚,𝑛
is an N position if and

only if𝑚 + 𝑛 is odd.

Proof. The first claim is immediate. For the second claim we
start by settling a base case.

For 𝐾
2,2
, whatever move Player 1 makes, the follower is

always 𝐾
1,2
. By part 1, Player 2 wins this graph.

Now we proceed by induction on 𝑘 = 𝑚 + 𝑛. Part 1 and
the base case considered above tell us that we have the result
for 𝑘 = 3, 4. So, assume the result holds for 𝑚 + 𝑛 = 𝑘 ≥ 4.
Consider𝐾

𝑎,𝑏
, where 𝑎 + 𝑏 = 𝑘 + 1.

Case 1. If 𝑘 + 1 is odd, then 𝑘 + 1 ≥ 5. WLOG assume that
𝑎 > 2 and let Player 1 move by creating the follower 𝐾

𝑎−1,𝑏
.

Since both 𝑎 − 1, 𝑏 > 1 we use the induction hypothesis to
determine that Player 1 wins 𝐾

𝑎,𝑏
.

Case 2. If 𝑘 + 1 is even, then 𝑘 + 1 ≥ 6. If WLOG 𝑎 = 2

then Player 1 would not want to move to create the follower
𝐾
1,𝑏
, as this would bewon by Player 2.However, if theymoved

to create the follower 𝐾
2,𝑏−1

then they would lose anyway, by
induction, as 2, 𝑏−1 > 1. Now, if 𝑎, 𝑏 > 2 then whatever move

Player 1 makes they would lose by induction, as 𝑎 − 1, 𝑏 − 1 ≥

2.

In the rest of this section we extend Theorem 10 to most
multipartite graphs. At this point we would like to remark
that the only way to delete a vertex in a complete multipartite
graph and, by doing so, isolate other vertices would be when
we were making a move on 𝐾

1,𝑛
, which is a graph already

studied in Theorem 10. This unique situation indicates that
we should take a closer look at graphs that may have 𝐾

1,𝑛
as

a follower; 𝐾
1,1,𝑛

is the only one of those graphs that has not
been already studied inTheorem 10. Looking at the behavior
of 𝐾
1,𝑛

we obtained our next result.

Lemma 11. Let𝑚, 𝑛 ∈ N, and 𝐺 = 𝐾
1,𝑚,𝑛

. Then,

(1) if𝑚 = 1, then𝐺 is anN position if and only if 𝑛 is even.
(2) If𝑚 = 2 and 𝑛 ≥ 2, then 𝐺 is anN position.
(3) If𝑚, 𝑛 ≥ 2, then𝐺 is anN position if and only if𝑚+𝑛

is even.

Proof. We start by noticing that the case 𝑚 = 𝑛 = 1 is
immediate.We will prove the case𝑚 = 1, 𝑛 > 1 by induction
on 𝑛. Our base cases are 𝐾

1,1,1
and 𝐾

1,1,2
. We know that

the first graph is a P position, and, clearly, Player 1 wins
𝐾
1,1,2

by leaving the follower 𝐾
1,1,1

after their first move. For
𝑛 > 2, Player 1 should start by leaving 𝐾

1,1,𝑛−1
as a follower

(otherwise Player 2 would win the game immediately). Player
2 could leave 𝐾

1,𝑛−1
or 𝐾
1,1,𝑛−2

as a follower. In the first case,
Player 1 wins 𝐺, and in the second case induction forces the
result we wanted.

Let us assume that 𝑚 = 2 and 𝑛 ≥ 2. If 𝑛 is even then
Player 1 leaves𝐾

2,𝑛
as a follower, which byTheorem 10 is won

by Player 1. If 𝑛 is odd then Player 1 leaves𝐾
1,1,𝑛

as a follower,
and thus they win 𝐺 by using the strategy discussed above.

Finally, assume𝑚, 𝑛 ≥ 3. Since none of the players would
like to leave 𝐾

1,2,𝑘
as a follower then the winners of these

graphs will alternate depending on 𝑛 being even or odd.Thus
we look at the “base case” 𝐾

1,3,3
, which is an N position by

Theorem 10, to get the desired result.

The complete tripartite graphs “missing” from Lemma 11
and most of the other complete multipartite graphs are
considered in the following theorem.

Theorem 12. Let 𝐺 = 𝐾
𝑛
1
,𝑛
2
,...,𝑛
𝑡

, where 𝑡 > 2 and 𝑛
𝑖
≥ 2, for

all 𝑖 = 1, . . . , 𝑡. Then, 𝐺 is aP position if and only if |𝑉(𝐺)| is
even.

Proof. Let 𝐺 = 𝐾
𝑛
1
,𝑛
2
,...,𝑛
𝑡

, where 𝑡 > 2 and 𝑛
𝑖
≥ 2, for all

𝑖 = 1, . . . , 𝑡. We define 𝑆 = {𝑛
𝑖
; 𝑛
𝑖
≡ 1 (mod 2)}.

Suppose that |𝑉(𝐺)| is even and 𝑛
𝑖
≥ 2, for all 𝑖 = 1, . . . , 𝑡.

Note that |𝑆| is either 0 or even.

Case 1. Consider |𝑆| = 0; that is, each partition of 𝐺 contains
an even number of vertices. The strategy for Player 2 is as
follows: the game starts with Player 1 deleting any vertex from
the graph. Since the partition where this vertex was will have
at least one more vertex in it, Player 2 deletes a vertex in it.
In this way, Player 2 always has an available move in the same
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partition that Player 1 has chosen to play on.Hence, Player 2 is
always the last person to delete a vertex from every partition
of𝐺, and thus they will always have the last move in the game,
as they will be the only person able to play in the state 𝐾

1,𝑛
𝑖

,
when that time comes.

Case 2. Consider |𝑆| = 2𝑘, for some nonzero 𝑘 ∈ N. Now
the strategy for Player 2 is twofold: if Player 1 moves in an
“even” partition of𝐺 thenPlayer 2 follows the strategy inCase
1, but if Player 1 deletes a vertex in an “odd” partition then
Player 2 deletes a vertex in one of the other odd partitions
(there would be an odd number of them available). Note that
after one move by each player, the follower obtained would
be either a graph that Case 1 considers or 𝐺 that would have
|𝑆| = 2(𝑘 − 1), and thus an induction argument would finish
the proof. Note that the base case(s) of this induction could
be tracked down to knowing who wins 𝐾odd,odd or 𝐾even,even,
which are bothP positions byTheorem 10.

Now suppose that |𝑉(𝐺)| is odd and 𝑛
𝑖
≥ 2, for all 𝑖 =

1, . . . , 𝑡. Since there must be some 𝑛
𝑖
∈ 𝑆, the strategy for

Player 1 is to delete any vertex in a partition with an odd
number of vertices. In this way, they would leave a follower
with an even number of vertices that also has every partition
containing more than 1 vertex. For this follower, Player 1 will
move second and thus will win the graph.

We now look at a specific family of multipartite graphs
allowing singletons as partitions.

Lemma 13. Let 𝐺 = 𝐾
1,𝑛
2
,...,𝑛
𝑡

, where 3 < 𝑡, 1 ≤ 𝑘 ≤ 𝑡, and
𝑛
𝑖
≥ 2, for all 𝑖 = 2, . . . , 𝑡. Then, 𝐺 is aP position if and only if

|𝑉(𝐺)| is even and 𝑛
𝑖
> 2, for all 𝑖.

Proof. If |𝑉(𝐺)| is odd then Player 1 leaves 𝐾
𝑛
2
,...,𝑛
𝑡

as a
follower, which is a P position (by Theorem 12), and thus
Player 1 wins 𝐺. Now, if |𝑉(𝐺)| is even then Player 1 would
not want to leave 𝐾

𝑛
2
,...,𝑛
𝑡

as a follower, as in this case, by
Theorem 12, Player 2 would win 𝐺. Hence, Player 1 would
leave WLOG 𝐾

1,𝑛
2
−1,𝑛
3
,...,𝑛
𝑡

as a follower. If 𝑛
2
> 2 then by the

previous case we would get that Player 2 wins 𝐺. If we allow
𝑟 − 1 > 0 of 𝑛

𝑖
to be equal to 2 then, after rearrangement if

needed, we get 𝐺 = 𝐾
1,2,...,2,𝑛

𝑟+1
,...,𝑛
𝑡

, where 𝑛
𝑟+1

, . . . , 𝑛
𝑡
> 2.

Note that 𝑟 < 𝑡 because |𝑉(𝐺)| is even. In this case, Player 1
leaves𝐾

1,2,...,2,𝑛
𝑟+1
−1,...,𝑛

𝑡

as a follower, and thus Player 1 wins 𝐺
using the strategy discussed for the case |𝑉(𝐺)| odd.

There are several complete multipartite graphs that we
have not studied and we will not study in this paper; these,
after a rearrangement if needed, have the form 𝐾

1,...,1,𝑛
𝑘+1
,...,𝑛
𝑡

,
where 3 < 𝑡, 1 ≤ 𝑘 ≤ 𝑡, and 𝑛

𝑖
≥ 2, for all 𝑖 = 𝑘 + 1, . . . , 𝑡.

Some of them may be studied very easily; for example,𝐾
1,...,1

is aP position if and only if 𝑡 is odd. The conditions needed
to understand others aremuchmore complex. For instance, if
𝑘 > 1 and 𝑘 > 𝛼

𝑘,𝑡
= (𝑛
𝑘+1

+⋅ ⋅ ⋅+𝑛
𝑡
)−(𝑡−𝑘), then𝐾

1,...,1,𝑛
𝑘+1
,...,𝑛
𝑡

is aP position if and only if 𝑘 and 𝛼
𝑘,𝑡

have different parity.
On the other hand, in order to understand the case 𝑘 ≤

𝛼
𝑘,𝑡

we need to look at these two parameters and also to how
much bigger than 𝑘 the quantity 𝛼

𝑘,𝑡
is.

Also, unlike most of the graphs studied in this section,
𝐾
1,𝑛

and𝐾
1,2,𝑛

are always won by Player 1 independent of the

parity of 𝑛.This situation is not that uncommon in the graphs
we have not studied here; for instance, the family of graphs of
the form𝐾

1,1,3,𝑛
, for 𝑛 ≥ 3, are also won by Player 1 by leaving

the follower 𝐾
1,3,𝑛

for 𝑛 even and 𝐾
1,1,2,𝑛

for 𝑛 odd. There are
several other families, similar to 𝐾

1,1,3,𝑛
, that may be proven

to be won by Player 1 only.
All of this suggests that a complete theory of how Grim

would play on multipartite graphs allowing singletons as
partitions is very complex, and thus we plan to study it
separately in a future article.

Other “standard” families of graphs can be studied in a
similar fashion to what has been done in this section with
complete and complete multipartite graphs. However, as it
was seen in this section and we will see again in Section 5,
the analysis of Grim gains complexity quickly. Hence, in the
following sections we will study Grim on graphs by using a
less direct set of techniques.

4. Automorphisms

Certain symmetries in a graph can be exploited to obtain
strategies for winning at Grim. In this section we prove a
couple of results of this type, and then we apply them to a
few families of graphs.

Definition 14. A function 𝜎 is said to be an automorphism of
a graph 𝐺 if 𝜎 permutes the vertices of 𝐺 while preserving
incidence.The group (under composition) of all the automor-
phisms of 𝐺 is denoted as Aut(𝐺).

Theorem 15. Let 𝐺 be a graph, and assume that Aut(𝐺) has
an element 𝜎 of order 2 such that V ̸= 𝜎(V) and V𝜎(V) ∉ 𝐸(𝐺),
for all V ∈ 𝑉(𝐺). Then, 𝐺 is aP position.

Proof. Let 𝜎 ∈ Aut(𝐺) be such that V ̸= 𝜎(V) and V𝜎(V) ∉

𝐸(𝐺), for all V ∈ 𝑉(𝐺). We will prove that if Player 1 moves
by selecting a vertex V, then Player 2 can always move by
selecting 𝜎(V).

We will proceed by contradiction. Suppose that at a
certain stage of the game and for the first time, Player 1
moves by selecting a vertex V leaving a follower that does
not contain 𝜎(V). If 𝜎(V) was already deleted when Player 1
made their move, then either 𝜎(V) was deleted by Player 2,
which would contradict that V had not been deleted at this
point, or 𝜎(V)was deleted by becoming isolated, which would
force (as 𝜎 ∈ Aut(𝐺)) V to be isolated. In either case, the
situation is impossible. So, the only option would be that 𝜎(V)
gets isolated at the time of deleting V. But V and 𝜎(V) are not
adjacent, so deleting V cannot isolate 𝜎(V).

Corollary 16. Let 𝐺 be a graph with no isolated vertices, and
assume that Aut(𝐺) has an element 𝜎 of order 2 such that V

0
=

𝜎(V
0
), for exactly one V

0
∈ 𝑉(𝐺), and V𝜎(V) ∉ 𝐸(𝐺), for all

V ∈ 𝑉(𝐺). Then, 𝐺 is anN position.

Proof. Player 1 starts the game by deleting V
0
, leaving a

follower that is a P position by Theorem 15. Hence, 𝐺 is an
N position.
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The following corollary summarizes a few applications of
Theorem 15 and Corollary 16.

Corollary 17. Let 𝑛 ∈ N.

(1) If 𝑛 is odd and 𝑛 ≥ 3, then 𝑃
𝑛
is anN position.

(2) If 𝑛 is even and 𝑛 ≥ 4, then 𝐶
𝑛
is aP position.

(3) If 𝑛 is odd and 𝑛 ≥ 5, then𝑊
𝑛
is anN position.

(4) 𝐺 ∪ 𝐺 is aP position, for all nonempty graphs 𝐺.

Proof. (1) Use Corollary 16 with 𝜎 the reflection across the
middle vertex of 𝑃

𝑛
.

(2) Model 𝐶
𝑛
with a regular 𝑛-gon. Use Theorem 15 with

𝜎 defined by reflecting every vertex across the center of the
polygon.

(3) Use the same function in the proof of (2), but now
apply Corollary 16, as the center of the wheel is fixed.

(4) UseTheorem 15 with 𝜎 the identification between the
two copies of 𝐺.

Theorem 15 and Corollary 16 can also be used in the study
of Cartesian products of graphs.

Definition 18. Let 𝐺 and 𝐻 be two disjoint graphs. The
Cartesian product of𝐺 and𝐻, denoted as 𝐺◻𝐻, is defined by
𝑉(𝐺◻𝐻) = 𝑉(𝐺) × 𝑉(𝐻) and edges given by the following:

(1) (𝑥, 𝑦) is adjacent to (𝑤, 𝑧) if 𝑥 = 𝑤 and 𝑦 and 𝑧 are
adjacent in𝐻;

(2) (𝑥, 𝑦) is adjacent to (𝑤, 𝑧) if 𝑦 = 𝑧 and 𝑥 and 𝑤 are
adjacent in 𝐺,

where 𝑥, 𝑤 ∈ 𝑉(𝐺) and 𝑦, 𝑧 ∈ 𝑉(𝐻).

Corollary 19. Let 𝑛 > 1, 𝐺
1
, . . . , 𝐺

𝑛
be graphs and 𝐺 =

𝐺
1
◻ ⋅ ⋅ ⋅ ◻𝐺

𝑛
.

(1) If𝐺
1
, . . . , 𝐺

𝑛
satisfy the hypothesis inTheorem 15, then,

𝐺 is aP position.
(2) If𝐺

1
, . . . , 𝐺

𝑛
satisfy the hypothesis in Corollary 16, then

𝐺 is anN position.

Proof. (1) Let 𝜎
𝑖
∈ Aut(𝐺

𝑖
) be the automorphism satisfying

the hypothesis in Theorem 15. It is easy to see that 𝜎 defined
by

𝜎 (V
1
, . . . , V

𝑛
) = (𝜎

1
(V
1
) , . . . , 𝜎

𝑛
(V
𝑛
)) (1)

is an automorphism of 𝐺 also satisfying the hypothesis in
Theorem 15. The result follows.

The proof for (2) uses the very same ideas, so we omit
it.

An attempt to find strategies that allow us to determine
whowouldwin𝐺◻𝐻, for arbitrary graphs𝐺 and𝐻, wasmade
but it failed because we realized that keeping track of all the
possible avenues the game could take was an impossible task.
A natural approach to how to “keep track” of what happens
in a game is discussed in the following section.

5. The Sprague-Grundy Function

One of the most useful tools in the study of combinatorial
games is the Sprague-Grundy function.We proceed to define
it, in the context of Grim, and then we focus our efforts on
finding its values for paths.

Definition 20. Let N
0
= N ∪ {0} and 𝐺 be a graph. We define

F(𝐺) to be the set of all followers of 𝐺 (in the game Grim).
The Sprague-Grundy function of 𝐺 is a function SG : 𝑉 →

N
0
, defined recursively as follows:

SG (𝐺) = min {𝑛 ∈ N
0
; 𝑛 ̸= SG (𝐻) , ∀𝐻 ∈ F (𝐺)} . (2)

If we define the minimal excludant or mex of a set of
nonnegative integers as the smallest nonnegative integer not
in the set, then we may write

SG (𝐺) = mex {SG (𝐻) ; 𝐻 ∈ F (𝐺)} . (3)

Remark 21. SG(𝐺) = 0 if and only if 𝐺 is aP position.

The process to calculate the Sprague-Grundy values by
hand is laborious, so we wrote a program in Visual FoxPro
to compute the Sprague-Grundy value of Grim on paths. We
focused on paths because in Corollary 17 we learned that odd
paths areN positions, but whenwanting to look at even paths
no pattern seemed to exist.

Using our program,wewere able to compute all the values
of SG(P

𝑛
) (a library of these values may be obtained at

http://www.gamecalledgrim.com) for up to 𝑛 = 10
7. Using

these results we know that if 𝑛 ≤ 10
7, then SG(P

𝑛
) = 0 only

when

𝑛 ∈ {4, 12, 20, 30, 46, 72, 98, 124, 150, 176, 314, 408} , (4)

which is something Lącko and Lącki (in unpublished work;
see [15]) had also determined (although they consider P

1

as P position while we do not consider P
1
as graph where

we would play Grim, as all isolated vertices in a graph are
deleted before a game starts). Moreover, they also claim that
SG(P

𝑛
) ̸= 0 for all values in the range 107 ≤ 𝑛 ≤ 10

8. The
obvious question, at this point, is whether or not there are
any other even paths with SG(P

𝑛
) = 0. It turns out that the

answer to this question is related to a different open problem
in game theory.

Definition 22. An Octal game is a normal impartial game
played on heaps of chips. Amove consists of taking a number
of chips from a single heap, eliminating them, and then
redistributing the remaining chips in the heap (if any left)
into 0 (all chips in the heap were eliminated), 1 (leave the
remaining chips intact), or 2 heaps; this number is fixed in
advance for the game and depends only on how many chips
were eliminated in the move. Given that there are several
variables to determine at the beginning of the game, the rules
of the game are encoded into a string of digits as follows.

If in a move we remove 𝑘 chips from a heap and we are
allowed to break the remaining ones into 𝑎 heaps then we say
that 𝜒

𝑘
(𝑎) = 1. In the case that we were not allowed to break
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the remaining ones into 𝑎 heaps we say that 𝜒
𝑘
(𝑎) = 0. The

code of the game is 𝑑 = 0.𝑑
1
𝑑
2
. . ., where

𝑑
𝑘
= 𝜒
𝑘
(0) 2
0

+ 𝜒
𝑘
(1) 2
1

+ 𝜒
𝑘
(2) 2
2

. (5)

It follows that since 6 = 2
1

+2
2, the gameOctal.6 is a game

inwhich everymove consists of one chip being removed from
a heap and what remains of that heap must be left in exactly 1
or 2 nonempty heaps.

Several Octal games have Sprague-Grundy sequences
that after a while become periodic (see [16], e.g.); it is not
known whether Octal.6 has a period. This is relevant to
us because the terms in the sequences of Sprague-Grundy
numbers for Grim on paths and Octal.6 are the same (see
Theorem 23 below). Thus our question about values of 𝑛 for
which SG(P

𝑛
) = 0 becomes a problem about when Octal.6

is won by Player 2, which is an open problem (e.g., see [17]).
In order to create some intuition on the reader about our

next result, we notice that we can identify removing a chip
from a heap in Octal.6with deleting a vertex in a path (under
Grim rules). More explicitly, depending on what vertex we
delete, we always leave one or two paths left; these two paths
would be the equivalent of the two heaps left after removing
a chip in Octal.6.

Theorem 23. The Sprague-Grundy sequence of values of Grim
played on paths is equivalent to the Sprague-Grundy sequence
of values of Octal.6.

Proof. Let 𝑛 ∈ N,O
𝑛
be Octal.6 played on a heap of size 𝑛 and

P
𝑛
be Grim played on a path on 𝑛 vertices.Wewill prove that

SG(P
𝑛
) = SG(O

𝑛
). We will do this by induction on 𝑛.

For 𝑛 = 1 we get that both games are trivial and thus
SG(P

1
) = SG(O

1
) = 0. We now assume that SG(P

𝑖
) =

SG(O
𝑖
), for all 𝑖 ≤ 𝑛.

First we notice that the followers ofP
𝑛+1

and O
𝑛+1

are

F (P
𝑛+1

) = {P
𝑛
,P
𝑛−1

∪P
1
,P
𝑛−2

∪P
2
, . . .}

F (O
𝑛+1

) = {O
𝑛
,O
𝑛−1

∪ O
1
,O
𝑛−2

∪ O
2
, . . .} .

(6)

Using Nim Sum (see [2]), denoted as +
𝑁

below, to
evaluate the Sprague-Grundy number of the followers of
P
𝑛+1

and O
𝑛+1

, we get

SG (P
𝑛+1

) = mex {SG (P
𝑛
) ,SG (P

𝑛−1
)

+
𝑁
SG (P

1
) ,SG (P

𝑛−2
) +
𝑁
SG (P

2
) , . . .}

SG (O
𝑛+1

) = mex {SG (O
𝑛
) ,SG (O

𝑛−1
)

+
𝑁
SG (O

1
) ,SG (O

𝑛−2
) +
𝑁
SG (O

2
) , . . .} .

(7)

Using the inductive hypothesis and Nim Sum we get that

SG (P
𝑛
) = SG (O

𝑛
)

SG (P
𝑛−1

) +
𝑁
SG (P

1
) = SG (O

𝑛−1
) +
𝑁
SG (O

1
)

.

.

.

(8)

Hence, SG(P
𝑛+1

) = SG(O
𝑛+1

).

If we knew all the values in the sequence {SG(P
𝑛
)}
∞

𝑛=1
we

would also know several other Sprague-Grundy sequences.
We present two results of this type, without a proof, in the
following corollaries.

Corollary 24. The Sprague-Grundy sequence for Grim on
cycles is given by

SG (C
𝑛
) =

{

{

{

1 if SG (P
𝑛−1

) = 0

0 otherwise.
(9)

In particular,C
𝑛
is aP position when 𝑛 is even.

Finally, we get a result about wheels that depends on
whatever knowledge we had about paths.

Definition 25. Awheel graph on 𝑛 vertices is defined byW
𝑛
=

C
𝑛−1

+ 𝐾
1
.𝐾
1
is called the center of the wheel.

Corollary 26. Let 𝑛 ≥ 4; thenW
𝑛
is anN position if and only

ifP
𝑛−2

is anN position.

Proof. W
𝑛
has only two followers: C

𝑛−1
, obtained from

deleting the center of the wheel and W󸀠
𝑛−1

, obtained by
deleting a vertex different from the center ofW

𝑛
.

If Player 1 winsP
𝑛
, then they can winW

𝑛+2
by removing

the center vertex and leaving C
𝑛+1

as a follower; this then
forces Player 2 to leave P

𝑛
as a follower, which is an N

position.
If Player 2 winsP

𝑛
, then sinceW

𝑛+2
has only two follow-

ers and both of them are one deleted vertex away from P
𝑛
,

Player 2 can leaveP
𝑛
as a follower after their first move.

6. Grim on Random Graphs

We are interested in understanding what happens when
Grim is played on a random graph. Our main reason is that
evidence in previous sections has shown that the game seems
to favor Player 1 overall. In order to do this, we will use Erdős-
Rényi random graphs.

Definition 27. Let 𝑛 ∈ N and 0 ≤ 𝑝 ≤ 1. An Erdős-Rényi
random graphG(𝑛, 𝑝) is defined by having 𝑛 vertices and, for
any pair of vertices, the existence of an edge connecting them
has probability 𝑝.

In this section, we will work on identifying probabilities𝑝
for which Player 1 and Player 2 have equal chances of winning
a random graphG(𝑛, 𝑝).

Remark 28. The probability of any given graph on 𝑛 vertices
and 𝑘 edges to exist is given by 𝑝𝑘(1 − 𝑝)

(
𝑛

2
)−𝑘. So, if 𝑝 = 0.5,

then all possible graphs on 𝑛 vertices have equal probability
to exist, this value being (1/2)(

𝑛

2
).

Definition 29. The winning probability of Player 1, denoted as
𝑊
1
(𝑝), is a function that describes the probability for Player
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1 to win on a random graph, for a fixed 𝑛 and a given edge
probability 𝑝. It is of the form

𝑊
1
(𝑝) = ∑

G

𝑋 (G) 𝑃 (G) , (10)

where the sum runs through all graphs (including the empty
graph, which is a P position), 𝑃(G) = 𝑝

𝑘

(1 − 𝑝)
(
𝑛

2
)−𝑘 for a

graph on 𝑘 edges, and

𝑋 (G) =
{

{

{

1 if SG (G) ̸= 0

0 if SG (G) = 0.

(11)

The winning probability of Player 2, denoted by 𝑊
2
(𝑝),

may be defined similarly.
As an illustration, let us consider Erdős-Rényi random

graphs on 𝑛 = 3 vertices with edges generated with
probability 𝑝. We know that there are eight 3-vertex graphs.
Out of these eight graphs, Player 1 would win all the three
graphs with one edge and all the three graphs with 2 edges
and lose the one complete graph and the empty graph. Hence,
the winning probabilities are

𝑊
1
(𝑝) = 3𝑝 (1 − 𝑝)

2

+ 3𝑝
2

(1 − 𝑝)

𝑊
2
(𝑝) = (1 − 𝑝)

3

+ 𝑝
3

.

(12)

Note that setting 𝑊
1
(𝑝) = 𝑊

2
(𝑝) yields the quadratic

equation 6𝑝
2

− 6𝑝 + 1 = 0, which has solutions

𝑝 =
3 ± √3

6
; (13)

they are approximately 0.21 and 0.79.
Thus, Player 1 and Player 2 have an equal chance of

winning on a 3-vertex graph if the chance of each edge
appearing is about 21% or 79%. Moreover, looking at the
graph of𝑊

1
(𝑝) −𝑊

2
(𝑝) we get that Player 2 has more than a

50% chance of winning as long as

𝑝 <
3 − √3

6

or 3 + √3

6
< 𝑝.

(14)

On the other hand, if we now consider Erdős-Rényi
random graphs on 𝑛 = 4 vertices, we get that the winning
probability for Player 2 is

𝑊
2
(𝑝) = 3𝑝

2

(1 − 𝑝)
4

+ 16𝑝
3

(1 − 𝑝)
3

+ (1 − 𝑝)
5

, (15)

which is equal to 0.5 for 𝑝 ∼ 0.16 and always below 0.5 after.
Our examples suggest the following theorem.

Theorem 30. Let 𝑛 be odd. For Erdős-Rényi random graph
G(𝑛, 𝑝), there exists 0 < 𝑝

0
< 1 such that 𝑊

2
(𝑝) ≥ 0.5, for

all 𝑝 ≥ 𝑝
0
.

Proof. We will get a lower bound for 𝑊
2
(𝑝) and use it to

derive the existence of 𝑝
0
. Note that, by Remark 28, we get

𝑊
2
(𝑝) ≥ 𝑝

(
𝑛

2
)
. (16)

We set this bound equal to 0.5 and solve for 𝑝. We get the
solution

𝑝
0
= (

1

4
)

1/(𝑛
2
−𝑛)

, (17)

which is in (0, 1), for every 𝑛.
Since 𝑝

0
< 𝑝 implies 0.5 = 𝑝

(
𝑛

2
)
0

< 𝑝
(
𝑛

2
), we get that

𝑊
2
(𝑝) ≥ 0.5, for all 𝑝 ≥ 𝑝

0
.

Notice that as the number of vertices gets large, the
bound for the value of 𝑝

0
given in the proof of Theorem 30

approaches 1 and thus, overall, Player 1 has increasingly better
chances towin. It would be good to find an explicit expression
for the least possible 𝑝

0
, but this seems to be a really hard

problem, as we do not know which graphs areP positions.
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