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We consider a one-dimensional Allen-Cahn equation with constraint from the viewpoint of numerical analysis. The constraint is
provided by the subdifferential of the indicator function on the closed interval, which is the multivalued function. Therefore, it
is very difficult to perform a numerical experiment of our equation. In this paper we approximate the constraint by the Yosida
approximation. Then, we study the approximating system of the original model numerically. In particular, we give the criteria for
the standard forward Euler method to give the stable numerical experiments of the approximating equation. Moreover, we provide
the numerical experiments of the approximating equation.

1. Introduction

In this paper, for each 𝜀 ∈ (0, 1] we consider the following
Allen-Cahn equation with constraint from the viewpoint of
numerical analysis:

𝑢
𝜀

𝑡
− 𝑢
𝜀

𝑥𝑥
+

𝜕𝐼
[−1,1]

(𝑢
𝜀

)

𝜀
2

∋

𝑢
𝜀

𝜀
2

in 𝑄 fl (0, 𝑇) × (0, 1) , (1)

𝑢
𝜀

𝑥
(𝑡, 0) = 𝑢

𝜀

𝑥
(𝑡, 1) = 0, 𝑡 ∈ (0, 𝑇) , (2)

𝑢
𝜀

(0, 𝑥) = 𝑢
𝜀

0
(𝑥) , 𝑥 ∈ (0, 1) , (3)

where 0 < 𝑇 < +∞ and 𝑢
𝜀

0
is given initial data. Also,

the constraint 𝜕𝐼
[−1,1]

(⋅) is the subdifferential of the indicator
function 𝐼

[−1,1]
(⋅) on the closed interval [−1, 1] defined by

𝐼
[−1,1]

(𝑧) fl
{

{

{

0, if 𝑧 ∈ [−1, 1] ,

+∞, otherwise.
(4)

More precisely, 𝜕𝐼
[−1,1]

(⋅) is a set-valued mapping defined by

𝜕𝐼
[−1,1]

(𝑧) fl

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

0, if 𝑧 < −1 or 𝑧 > 1,

[0,∞) , if 𝑧 = 1,

{0} , if − 1 < 𝑧 < 1,

(−∞, 0] , if 𝑧 = −1.

(5)

The Allen-Cahn equation was proposed to describe the
macroscopic motion of phase boundaries. In the physical
context, the function 𝑢

𝜀

= 𝑢
𝜀

(𝑡, 𝑥) in (𝑃)
𝜀 fl {(1), (2), (3)}

is the nonconserved order parameter that characterizes the
physical structure. For instance, let V = V(𝑡, 𝑥) be the local
ratio of the volume of pure liquid relative to that of pure solid
at time 𝑡 and position 𝑥 ∈ (0, 1), defined by

V (𝑡, 𝑥)

fl lim
𝑟↓0

the volume of pure liquid in 𝐵
𝑟
(𝑥) at time 𝑡

󵄨
󵄨
󵄨
󵄨
𝐵
𝑟
(𝑥)

󵄨
󵄨
󵄨
󵄨

,

(6)

where 𝐵
𝑟
(𝑥) is the ball in R with center 𝑥 and radius 𝑟 and

|𝐵
𝑟
(𝑥)| denotes its volume. Put 𝑢𝜀(𝑡, 𝑥) fl 2V(𝑡, 𝑥) − 1 for any
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(𝑡, 𝑥) ∈ 𝑄. Then, we observe that 𝑢𝜀(𝑡, 𝑥) is the nonconserved
order parameter that characterizes the physical structure:

𝑢
𝜀

(𝑡, 𝑥) = 1 on the pure liquid region,

𝑢
𝜀

(𝑡, 𝑥) = −1 on the pure solid region,

−1 < 𝑢
𝜀

(𝑡, 𝑥) < 1 on the mixture region.

(7)

There is a vast amount of literature on the Allen-Cahn
equation with or without constraint 𝜕𝐼

[−1,1]
(⋅). For these

studies, we refer to [1–16]. In particular, Chen and Elliott [5]
considered the singular limit of (𝑃)𝜀 as 𝜀 → 0 in the general
bounded domainΩ (⊂ R𝑁 with 𝑁 ≥ 1).

Also, there is a vast amount of literature on the numer-
ical analysis of the Allen-Cahn equation without constraint
𝜕𝐼
[−1,1]

(⋅). For these studies, we refer to [17–21].
Note that the constraint 𝜕𝐼

[−1,1]
(⋅) is the multivalued

function. Therefore, it is very difficult to apply the numerical

methods developed by [17–21] to (𝑃)𝜀. Hence, it is difficult to
perform a numerical experiment of (𝑃)𝜀. Recently, Blank et al.
[2] proposed as a numerical method a primal-dual active set
algorithm for the local and nonlocal Allen-Cahn variational
inequalities with constraint. Also, Farshbaf-Shaker et al. [8]
gave the results of the limit of a solution 𝑢𝜀 and an element of
𝜕𝐼
[−1,1]

(𝑢
𝜀

), called the Lagrange multiplier, to (𝑃)𝜀 as 𝜀 → 0.
Moreover, they [9] gave the numerical experiment to (𝑃)

𝜀

via the Lagrange multiplier in one dimension of space for
sufficient small 𝜀 ∈ (0, 1]. Furthermore, they [9] considered
the approximating method, called the Yosida approximation.
More precisely, for 𝛿 > 0, the Yosida approximation
(𝜕𝐼
[−1,1]

)
𝛿
(⋅) of 𝜕𝐼

[−1,1]
(⋅) is defined by

(𝜕𝐼
[−1,1]

)
𝛿
(𝑧) =

[𝑧 − 1]
+

− [−1 − 𝑧]
+

𝛿

, ∀𝑧 ∈ R, (8)

where [𝑧]+ is the positive part of 𝑧. Then, for each 𝛿 > 0, they
[9] considered the following approximation problem of (𝑃)𝜀:

(𝑃)
𝜀

𝛿

{
{
{
{
{

{
{
{
{
{

{

(𝑢
𝜀

𝛿
)
𝑡
− (𝑢
𝜀

𝛿
)
𝑥𝑥
+

(𝜕𝐼
[−1,1]

)
𝛿
(𝑢
𝜀

𝛿
)

𝜀
2

=

𝑢
𝜀

𝛿

𝜀
2

in 𝑄 fl (0, 𝑇) × (0, 1) ,

(𝑢
𝜀

𝛿
)
𝑥
(𝑡, 0) = (𝑢

𝜀

𝛿
)
𝑥
(𝑡, 1) = 0, 𝑡 ∈ (0, 𝑇) ,

𝑢
𝜀

𝛿
(0, 𝑥) = 𝑢

𝜀

0
(𝑥) , 𝑥 ∈ (0, 1) .

(9)

In [9, Remark 4.2], Figure 1 shows the unstable numerical
result to (𝑃)

𝜀

𝛿
was given by the standard explicit finite

difference scheme to (𝑃)𝜀
𝛿
.

From Figure 1, we observe that we have to choose the
suitable constants 𝜀 and 𝛿 and the mesh size of time Δ𝑡 and
space Δ𝑥 in order to get the stable numerical results of (𝑃)𝜀

𝛿
.

Therefore, in this paper, for each 𝜀 > 0 and 𝛿 > 0, we give
the criteria for the standard explicit finite difference scheme
to provide the stable numerical experiments of (𝑃)𝜀

𝛿
. To this

end, we first consider the following ODE problem, denoted
by (𝐸)𝜀

𝛿
:

(𝐸)
𝜀

𝛿

{
{

{
{

{

(𝑢
𝜀

𝛿
)
𝑡
+

(𝜕𝐼
[−1,1]

)
𝛿
(𝑢
𝜀

𝛿
)

𝜀
2

=

𝑢
𝜀

𝛿

𝜀
2

in R, for 𝑡 ∈ (0, 𝑇) ,

𝑢
𝜀

𝛿
(0) = 𝑢

𝜀

0
in R.

(10)

Then, we give the criteria to get the stable numerical exper-
iments of (𝐸)𝜀

𝛿
. Also, we give some numerical experiments

of (𝐸)𝜀
𝛿
. Moreover, we show the criteria to get the stable

numerical experiments of PDE problem (𝑃)
𝜀

𝛿
. Therefore, the

main novelties are the following:

(a) We give the criteria to get the stable numerical exper-
iments of the ODE problem (𝐸)

𝜀

𝛿
. Also, we provide

the numerical experiments to (𝐸)𝜀
𝛿
for sufficient small

𝜀 ∈ (0, 1] and 𝛿 ∈ (0, 1].

(b) We give the criteria to get the stable numerical exper-
iments of the PDE problem (𝑃)

𝜀

𝛿
. Also, we provide

the numerical experiments to (𝑃)𝜀
𝛿
for sufficient small

𝜀 ∈ (0, 1] and 𝛿 ∈ (0, 1].
The plan of this paper is as follows. In Section 2, we

mention the solvability and convergence result of (𝐸)𝜀
𝛿
. In

Section 3, we consider (𝐸)𝜀
𝛿
numerically. Then, we prove

the main result (Theorem 7) corresponding to item (a)
listed above. Also, we provide the numerical experiments
to (𝐸)

𝜀

𝛿
for sufficient small 𝜀 ∈ (0, 1] and 𝛿 ∈ (0, 1]. In

Section 4, we mention the solvability and convergence result
of (𝑃)𝜀

𝛿
. In the final Section 5, we consider (𝑃)𝜀

𝛿
from the

viewpoint of numerical analysis. Then, we prove the main
result (Theorem 16) corresponding to item (b) listed above.
Also, we provide the numerical experiments to (𝑃)

𝜀

𝛿
for

sufficient small 𝜀 ∈ (0, 1] and 𝛿 ∈ (0, 1].

Notations and Basic Assumptions. Throughout this paper, we
put𝐻 fl 𝐿

2

(0, 1) with the usual real Hilbert space structure.
The inner product and norm in 𝐻 are denoted by (⋅, ⋅)

𝐻
and

by | ⋅ |
𝐻
, respectively. We also put𝑉 fl 𝐻

1

(0, 1)with the usual
norm |𝑧|

𝑉
fl {|𝑧|

2

𝐻
+ |𝑧
𝑥
|
2

𝐻
}
1/2 for 𝑧 ∈ 𝑉.

In Sections 2 and 4, we use some techniques of proper
(i.e., not identically equal to infinity), l.s.c. (lower semicontin-
uous), and convex functions and their subdifferentials, which
are useful in the systematic study of variational inequalities.
So, let us outline some notations and definitions. Let𝑊 be the
real Hilbert space with the inner product (⋅, ⋅)

𝑊
. For a proper,

l.s.c., and convex function 𝜓 : 𝑊 → R ∪ {+∞}, the effective
domain𝐷(𝜓) is defined by

𝐷(𝜓) fl {𝑧 ∈ 𝑊; 𝜓 (𝑧) < ∞} . (11)
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Figure 1: Behavior of a solution to (𝑃)𝜀
𝛿
with 𝜀 = 0.007 and 𝛿 = 0.01.

The subdifferential of 𝜓 is a possibly multivalued operator in
𝑊 and is defined by 𝑧∗ ∈ 𝜕𝜓(𝑧) if and only if

𝑧 ∈ 𝐷 (𝜓) ,

(𝑧
∗

, 𝑦 − 𝑧)
𝑊
≤ 𝜓 (𝑦) − 𝜓 (𝑧) ∀𝑦 ∈ 𝑊.

(12)

For various properties and related notions of the proper, l.s.c.,
and convex function 𝜓 and its subdifferential 𝜕𝜓, we refer to
the monograph by Brézis [22].

2. Solvability and Convergence Results of (𝐸)𝜀
𝛿

We begin by giving the rigorous definition of solutions to our
problem (𝐸)

𝜀

𝛿
(𝜀 ∈ (0, 1] and 𝛿 ∈ (0, 1]).

Definition 1. Let 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1], and 𝑢𝜀
0
∈ R. Then, a

function 𝑢𝜀
𝛿
: [0, 𝑇] → R is called a solution to (𝐸)𝜀

𝛿
on [0, 𝑇],

if the following conditions are satisfied:

(i) 𝑢𝜀
𝛿
∈ 𝑊
1,2

(0, 𝑇).

(ii) The following equation holds:

(𝑢
𝜀

𝛿
)
𝑡
+

(𝜕𝐼
[−1,1]

)
𝛿
(𝑢
𝜀

𝛿
)

𝜀
2

=

𝑢
𝜀

𝛿

𝜀
2

in R, for 𝑡 ∈ (0, 𝑇) . (13)

(iii) 𝑢𝜀
𝛿
(0) = 𝑢

𝜀

0
in R.

Now, we show the solvability result of (𝐸)𝜀
𝛿
on [0, 𝑇].

Proposition 2. Let 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1], and 𝑢𝜀
0
∈ R with

|𝑢
𝜀

0
| ≤ 1. Then, there exists a unique solution 𝑢

𝜀

𝛿
to (𝐸)𝜀

𝛿
on

[0, 𝑇] in the sense of Definition 1.

Proof. We can prove the uniqueness of solutions to (𝐸)𝜀
𝛿
on

[0, 𝑇] by the quite standard arguments: monotonicity and
Gronwall’s inequality.

Also, we can show the existence of solutions to (𝐸)𝜀
𝛿
on

[0, 𝑇] applying the abstract theory of evolution equations
governed by subdifferentials. Indeed, we define a function
(𝐼
[−1,1]

)
𝛿
(⋅) on R by

(𝐼
[−1,1]

)
𝛿
(𝑧) =

󵄨
󵄨
󵄨
󵄨
[𝑧 − 1]

+󵄨󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
[−1 − 𝑧]

+󵄨󵄨
󵄨
󵄨

2

2𝛿

, ∀𝑧 ∈ R. (14)

Clearly, (𝐼
[−1,1]

)
𝛿
(⋅) is proper, l.s.c., and convex on R with

𝜕(𝐼
[−1,1]

)
𝛿
(⋅) = (𝜕𝐼

[−1,1]
)
𝛿
(⋅) in R, where (𝜕𝐼

[−1,1]
)
𝛿
(⋅) is the

Yosida approximation of 𝜕𝐼
[−1,1]

(⋅) defined by (8).
Note that the problem (𝐸)

𝜀

𝛿
can be rewritten as in an

abstract framework of the form

(𝐸𝑃)
𝜀

𝛿

{

{

{

𝑑

𝑑𝑡

𝑢
𝜀

𝛿
(𝑡) +

1

𝜀
2
𝜕 (𝐼
[−1,1]

)
𝛿
(𝑢
𝜀

𝛿
(𝑡)) −

1

𝜀
2
𝑢
𝜀

𝛿
(𝑡) = 0 in R, for 𝑡 ∈ (0, 𝑇) ,

𝑢
𝜀

𝛿
(0) = 𝑢

𝜀

0
in R.

(15)

Therefore, applying the Lipschitz perturbation theory of
abstract evolution equations (cf. [23–25]), we can show the
existence of a solution 𝑢𝜀

𝛿
to (𝐸𝑃)𝜀

𝛿
, hence, (𝐸)𝜀

𝛿
, on [0, 𝑇] for

each 𝜀 ∈ (0, 1] and 𝛿 ∈ (0, 1] in the sense of Definition 1.Thus,
the proof of Proposition 2 has been completed.

Next, we show the convergence result of (𝐸)𝜀
𝛿
as 𝛿 → 0.

To this end, we recall a notion of convergence for convex
functions, developed by Mosco [26].

Definition 3 (cf. [26]). Let 𝜓 and 𝜓
𝑛
(𝑛 ∈ N) be proper, l.s.c.,

and convex functions on a Hilbert space 𝑊. Then, one says
that 𝜓

𝑛
converges to 𝜓 on 𝑊 in the sense of Mosco [26] as

𝑛 → ∞, if the following two conditions are satisfied:

(i) for any subsequence {𝜓
𝑛𝑘
} ⊂ {𝜓

𝑛
}, if 𝑧
𝑘
→ 𝑧weakly in

𝑊 as 𝑘 → ∞, then

lim inf
𝑘→∞

𝜓
𝑛𝑘
(𝑧
𝑘
) ≥ 𝜓 (𝑧) ; (16)

(ii) for any 𝑧 ∈ 𝐷(𝜓), there is a sequence {𝑧
𝑛
} in𝑊 such

that

𝑧
𝑛
󳨀→ 𝑧 in 𝑊 as 𝑛 󳨀→ ∞,

lim
𝑛→∞

𝜓
𝑛
(𝑧
𝑛
) = 𝜓 (𝑧) .

(17)

It is well known that the following lemma holds. There-
fore, we omit the detailed proof.
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Lemma4 (cf. [27, Section 5], [22, Chapter 2], and [28, Section
2]). Consider

(𝐼
[−1,1]

)
𝛿
(⋅) 󳨀→ 𝐼

[−1,1]
(⋅)

𝑜𝑛 R 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑒 𝑜𝑓 𝑀𝑜𝑠𝑐𝑜 [26] 𝑎𝑠 𝛿 󳨀→ 0.

(18)

By Lemma 4 and the general convergence theory of
evolution equations, we get the following result. We omit the
detailed proof.

Proposition 5 (cf. [27, Section 5], [28, Section 2]). Let 𝜀 ∈

(0, 1], 𝛿 ∈ (0, 1], and 𝑢𝜀
0
∈ R with |𝑢𝜀

0
| ≤ 1. Also, let 𝑢𝜀

𝛿
be the

unique solution to (𝐸)𝜀
𝛿
on [0, 𝑇]. Then, there exists a unique

function 𝑢𝜀 ∈ 𝑊1,2(0, 𝑇) such that

𝑢
𝜀

𝛿
󳨀→ 𝑢
𝜀

𝑖𝑛 𝐶 ([0, 𝑇]) 𝑎𝑠 𝛿 󳨀→ 0 (19)

and 𝑢𝜀 is the unique solution of the following problem (𝐸)
𝜀 on

[0, 𝑇]:

(𝐸)
𝜀

{
{

{
{

{

𝑢
𝜀

𝑡
+

𝜕𝐼
[−1,1]

(𝑢
𝜀

)

𝜀
2

∋

𝑢
𝜀

𝜀
2

𝑖𝑛 R, 𝑓𝑜𝑟 𝑡 ∈ (0, 𝑇) ,

𝑢
𝜀

(0) = 𝑢
𝜀

0
𝑖𝑛 R.

(20)

3. Stable Criteria and Numerical
Experiments for (𝐸)𝜀

𝛿

In this section we consider (𝐸)
𝜀

𝛿
from the viewpoint of

numerical analysis.

Remark 6. Note from Proposition 5 that (𝐸)𝜀
𝛿
is the approxi-

mating problemof (𝐸)𝜀. Also note from (5) that the constraint
𝜕𝐼
[−1,1]

(⋅) is the multivalued function. Therefore, it is very
difficult to study (𝐸)𝜀 numerically.

In order to perform the numerical experiments of (𝐸)𝜀
𝛿

via the standard forward Euler method, we consider the
following explicit finite difference scheme to (𝐸)𝜀

𝛿
, denoted by

(𝐷𝐸)
𝜀

𝛿
:

(𝐷𝐸)
𝜀

𝛿

{
{

{
{

{

𝑢
𝑛+1

− 𝑢
𝑛

Δ𝑡

+

(𝜕𝐼
[−1,1]

)
𝛿
(𝑢
𝑛

)

𝜀
2

=

𝑢
𝑛

𝜀
2

in R, for 𝑛 = 0, 1, 2, . . . , 𝑁
𝑡
,

𝑢
0

= 𝑢
𝜀

0
in R,

(21)

where Δ𝑡 is the mesh size of time and𝑁
𝑡
is the integer part of

number 𝑇/Δ𝑡.
We observe that 𝑢𝑛 is the approximating solution of (𝐸)𝜀

𝛿

at the time 𝑡 = 𝑛Δ𝑡. Also, we observe that the explicit finite
difference scheme (𝐷𝐸)𝜀

𝛿
converges to (𝐸)𝜀

𝛿
as Δ𝑡 → 0 since

(𝐷𝐸)
𝜀

𝛿
is the standard time discretization scheme for (𝐸)𝜀

𝛿
.

In Figure 2, we give the unstable numerical experiment of
(𝐷𝐸)
𝜀

𝛿
in the case when 𝑇 = 0.002, 𝜀 = 0.003, 𝛿 = 0.01, the

initial data 𝑢𝜀
0
= 0.1, and themesh size of timeΔ𝑡 = 0.000001.

From Figure 2, we observe that we have to choose the
suitable constants 𝜀 and 𝛿 and the mesh size of time Δ𝑡 in
order to get the stable numerical results of (𝐷𝐸)𝜀

𝛿
.

Now, let us mention the first main result in this paper,
which is concerned with the criteria to give the stable
numerical experiments of (𝐷𝐸)𝜀

𝛿
.

Theorem 7. Let 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1), and Δ𝑡 ∈ (0, 1]. Assume
𝑢
𝜀

0
∈ (0, 1] (resp., 𝑢𝜀

0
∈ [−1, 0)) and 𝑇 = ∞. Let {𝑢𝑛; 𝑛 ≥ 0} be

the solution to (𝐷𝐸)𝜀
𝛿
. Then, one has the following:

(i) If Δ𝑡 ∈ (0, 𝛿𝜀2/(1−𝛿)), 𝑢𝑛 converges to 1/(1−𝛿) (resp.,
−1/(1 − 𝛿)) monotonically as 𝑛 → ∞.

(ii) If Δ𝑡 ∈ (𝛿𝜀
2

/(1 − 𝛿), 2𝛿𝜀
2

/(1 − 𝛿)), 𝑢𝑛 oscillates and
converges to 1/(1 − 𝛿) (resp., −1/(1 − 𝛿)) as 𝑛 → ∞.

Proof. Wegive the proof ofTheorem 7 in the case of the initial
value 𝑢𝜀

0
∈ (0, 1].

For simplicity, we set

𝑓
𝛿
(𝑧) fl (𝜕𝐼

[−1,1]
)
𝛿
(𝑧) − 𝑧 for 𝑧 ∈ R. (22)

Then, we observe that

𝑓
𝛿
(𝑧) =

{
{
{
{
{

{
{
{
{
{

{

1 + 𝑧

𝛿

− 𝑧, if 𝑧 ≤ −1,

−𝑧, if 𝑧 ∈ [−1, 1] ,
𝑧 − 1

𝛿

− 𝑧, if 𝑧 ≥ 1,

(23)

and 𝑧 = 0, 1/(1 − 𝛿), −1/(1 − 𝛿) are the zero points of
𝑓
𝛿
(⋅). Also, we observe that the difference equation (𝐷𝐸)𝜀

𝛿
is

reformulated in the following form:

𝑢
𝑛+1

= 𝑢
𝑛

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

) in R, for 𝑛 = 0, 1, 2, . . . . (24)

Note from (23) and (24) that if 𝑢𝑛 ∈ (0, 1] we have

𝑢
𝑛+1

= 𝑢
𝑛

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

) = 𝑢
𝑛

−

Δ𝑡

𝜀
2
⋅ (−𝑢
𝑛

) ≥ 𝑢
𝑛

, (25)

which implies that 𝑢𝑛 is increasing with respect to 𝑛 until
𝑢
𝑛+1

≥ 1.
Now, we prove (i). To this end, we assume that Δ𝑡 ∈

(0, 𝛿𝜀
2

/(1 − 𝛿)). At first, by the mathematical induction, we
show

𝑢
𝑖

∈ (0,

1

1 − 𝛿

) ∀𝑖 ≥ 0. (26)
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Figure 2: Behavior of a solution 𝑢
𝑛 to (𝐷𝐸)𝜀

𝛿
with 𝜀 = 0.003 and

𝛿 = 0.01.

Clearly (26) holds for 𝑖 = 0 because of 𝑢0 = 𝑢
𝜀

0
∈ (0, 1].

Now, we assume that (26) holds for all 𝑖 = 0, 1, . . . , 𝑛.
Suppose 𝑢𝑛 ∈ (0, 1]. Then, we infer from (25) that

𝑢
𝑛+1

= (1 +

Δ𝑡

𝜀
2
) 𝑢
𝑛

≤ 1 +

Δ𝑡

𝜀
2
< 1 +

𝛿

1 − 𝛿

=

1

1 − 𝛿

. (27)

Therefore, by (25) and the inequality as above, we observe that

𝑢
𝑛+1

∈ (0,

1

1 − 𝛿

) , if 𝑢𝑛 ∈ (0, 1] . (28)

Next, if 𝑢𝑛 ∈ [1, 1/(1 − 𝛿)), we observe from (23) and (24)
that

𝑢
𝑛

≤ 𝑢
𝑛+1

= 𝑢
𝑛

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

)

= 𝑢
𝑛

−

Δ𝑡

𝜀
2
⋅ (

𝑢
𝑛

− 1

𝛿

− 𝑢
𝑛

)

= 𝑢
𝑛

+

Δ𝑡

𝜀
2
⋅

1 − (1 − 𝛿) 𝑢
𝑛

𝛿

< 𝑢
𝑛

+

1 − (1 − 𝛿) 𝑢
𝑛

1 − 𝛿

=

1

1 − 𝛿

,

(29)

which implies that

𝑢
𝑛+1

∈ [1,

1

1 − 𝛿

) , if 𝑢𝑛 ∈ [1, 1

1 − 𝛿

) . (30)

From (28) and (30) we infer that (26) holds for 𝑖 = 𝑛 + 1.
Therefore, we conclude from themathematical induction that
(26) holds.

Also, by (23) and (26) we observe that 𝑓
𝛿
(𝑢
𝑛

) ≤ 0 for all
𝑛 ≥ 0. Therefore, we observe from (24) that

𝑢
𝑛+1

= 𝑢
𝑛

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

) ≥ 𝑢
𝑛

∀𝑛 ≥ 0. (31)

Therefore, we infer from (26) and (31) that {𝑢𝑛; 𝑛 ≥ 0} is a
bounded and increasing sequence with respect to 𝑛. Thus,
there exists a point 𝑢∞ ∈ R such that

𝑢
𝑛

󳨀→ 𝑢
∞ in R as 𝑛 󳨀→ ∞. (32)

Taking the limit in (24), we observe from the continuity of
𝑓
𝛿
(⋅) that 𝑢∞ = 1/(1 − 𝛿), which is the zero point of 𝑓

𝛿
(⋅).

Hence, the proof of (i) has been completed.
Next, we show (ii). To this end, we assume that Δ𝑡 ∈

(𝛿𝜀
2

/(1 − 𝛿), 2𝛿𝜀
2

/(1 − 𝛿)). Then, we can find the minimal
number 𝑛

0
∈ N so that

𝑢
𝑛0
∈ (1,

1 + 𝛿

1 − 𝛿

) ,

𝑢
𝑖

∈ (0, 1] ∀𝑖 = 0, 1, . . . , 𝑛
0
− 1.

(33)

Indeed, if 𝑢𝑖 ∈ (0, 1] for all 𝑖 = 0, 1, . . . , 𝑘, we observe from
(25) that

𝑢
𝑘+1

= 𝑢
𝑘

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑘

) = (1 +

Δ𝑡

𝜀
2
) 𝑢
𝑘

= (1 +

Δ𝑡

𝜀
2
)

2

𝑢
𝑘−1

= ⋅ ⋅ ⋅ = (1 +

Δ𝑡

𝜀
2
)

𝑘+1

𝑢
0

.

(34)

Taking into account (34), 𝑢
0
∈ (0, 1], and

1 +

Δ𝑡

𝜀
2
> 1 +

𝛿

1 − 𝛿

> 1, (35)

we can find the minimal number 𝑛
0
∈ N so that

𝑢
𝑛0
> 1,

𝑢
𝑖

∈ (0, 1] ∀𝑖 = 0, 1, . . . , 𝑛
0
− 1.

(36)

Also, we observe from (25) that

𝑢
𝑛0
= 𝑢
𝑛0−1

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛0−1

) = (1 +

Δ𝑡

𝜀
2
) 𝑢
𝑛0−1

< (1 +

2𝛿

1 − 𝛿

) ⋅ 1 =

1 + 𝛿

1 − 𝛿

,

(37)

and thus, (33) holds.
To show (ii), we put

Δ𝑡 fl
𝛿𝜀
2

1 − 𝛿

𝜏 for some 𝜏 ∈ (1, 2) . (38)

Then, we observe from (23) and (24) that

𝑢
𝑛0+1

= 𝑢
𝑛0
−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛0
) = 𝑢
𝑛0
+

Δ𝑡

𝜀
2
⋅

1 − (1 − 𝛿) 𝑢
𝑛0

𝛿

= (1 − 𝜏) 𝑢
𝑛0
+

𝜏

1 − 𝛿

.

(39)

From (39) it follows that

𝑢
𝑛0+1

+ (𝜏 − 1) 𝑢
𝑛0

𝜏

=

1

1 − 𝛿

. (40)
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Therefore, we observe from (40) and 𝜏 ∈ (1, 2) that the zero
point 1/(1−𝛿) of𝑓

𝛿
(⋅) is in the interval between 𝑢𝑛0 and 𝑢𝑛0+1.

Also, by (39) we observe that

𝑢
𝑛0+1

= (1 − 𝜏) 𝑢
𝑛0
+

𝜏

1 − 𝛿

> (1 − 𝜏)

1 + 𝛿

1 − 𝛿

+

𝜏

1 − 𝛿

=

1 + 𝛿 − 𝜏𝛿

1 − 𝛿

≥ 1,

𝑢
𝑛0+1

= (1 − 𝜏) 𝑢
𝑛0
+

𝜏

1 − 𝛿

< (1 − 𝜏) ⋅ 1 +

𝜏

1 − 𝛿

=

1 − 𝛿 + 𝜏𝛿

1 − 𝛿

≤

1 + 𝛿

1 − 𝛿

,

(41)

which implies that

𝑢
𝑛0+1

∈ (1,

1 + 𝛿

1 − 𝛿

) . (42)

Therefore, by (33) and (40) and by repeating the procedure as
above, we observe that

𝑢
𝑛

∈ (1,

1 + 𝛿

1 − 𝛿

) ∀𝑛 ≥ 𝑛
0

(43)

and 𝑢𝑛 oscillates around the zero point 1/(1−𝛿) for all 𝑛 ≥ 𝑛
0
.

Also, we observe from (39) and (43) that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢
𝑛+1

−

1

1 − 𝛿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= |1 − 𝜏|

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢
𝑛

−

1

1 − 𝛿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∀𝑛 ≥ 𝑛
0
. (44)

Therefore, by 𝜏 ∈ (1, 2), (43), and (44), there is a subsequence
{𝑛
𝑘
} of {𝑛} such that 𝑢𝑛𝑘 oscillates and converges to 1/(1 − 𝛿)

as 𝑘 → ∞. Hence, taking into account the uniqueness of the
limit point, the proof of (ii) has been completed.

Remark 8. Assume Δ𝑡 ∈ [2𝛿𝜀
2

/(1 − 𝛿),∞) and put Δ𝑡 fl
𝛿𝜀
2

𝜏/(1 − 𝛿) for some 𝜏 ≥ 2. Then, we observe that

1 +

Δ𝑡

𝜀
2
> 1 +

2𝛿

1 − 𝛿

> 1,

|1 − 𝜏| ≥ 1.

(45)

Therefore, we infer from the proof of Theorem 7 (cf. (34),
(40), and (44)) that the solution 𝑢

𝑛 to (𝐷𝐸)
𝜀

𝛿
oscillates as

𝑛 → ∞, in general.

Remark 9. By (24) we easily observe that

𝑢
𝑛

≡ 0 ∀𝑛 ≥ 1, if 𝑢
0
= 0,

𝑢
𝑛

≡

1

1 − 𝛿

∀𝑛 ≥ 1, if 𝑢
0
=

1

1 − 𝛿

,

𝑢
𝑛

≡

−1

1 − 𝛿

∀𝑛 ≥ 1, if 𝑢
0
=

−1

1 − 𝛿

.

(46)

From (ii) of Theorem 7, we observe that 𝑢
𝑛
oscillates

and converges to the zero point of 𝑓
𝛿
(⋅) in the case when

Δ𝑡 ∈ (𝛿𝜀
2

/(1 − 𝛿), 2𝛿𝜀
2

/(1 − 𝛿)). However, in the case when
Δ𝑡 = 2𝛿𝜀

2

/(1 − 𝛿), we have the following special case that the
solution to (𝐷𝐸)𝜀

𝛿
does not oscillate and coincides with the

zero point of 𝑓
𝛿
(⋅) after some finite number of iterations.

Corollary 10. Let 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1),Δ𝑡 = 2𝛿𝜀
2

/(1−𝛿), and
𝑛 ∈ N. Assume 𝑢𝜀

0
fl (1 − 𝛿)

𝑛−1

/(1 + 𝛿)
𝑛. Then, the solution to

(𝐷𝐸)
𝜀

𝛿
is given by

𝑢
𝑖

=

{
{
{

{
{
{

{

(1 − 𝛿)
𝑛−1−𝑖

(1 + 𝛿)
𝑛−𝑖

, 𝑖𝑓 𝑖 = 0, 1, . . . , 𝑛 − 1,

1

1 − 𝛿

, 𝑖𝑓 𝑖 ≥ 𝑛.

(47)

Proof. Note that 𝑢𝜀
0
fl (1 − 𝛿)

𝑛−1

/(1 + 𝛿)
𝑛

∈ (0, 1). Therefore,
by (23) and (24) we observe that

𝑢
1

= 𝑢
0

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
0

) = 𝑢
𝜀

0
−

2𝛿

1 − 𝛿

(−𝑢
𝜀

0
) =

1 + 𝛿

1 − 𝛿

𝑢
𝜀

0

=

(1 − 𝛿)
𝑛−2

(1 + 𝛿)
𝑛−1

.

(48)

Similarly, we have

𝑢
2

= 𝑢
1

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
1

) =

1 + 𝛿

1 − 𝛿

𝑢
1

=

(1 − 𝛿)
𝑛−3

(1 + 𝛿)
𝑛−2

. (49)

Repeating this procedure, we observe that the solution to
(𝐷𝐸)
𝜀

𝛿
is given by (47).

Taking into accountTheorem 7, we provide the numerical
experiments of (𝐷𝐸)𝜀

𝛿
as follows. To this end, we use the

following numerical data.

Numerical Data of (𝐷𝐸)𝜀
𝛿

The numerical data are 𝑇 = 0.002, 𝜀 = 0.01, 𝛿 = 0.01,
and the initial data 𝑢𝜀

0
= 0.1.

Then, we observe that
1

1 − 𝛿

=

1

1 − 0.01

= 1.010101010 . . . ,

𝛿𝜀
2

1 − 𝛿

= 0.0000010101010 . . . .

(50)

3.1.TheCaseWhenΔ𝑡 = 0.000001. Nowwe consider the case
when Δ𝑡 = 0.000001. In this case, we have

𝛿𝜀
2

1 − 𝛿

= 0.0000010101010 ⋅ ⋅ ⋅ > Δ𝑡 = 0.000001, (51)

which implies that (i) of Theorem 7 holds. Thus, we have the
stable numerical result of (𝐷𝐸)𝜀

𝛿
. Indeed, we observe from

Figure 3 and Table 1 that the solution to (𝐷𝐸)
𝜀

𝛿
converges

to the stationary solution 1/(1 − 𝛿) = 1/(1 − 0.01) =

1.010101010 . . ..

3.2. The Case When Δ𝑡 = 0.000002. Now we consider the
case when Δ𝑡 = 0.000002. In this case, we have

𝛿𝜀
2

1 − 𝛿

= 0.0000010101010 ⋅ ⋅ ⋅ < Δ𝑡 = 0.000002

<

2𝛿𝜀
2

1 − 𝛿

,

(52)
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Table 1: Numerical data: Δ𝑡 = 000001.

Number of iterations 𝑖 The value of 𝑢𝑖

0 0.100000
1 0.101000
2 0.102010
3 0.103030
4 0.104060
5 0.105101
.
.
.

.

.

.

222 0.910636
223 0.919743
224 0.928940
225 0.938230
226 0.947612
227 0.957088
228 0.966659
229 0.976325
230 0.986089
231 0.995950
232 1.005909
233 1.010059
234 1.010101
235 1.010101
236 1.010101
237 1.010101
238 1.010101

0.1

0.2

0.3

0.4

0.5

0.6
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Figure 3: 𝛿𝜀2/(1 − 𝛿) = 0.0000010101010 ⋅ ⋅ ⋅ > Δ𝑡 = 0.000001.

which implies that (ii) of Theorem 7 holds. Thus, we observe
from Figure 4 and Table 2 that the solution to (DE)𝜀

𝛿
oscillates

and converges to the stationary solution 1/(1 − 𝛿) = 1/(1 −

0.01) = 1.010101010 . . ..

3.3. The Case When Δ𝑡 = 2𝛿𝜀
2

/(1 − 𝛿). Now we consider the
case when Δ𝑡 = 2𝛿𝜀

2

/(1 − 𝛿) = 0.0000020202020 . . .. In this
case, we observe Remark 8. Indeed, we observe from Figure 5
and Table 3 that the solution to (𝐷𝐸)𝜀

𝛿
oscillates.

Table 2: Numerical data: Δ𝑡 = 0.000002.

Number of iterations 𝑖 The value of 𝑢𝑖

0 0.100000
1 0.102000
2 0.104040
.
.
.

.

.

.

114 0.955916
115 0.975034
116 0.994535
117 1.014425
118 1.005863
119 1.014254
120 1.006031
121 1.014090
122 1.006192
123 1.013932
124 1.006347
125 1.013780
126 1.006496
127 1.013634
128 1.006638
129 1.013494
.
.
.

.

.

.

560 1.010100
561 1.010102
562 1.010100
563 1.010102
564 1.010100
565 1.010102
566 1.010101
567 1.010101
568 1.010101
569 1.010101
570 1.010101

3.4. The Case When Δ𝑡 = 0.000005. Now we consider the
case when Δ𝑡 = 0.000005. In this case, we have

2

𝛿𝜀
2

1 − 𝛿

= 0.0000020202020 ⋅ ⋅ ⋅ < Δ𝑡 = 0.000005. (53)

Therefore, we observe Remark 8. Indeed, we observe from
Figure 6 that the solution to (𝐷𝐸)𝜀

𝛿
oscillates.

3.5. The Case When Δ𝑡 = 15𝛿𝜀
2

/(1 − 𝛿). Now we consider
the case when Δ𝑡 = 15𝛿𝜀

2

/(1 − 𝛿). In this case, we observe
Remark 8. Indeed, we observe from Figure 7 that the solution
to (𝐷𝐸)𝜀

𝛿
oscillates between three zero points of 𝑓

𝛿
(⋅).
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Figure 4: 𝛿𝜀2/(1 − 𝛿) = 0.0000010101010 ⋅ ⋅ ⋅ < Δ𝑡 = 0.000002 <

2𝛿𝜀
2

/(1 − 𝛿).
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Figure 5: Δ𝑡 = 2𝛿𝜀
2

/(1 − 𝛿) = 0.0000020202020 . . ..

3.6. Numerical Result of Corollary 10. In this subsection, we
consider Corollary 10 numerically. To this end, we use the
following initial data:

𝑢
0
fl (1 − 𝛿)

5

(1 + 𝛿)
6
=

(1 − 0.01)
5

(1 + 0.01)
6
= 0.8958756 . . . . (54)

Then, we observe from Table 4 and Figure 8 that Corollary 10
holds. Namely, we observe that (47) holds with 𝑛 = 6.

3.7. Conclusion of ODE Problem (𝐷𝐸)
𝜀

𝛿
. FromTheorem 7 and

numerical experiments as above, we conclude that

(i) themesh size of timeΔ𝑡must be smaller than 𝛿𝜀2/(1−
𝛿) in order to get the stable numerical experiments of
(𝐷𝐸)
𝜀

𝛿
,

(ii) we have the stable numerical experiments of (𝐷𝐸)𝜀
𝛿

with the initial data 𝑢𝜀
0
fl (1 − 𝛿)

𝑛−1

/(1 + 𝛿)
𝑛, even if

the mesh size of time Δ𝑡 is equal to 2𝛿𝜀2/(1 − 𝛿).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

So
lu

tio
n

0 0.0005
Time
0.001 0.0015 0.002

Figure 6: 2𝛿𝜀2/(1 − 𝛿) = 0.0000020202020 ⋅ ⋅ ⋅ < Δ𝑡 = 0.000005.

Table 3: Numerical data: Δ𝑡 = 2𝛿𝜀
2

/(1 − 𝛿) = 0.0000020202020 . . ..

Number of iterations 𝑖 The value of 𝑢𝑖

0 0.100000
1 0.102020
2 0.104081
3 0.106184
4 0.108329
5 0.110517
.
.
.

.

.

.

110 0.902568
111 0.920801
112 0.939403
113 0.958381
114 0.977742
115 0.997495
116 1.017646
117 1.002556
118 1.017646
119 1.002556
120 1.017646
121 1.002556
122 1.017646
123 1.002556
124 1.017646
125 1.002556
126 1.017646
127 1.002556
128 1.017646
129 1.002556
130 1.017646

4. Solvability and Convergence Results for (𝑃)𝜀
𝛿

We begin by giving the rigorous definition of solutions to our
PDE problem (𝑃)

𝜀

𝛿
(𝜀 ∈ (0, 1] and 𝛿 ∈ (0, 1]).



Advances in Numerical Analysis 9

Table 4: Numerical data: Δ𝑡 = 2𝛿𝜀
2

/(1 − 𝛿) = 0.0000020202020 . . ..

Number of iterations 𝑖 The value of 𝑢𝑖

0 0.895876
1 0.913974
2 0.932438
3 0.951275
4 0.970493
5 0.990099
6 1.010101
7 1.010101
8 1.010101
9 1.010101
10 1.010101

0 0.0005 0.001 0.0015 0.002
Time

−1.5

−1

−0.5

0

0.5

1

1.5

So
lu

tio
n

Figure 7: Δ𝑡 = 15𝛿𝜀
2

/(1 − 𝛿).

Definition 11. Let 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1], and 𝑢𝜀
0
∈ 𝐻. Then, a

function 𝑢𝜀
𝛿
: [0, 𝑇] → 𝐻 is called a solution to (𝑃)𝜀

𝛿
on [0, 𝑇],

if the following conditions are satisfied:

(i) 𝑢𝜀
𝛿
∈ 𝑊
1,2

(0, 𝑇;𝐻) ∩ 𝐿
∞

(0, 𝑇; 𝑉).
(ii) The following variational identity holds:

((𝑢
𝜀

𝛿
)
𝑡
(𝑡) , 𝑧)

𝐻
+ ((𝑢
𝜀

𝛿
)
𝑥
(𝑡) , 𝑧
𝑥
)
𝐻

+ (

(𝜕𝐼
[−1,1]

)
𝛿
(𝑢
𝜀

𝛿
(𝑡))

𝜀
2

, 𝑧)

𝐻

= (

𝑢
𝜀

𝛿
(𝑡)

𝜀
2

, 𝑧)

𝐻

∀𝑧 ∈ 𝑉, a.e. 𝑡 ∈ (0, 𝑇) .

(55)

(iii) 𝑢𝜀
𝛿
(0) = 𝑢

𝜀

0
in𝐻.

Now, we mention the solvability result of (𝑃)𝜀
𝛿
on [0, 𝑇].

Proposition 12. Let 𝜀 ∈ (0, 1] and 𝛿 ∈ (0, 1]. Assume the
following condition:

𝑢
𝜀

0
∈ 𝐾 fl {𝑧 ∈ 𝑉; −1 ≤ 𝑧 (𝑥) ≤ 1 𝑎.𝑒. 𝑥 ∈ (0, 1)} . (A)

Then, for each 𝑢𝜀
0
∈ 𝐾, there exists a unique solution 𝑢𝜀

𝛿
to (𝑃)𝜀

𝛿

on [0, 𝑇] in the sense of Definition 11.

0 0.0005 0.001 0.0015 0.002
Time

0

0.2

0.4

0.6

0.8

1

So
lu

tio
n

Figure 8: Δ𝑡 = 2𝛿𝜀
2

/(1 − 𝛿) = 0.0000020202020 . . ..

Proof. By the same argument as in Proposition 2, we can show
the existence-uniqueness of a solution 𝑢

𝜀

𝛿
to (𝑃)

𝜀

𝛿
on [0, 𝑇]

for each 𝜀 ∈ (0, 1] and 𝛿 ∈ (0, 1]. Indeed, we can prove the
uniqueness of solutions to (𝑃)𝜀

𝛿
on [0, 𝑇] by the quite standard

arguments: monotonicity and Gronwall’s inequality.
Also, we can show the existence of solutions to (𝑃)𝜀

𝛿
on

[0, 𝑇] applying the abstract theory of evolution equations
governed by subdifferentials. Indeed, we define a functional
𝜑
𝜀

𝛿
on𝐻 by

𝜑
𝜀

𝛿
(𝑧)

fl
{

{

{

1

2

∫

1

0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑥

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 +

1

𝜀
2
∫

1

0

(𝐼
[−1,1]

)
𝛿
(𝑧 (𝑥)) 𝑑𝑥, if 𝑧 ∈ 𝑉,

∞, otherwise,

(56)

where (𝐼
[−1,1]

)
𝛿
(⋅) is the function defined in (14). Clearly, 𝜑𝜀

𝛿

is proper, l.s.c., and convex on 𝐻 with the effective domain
𝐷(𝜑) = 𝑉.

Note that the problem (𝑃)
𝜀

𝛿
can be rewritten as in an

abstract framework of the form

(𝑃𝑃)
𝜀

𝛿

{
{

{
{

{

𝑑

𝑑𝑡

𝑢
𝜀

𝛿
(𝑡) + 𝜕𝜑

𝜀

𝛿
(𝑢
𝜀

𝛿
(𝑡)) −

1

𝜀
2
𝑢
𝜀

𝛿
(𝑡) = 0 in 𝐻, for 𝑡 > 0,

𝑢
𝜀

(0) = 𝑢
𝜀

0
in 𝐻.

(57)

Therefore, applying the Lipschitz perturbation theory of
abstract evolution equations (cf. [23–25]), we can show the
existence of a solution 𝑢𝜀

𝛿
to (𝑃𝑃)𝜀

𝛿
, hence, (𝑃)𝜀

𝛿
, on [0, 𝑇] for

each 𝜀 ∈ (0, 1] and 𝛿 ∈ (0, 1] in the sense of Definition 11.
Thus, the proof of Proposition 12 has been completed.

Next, we recall the convergence result of (𝑃)𝜀
𝛿
as 𝛿 → 0.

Taking into account Lemma 4 (cf. (18)), we observe that the
following lemma holds.



10 Advances in Numerical Analysis

Lemma 13 (cf. [27, Section 5], [22, Chapter 2], [28, Section
2]). Let 𝜀 ∈ (0, 1], and define a functional 𝜑𝜀 on𝐻 by

𝜑
𝜀

(𝑧)

fl
{

{

{

1

2

∫

1

0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑥

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 +

1

𝜀
2
∫

1

0

𝐼
[−1,1]

(𝑧 (𝑥)) 𝑑𝑥, 𝑖𝑓 𝑧 ∈ 𝑉,

∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(58)

Then,

𝜑
𝜀

𝛿
(⋅) 󳨀→ 𝜑

𝜀

(⋅)

𝑜𝑛 𝐻 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑒 𝑜𝑓 𝑀𝑜𝑠𝑐𝑜 [26] 𝑎𝑠 𝛿 󳨀→ 0.

(59)

By Lemma 13 and the general convergence theory of
evolution equations, we get the following result.

Proposition 14 (cf. [27, Section 5], [28, Section 2]). Let 𝜀 ∈
(0, 1], 𝛿 ∈ (0, 1], and 𝑢𝜀

0
∈ 𝐾. Also, let 𝑢𝜀

𝛿
be the unique solution

to (𝑃)𝜀
𝛿
on [0, 𝑇]. Then, 𝑢𝜀

𝛿
converges to the unique function 𝑢𝜀

to (𝑃)𝜀 on [0, 𝑇] in the sense that

𝑢
𝜀

𝛿
󳨀→ 𝑢
𝜀

𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐶 ([0, 𝑇] ;𝐻) 𝑎𝑠 𝛿 󳨀→ 0. (60)

Proof. Note that the problem (𝑃)
𝜀 can be rewritten as in an

abstract framework of the form

(𝑃𝑃)
𝜀
{

{

{

𝑑

𝑑𝑡

𝑢
𝜀

(𝑡) + 𝜕𝜑
𝜀

(𝑢
𝜀

(𝑡)) −

1

𝜀
2
𝑢
𝜀

(𝑡) ∋ 0 in 𝐻, for 𝑡 > 0,

𝑢
𝜀

(0) = 𝑢
𝜀

0
in 𝐻.

(61)

Therefore, by Lemma 13 and the abstract convergence theory
of evolution equations (cf. [27, 28]), we observe that the
solution 𝑢

𝜀

𝛿
to (𝑃𝑃)𝜀

𝛿
converges to the unique solution 𝑢

𝜀 to
(𝑃𝑃)
𝜀 on [0, 𝑇] as 𝛿 → 0 in the sense of (60). Note that 𝑢𝜀

(resp., 𝑢𝜀
𝛿
) is the unique solution to (𝑃)𝜀 (resp., (𝑃)𝜀

𝛿
) on [0, 𝑇]

(cf. Proposition 12). Thus, we conclude that Proposition 14
holds.

5. Stable Criteria and Numerical
Experiments for (𝑃)𝜀

𝛿

In this section we consider (𝑃)
𝜀

𝛿
from the viewpoint of

numerical analysis.

Remark 15. Note fromProposition 14 that (𝑃)𝜀
𝛿
is the approxi-

mating problemof (𝑃)𝜀. Also note from (5) that the constraint
𝜕𝐼
[−1,1]

(⋅) is the multivalued function. Therefore, it is very
difficult to study (𝑃)𝜀 numerically.

In order to perform the numerical experiments of (𝑃)𝜀
𝛿
,

we consider the following explicit finite difference scheme to
(𝑃)
𝜀

𝛿
, denoted by (𝐷𝑃)𝜀

𝛿
:

(𝐷𝑃)
𝜀

𝛿

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑢
𝑛+1

𝑘
− 𝑢
𝑛

𝑘

Δ𝑡

−

𝑢
𝑛

𝑘−1
− 2𝑢
𝑛

𝑘
+ 𝑢
𝑛

𝑘+1

(Δ𝑥)
2

+

(𝜕𝐼
[−1,1]

)
𝛿
(𝑢
𝑛

𝑘
)

𝜀
2

=

𝑢
𝑛

𝑘

𝜀
2

for 𝑛 = 0, 1, 2, . . . , 𝑁
𝑡
, 𝑘 = 1, 2, . . . , 𝑁

𝑥
− 1,

𝑢
𝑛

0
= 𝑢
𝑛

1
, 𝑢
𝑛

𝑁𝑥

= 𝑢
𝑛

𝑁𝑥−1
for 𝑛 = 1, 2, . . . , 𝑁

𝑡
,

𝑢
0

𝑘
= 𝑢
𝜀

0
(𝑥
𝑘
) for 𝑘 = 0, 1, 2, . . . , 𝑁

𝑥
,

(62)

whereΔ𝑡 is themesh size of time,Δ𝑥 is themesh size of space,
𝑁
𝑡
is the integer part of number 𝑇/Δ𝑡,𝑁

𝑥
is the integer part

of number 1/Δ𝑥, and 𝑥
𝑘
fl 𝑘Δ𝑥.

We observe that 𝑢𝑛
𝑘
is the approximating solution of (𝑃)𝜀

𝛿

at the time 𝑡
𝑛

fl 𝑛Δ𝑡 and the position 𝑥
𝑘

fl 𝑘Δ𝑥. Also,
we observe that the explicit finite difference scheme (𝐷𝑃)𝜀

𝛿

converges to (𝑃)𝜀
𝛿
as Δ𝑡 → 0 and Δ𝑥 → 0.

From Figure 1, we observe that we have to choose the
suitable constants 𝜀 and 𝛿 and the mesh size of time Δ𝑡 and
the mesh size of space Δ𝑥 in order to get the stable numerical
results of (𝐷𝑃)𝜀

𝛿
. Now, let us mention our second main result

concerning the stability of (𝐷𝐸)𝜀
𝛿
.

Theorem 16. Let 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1),Δ𝑡 ∈ (0, 1],Δ𝑥 ∈ (0, 1],
𝑇 > 0, and 𝑢𝜀

0
∈ 𝐾, where 𝐾 is the set of initial values defined

in Proposition 12 (cf. (A)). Let𝑁
𝑥
be the integer part of number

1/Δ𝑥, and let {𝑢𝑛
𝑘
; 𝑛 ≥ 0, 𝑘 = 0, 1, . . . , 𝑁

𝑥
} be the solution to

(𝐷𝑃)
𝜀

𝛿
. Also, let 𝑐

0
∈ (0, 1) and assume that

0 < Δ𝑡 ≤

𝑐
0
𝛿𝜀
2

1 − 𝛿

,

0 ≤

Δ𝑡

(Δ𝑥)
2
≤

1 − 𝑐
0

2

.

(63)

Then, one has the following:

(i) The solution to (𝐷𝑃)𝜀
𝛿
is bounded in the following sense:

max
0≤𝑘≤𝑁𝑥

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛

𝑘

󵄨
󵄨
󵄨
󵄨
≤

1

1 − 𝛿

∀𝑛 ≥ 0. (64)

(ii) {𝑢𝑛
𝑘
; 𝑘 = 0, 1, . . . , 𝑁

𝑥
} does not oscillate with respect to

𝑛 ≥ 0.

Proof. We first show (i), that is, (64), by the mathematical
induction.

Clearly (64) holds for 𝑛 = 0 because of 𝑢𝜀
0
∈ 𝐾.

Now, we assume that

max
0≤𝑘≤𝑁𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑖

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
≤

1

1 − 𝛿

∀𝑖 = 0, 1, . . . , 𝑛. (65)
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We observe that the explicit finite difference problem (𝐷𝑃)
𝜀

𝛿

can be reformulated as in the following form:

𝑢
𝑛+1

𝑘
= 𝑟𝑢
𝑛

𝑘−1
+ 𝑟𝑢
𝑛

𝑘+1
+ (1 − 2𝑟) 𝑢

𝑛

𝑘
−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

𝑘
)

∀𝑛 = 0, 1, 2, . . . , 𝑁
𝑡
, 𝑘 = 1, 2, . . . , 𝑁

𝑥
− 1,

(66)

where we put 𝑟 fl Δ𝑡/(Δ𝑥)
2 and 𝑓

𝛿
(⋅) is the function defined

by (23).
We observe from (63), (65), and (66) that

1

1 − 𝛿

− 𝑢
𝑛+1

𝑘
= 𝑟 (

1

1 − 𝛿

− 𝑢
𝑛

𝑘−1
) + 𝑟 (

1

1 − 𝛿

− 𝑢
𝑛

𝑘+1
)

+ (1 − 2𝑟) (

1

1 − 𝛿

− 𝑢
𝑛

𝑘
) +

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

𝑘
)

≥ (1 − 2𝑟) (

1

1 − 𝛿

− 𝑢
𝑛

𝑘
) +

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

𝑘
)

∀𝑘 = 1, 2, . . . , 𝑁
𝑥
− 1.

(67)

From (23), (63), and (65) we infer that the function
[−1/(1−𝛿), 1/(1−𝛿)] ∋ 𝑧 → (1−2𝑟)(1/(1−𝛿)−𝑧)+Δ𝑡/𝜀

2

𝑓
𝛿
(𝑧)

is nonnegative and continuous. Indeed, it follows from (23)
that the function [−1/(1 − 𝛿), 1] ∋ 𝑧 → (1 − 2𝑟)(1/(1 − 𝛿) −

𝑧) + Δ𝑡/𝜀
2

𝑓
𝛿
(𝑧) attains a minimum value at 𝑧 = 1. Therefore,

we observe from (23) and (63) that

(1 − 2𝑟) (

1

1 − 𝛿

− 𝑧) +

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑧)

≥ (1 − 2𝑟) (

1

1 − 𝛿

− 1) +

Δ𝑡

𝜀
2
𝑓
𝛿
(1)

= (1 − 2𝑟) ⋅

𝛿

1 − 𝛿

−

Δ𝑡

𝜀
2
≥

𝑐
0
𝛿

1 − 𝛿

−

Δ𝑡

𝜀
2
≥ 0

∀𝑧 ∈ [−

1

1 − 𝛿

, 1] .

(68)

Also, for any 𝑧 ∈ [1, 1/(1 − 𝛿)], we observe from (23) that

(1 − 2𝑟) (

1

1 − 𝛿

− 𝑧) +

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑧)

= (1 − 2𝑟) (

1

1 − 𝛿

− 𝑧) +

Δ𝑡

𝜀
2
⋅ (

𝑧 − 1

𝛿

− 𝑧)

= [

1 − 𝛿

𝛿𝜀
2
Δ𝑡 − (1 − 2𝑟)] 𝑧 + (1 − 2𝑟)

1

1 − 𝛿

−

Δ𝑡

𝛿𝜀
2
.

(69)

Here we note from (63) that

1 − 𝛿

𝛿𝜀
2
Δ𝑡 − (1 − 2𝑟) ≤

1 − 𝛿

𝛿𝜀
2
Δ𝑡 − 𝑐

0
≤ 0. (70)

Therefore, we infer from (69) that the function [1, 1/(1−𝛿)] ∋
𝑧 → (1−2𝑟)(1/(1−𝛿)−𝑧)+Δ𝑡/𝜀

2

𝑓
𝛿
(𝑧) is nonincreasing and

attains a minimum value at 𝑧 = 1/(1 − 𝛿). Hence, we have

(1 − 2𝑟) (

1

1 − 𝛿

− 𝑧) +

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑧) ≥

Δ𝑡

𝜀
2
𝑓
𝛿
(

1

1 − 𝛿

) = 0

∀𝑧 ∈ [1,

1

1 − 𝛿

] .

(71)

Thus, we observe from (68) and (71) that

(1 − 2𝑟) (

1

1 − 𝛿

− 𝑧) +

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑧) ≥ 0,

∀𝑧 ∈ [−

1

1 − 𝛿

,

1

1 − 𝛿

] ,

(72)

which implies from (65) and (67) that
1

1 − 𝛿

− 𝑢
𝑛+1

𝑘
≥ 0 ∀𝑘 = 1, 2, . . . , 𝑁

𝑥
− 1. (73)

Similarly, we observe from (63), (65), and (66) that

𝑢
𝑛+1

𝑘
+

1

1 − 𝛿

= 𝑟 (𝑢
𝑛

𝑘−1
+

1

1 − 𝛿

) + 𝑟 (𝑢
𝑛

𝑘+1
+

1

1 − 𝛿

)

+ (1 − 2𝑟) (𝑢
𝑛

𝑘
+

1

1 − 𝛿

) −

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

𝑘
)

≥ (1 − 2𝑟) (𝑢
𝑛

𝑘
+

1

1 − 𝛿

) −

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

𝑘
)

∀𝑘 = 1, 2, . . . , 𝑁
𝑥
− 1.

(74)

By similar arguments as above, we observe that the function
[−1/(1−𝛿), 1/(1−𝛿)] ∋ 𝑧 → (1−2𝑟)(𝑧+1/(1−𝛿))−Δ𝑡/𝜀

2

𝑓
𝛿
(𝑧)

is nonnegative and continuous. In fact, it follows from (23)
that the function [−1, 1/(1−𝛿)] ∋ 𝑧 → (1−2𝑟)(𝑧+1/(1−𝛿))−

Δ𝑡/𝜀
2

𝑓
𝛿
(𝑧) attains a minimum value at 𝑧 = −1. Therefore, we

observe from (23) and (63) that

(1 − 2𝑟) (𝑧 +

1

1 − 𝛿

) −

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑧)

≥ (1 − 2𝑟) (−1 +

1

1 − 𝛿

) −

Δ𝑡

𝜀
2
𝑓
𝛿
(−1)

= (1 − 2𝑟) ⋅

𝛿

1 − 𝛿

−

Δ𝑡

𝜀
2
≥

𝑐
0
𝛿

1 − 𝛿

−

Δ𝑡

𝜀
2
≥ 0

∀𝑧 ∈ [−1,

1

1 − 𝛿

] .

(75)

Also, for any 𝑧 ∈ [−1/(1 − 𝛿), −1], we observe from (23) that

(1 − 2𝑟) (𝑧 +

1

1 − 𝛿

) −

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑧)

= (1 − 2𝑟) (𝑧 +

1

1 − 𝛿

) −

Δ𝑡

𝜀
2
⋅ (

1 + 𝑧

𝛿

− 𝑧)

= [(1 − 2𝑟) −

1 − 𝛿

𝛿𝜀
2
Δ𝑡] 𝑧 + (1 − 2𝑟)

1

1 − 𝛿

−

Δ𝑡

𝛿𝜀
2
.

(76)

Here we note from (63) that

(1 − 2𝑟) −

1 − 𝛿

𝛿𝜀
2
Δ𝑡 ≥ 𝑐

0
−

1 − 𝛿

𝛿𝜀
2
Δ𝑡 ≥ 0. (77)

Therefore, we infer from (76) that the function [−1/(1 −

𝛿), −1] ∋ 𝑧 → (1 − 2𝑟)(𝑧 + 1/(1 − 𝛿)) − Δ𝑡/𝜀
2

𝑓
𝛿
(𝑧) is

nondecreasing and attains aminimumvalue at 𝑧 = −1/(1−𝛿).
Hence, we have

(1 − 2𝑟) (𝑧 +

1

1 − 𝛿

) −

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑧) ≥ −

Δ𝑡

𝜀
2
𝑓
𝛿
(−

1

1 − 𝛿

)

= 0 ∀𝑧 ∈ [−

1

1 − 𝛿

, −1] .

(78)
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Thus, we observe from (75) and (78) that

(1 − 2𝑟) (𝑧 +

1

1 − 𝛿

) −

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑧) ≥ 0,

∀𝑧 ∈ [−

1

1 − 𝛿

,

1

1 − 𝛿

] ,

(79)

which implies from (65) and (74) that

𝑢
𝑛+1

𝑘
+

1

1 − 𝛿

≥ 0 ∀𝑘 = 1, 2, . . . , 𝑁
𝑥
− 1. (80)

Taking into account Neumann boundary condition,
namely, by 𝑢𝑛+1

0
= 𝑢
𝑛+1

1
and 𝑢𝑛+1

𝑁𝑥

= 𝑢
𝑛+1

𝑁𝑥−1
, we observe from

(73) and (80) that

max
0≤𝑘≤𝑁𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑛+1

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
≤

1

1 − 𝛿

, (81)

which implies that (65) holds for 𝑖 = 𝑛 + 1. Therefore, we
conclude from the mathematical induction that (64) holds.
Hence, the proof of (i) of Theorem 16 has been completed.

Next, we show (ii) by the standard arguments. Namely, we
reformulate (𝐷𝑃)𝜀

𝛿
as in the following form:

(

(

𝑢
𝑛+1

1

𝑢
𝑛+1

2

.

.

.

𝑢
𝑛+1

𝑁𝑥−1

)

)

=

(

(

(

(

(

(

1− 2𝑟 𝑟

𝑟 1 − 2𝑟 𝑟

𝑟 1 − 2𝑟 𝑟

d d

𝑟 1 − 2𝑟 𝑟

𝑟 1 − 2𝑟

)

)

)

)

)

)

(

(

𝑢
𝑛

1

𝑢
𝑛

2

.

.

.

𝑢
𝑛

𝑁𝑥−1

)

)

+ 𝑟

(

(

(

(

𝑢
𝑛

0

0

.

.

.

0

𝑢
𝑛

𝑁𝑥

)

)

)

)

+

(

(

(

(

(

(

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

1
)

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

2
)

.

.

.

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

𝑁𝑥−1
)

)

)

)

)

)

)

.

(82)

Here by taking into account Neumann boundary condition
and initial condition, namely, by 𝑢𝑛

0
= 𝑢
𝑛

1
and 𝑢𝑛

𝑁𝑥

= 𝑢
𝑛

𝑁𝑥−1

for all 𝑛 ≥ 0, we observe that (82) is reformulated as in the
following form:

𝑢⃗
(𝑛+1)

= 𝐴𝑢⃗
(𝑛)

+

(

(

(

(

(

(

𝑟𝑢
𝑛

1
−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

1
)

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

2
)

.

.

.

𝑟𝑢
𝑛

𝑁𝑥−1
−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

𝑁𝑥−1
)

)

)

)

)

)

)

, (83)

where we put

𝑢⃗
(𝑛) fl (

(

𝑢
𝑛

1

𝑢
𝑛

2

.

.

.

𝑢
𝑛

𝑁𝑥−1

)

)

,

𝐴

=

(

(

(

(

(

(

1− 2𝑟 𝑟

𝑟 1 − 2𝑟 𝑟

𝑟 1 − 2𝑟 𝑟

d d

𝑟 1 − 2𝑟 𝑟

𝑟 1 − 2𝑟

)

)

)

)

)

)

.

(84)

Note from (23) that

𝑓
𝛿
(𝑢
𝑛

𝑘
) =

{
{
{
{
{

{
{
{
{
{

{

1 − 𝛿

𝛿

𝑢
𝑛

𝑘
+

1

𝛿

if 𝑢𝑛
𝑘
≤ −1,

−𝑢
𝑛

𝑘
if 𝑢𝑛
𝑘
∈ [−1, 1] ,

1 − 𝛿

𝛿

𝑢
𝑛

𝑘
−

1

𝛿

if 𝑢𝑛
𝑘
≥ 1.

(85)

Defining

𝑏
𝑛

𝑘
fl
{
{

{
{

{

−1 if 𝑢𝑛
𝑘
∈ [−1, 1] ,

1 − 𝛿

𝛿

if 𝑢𝑛
𝑘
∉ [−1, 1] ,

̃
𝑏

𝑛

𝑘
fl

{
{
{
{
{

{
{
{
{
{

{

1

𝛿

if 𝑢𝑛
𝑘
≤ −1,

0 if 𝑢𝑛
𝑘
∈ [−1, 1] ,

−

1

𝛿

if 𝑢𝑛
𝑘
≥ 1,

(86)

we observe from (85) and (86) that

(

(

(

(

(

(

𝑟𝑢
𝑛

1
−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

1
)

−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

2
)

.

.

.

𝑟𝑢
𝑛

𝑁𝑥−1
−

Δ𝑡

𝜀
2
𝑓
𝛿
(𝑢
𝑛

𝑁𝑥−1
)

)

)

)

)

)

)
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=
(

(

(

𝑟−

Δ𝑡

𝜀
2
𝑏
𝑛

1

−

Δ𝑡

𝜀
2
𝑏
𝑛

2

d

𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑁𝑥−1

)

)

)

(

(

𝑢
𝑛

1

𝑢
𝑛

2

.

.

.

𝑢
𝑛

𝑁𝑥−1

)

)

+

(

(

(

(

(

(

−

Δ𝑡

𝜀
2

̃
𝑏

𝑛

1

−

Δ𝑡

𝜀
2

̃
𝑏

𝑛

2

.

.

.

−

Δ𝑡

𝜀
2

̃
𝑏

𝑛

𝑁𝑥−1

)

)

)

)

)

)

.

(87)

Using the matrix as above, (82) can be rewritten as in the
following form:

𝑢⃗
(𝑛+1)

= 𝐴𝑢⃗
(𝑛)

+ 𝐵𝑢⃗
(𝑛)

+
̃
⃗
𝑏

(𝑛)

, (𝑛 ≥ 0) ,
(88)

where we define

𝐵 fl (

(

(

𝑟−

Δ𝑡

𝜀
2
𝑏
𝑛

1

−

Δ𝑡

𝜀
2
𝑏
𝑛

2

d

𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑁𝑥−1

)

)

)

,

̃
⃗
𝑏

(𝑛)

fl
(

(

(

(

(

(

−

Δ𝑡

𝜀
2

̃
𝑏

𝑛

1

−

Δ𝑡

𝜀
2

̃
𝑏

𝑛

2

.

.

.

−

Δ𝑡

𝜀
2

̃
𝑏

𝑛

𝑁𝑥−1

)

)

)

)

)

)

.

(89)

By the general theory, we observe that the eigenvalue 𝜆
𝑗
of

matrix 𝐴 is given by

𝜆
𝑗
fl 1 − 4𝑟 sin2 (

𝑗𝜋

2𝑁
𝑥

) for 𝑗 = 1, 2, . . . , 𝑁
𝑥
− 1, (90)

which implies that 𝜆
1
(resp., 𝜆

𝑁𝑥−1
) is the maximum (resp.,

minimum) eigenvalue of 𝐴.
Now let {̃𝜆

𝑗
; 𝑗 = 1, 2, . . . , 𝑁

𝑥
− 1} be the set of all

eigenvalues of matrix 𝐴̃ fl 𝐴 + 𝐵 such that

̃
𝜆
1
≥
̃
𝜆
2
≥ ⋅ ⋅ ⋅ ≥

̃
𝜆
𝑁𝑥−1

. (91)

Also, let {𝜆𝐵
𝑗
; 𝑗 = 1, 2, . . . , 𝑁

𝑥
− 1} be the set of all eigenvalues

of 𝐵 such that

𝜆
𝐵

1
≥ 𝜆
𝐵

2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝐵

𝑁𝑥−1
. (92)

Then, by the abstract perturbation theory of matrix, we
observe that

𝜆
𝑁𝑥−1

+ 𝜆
𝐵

𝑗
≤
̃
𝜆
𝑗
≤ 𝜆
1
+ 𝜆
𝐵

𝑗
, ∀𝑗 = 1, 2, . . . , 𝑁

𝑥
− 1. (93)

Since 𝐵 is the symmetric matrix, it follows from (63), (86),
and (90) that

𝜆
𝑁𝑥−1

+ 𝜆
𝐵

𝑗
≥ 1 − 4𝑟 sin2 (

(𝑁
𝑥
− 1) 𝜋

2𝑁
𝑥

) −

Δ𝑡

𝜀
2
⋅

1 − 𝛿

𝛿

≥ 1 − 4𝑟 −

Δ𝑡 (1 − 𝛿)

𝛿𝜀
2

≥ 1 − 4 ⋅

1 − 𝑐
0

2

− 𝑐
0
= −1 + 𝑐

0
> −1

∀𝑗 = 1, 2, . . . , 𝑁
𝑥
− 1.

(94)

Thus, we conclude from (93) and the above inequality that

̃
𝜆
𝑗
> −1 ∀𝑗 = 1, 2, . . . , 𝑁

𝑥
− 1. (95)

Note that (95) holds in any case: 𝑢𝑛
𝑘
∈ [−1, 1] and 𝑢𝑛

𝑘
∉ [−1, 1].

Next, we now assume max
1≤𝑘≤𝑁𝑥−1

|𝑢
𝑛

𝑘
| ≤ 1. Then, we

observe from (63) and (86) that

1 − 2𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑘
= 1 − 2

Δ𝑡

(Δ𝑥)
2
+

Δ𝑡

𝜀
2

≥ 1 − 2 ⋅

1 − 𝑐
0

2

+

Δ𝑡

𝜀
2
> 0

∀𝑘 = 1, 2, . . . , 𝑁
𝑥
− 1.

(96)

Therefore, all components of 𝐴 + 𝐵 are positive. Hence, the
sum of all components in the 𝑘th row of𝐴+𝐵 is the following:

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 − 𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ |𝑟| = 1 − 𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑘
+ 𝑟 = 1 +

Δ𝑡

𝜀
2
> 1

for 𝑘 = 1 or 𝑁
𝑥
− 1,

|𝑟| +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 − 2𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ |𝑟| = 𝑟 + 1 − 2𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑘
+ 𝑟

= 1 +

Δ𝑡

𝜀
2
> 1 ∀𝑘 = 2, 3, . . . , 𝑁

𝑥
− 2.

(97)

Therefore, we observe from (97) that max
1≤𝑘≤𝑁𝑥−1

|𝑢
𝑛

𝑘
|

is increasing with respect to 𝑛 in the case when
max
1≤𝑘≤𝑁𝑥−1

|𝑢
𝑛

𝑘
| ≤ 1.

However, if 𝑢𝑛
𝑘
∉ [−1, 1] for some 𝑘 = 1, 2, . . . , 𝑁

𝑥
− 1, it

follows from (63) and (86) that

1 − 2𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑘
= 1 − 2

Δ𝑡

(Δ𝑥)
2
−

Δ𝑡

𝜀
2
⋅

1 − 𝛿

𝛿

≥ 1 − 2 ⋅

1 − 𝑐
0

2

− 𝑐
0
= 0.

(98)
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Therefore, the sum of all components in the 𝑘th row of 𝐴+𝐵

is the following:

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 − 𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ |𝑟| = 1 − 𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑘
+ 𝑟

= 1 −

Δ𝑡

𝜀
2
⋅

1 − 𝛿

𝛿

< 1

if 𝑢𝑛
𝑘
∉ [−1, 1] for some 𝑘 = 1 or 𝑁

𝑥
− 1,

|𝑟| +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 − 2𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ |𝑟| = 𝑟 + 1 − 2𝑟 −

Δ𝑡

𝜀
2
𝑏
𝑛

𝑘
+ 𝑟

= 1 −

Δ𝑡

𝜀
2
⋅

1 − 𝛿

𝛿

< 1

if 𝑢𝑛
𝑘
∉ [−1, 1] for some 𝑘 = 2, 3, . . . , 𝑁

𝑥
− 2.

(99)

Although max
1≤𝑘≤𝑁𝑥−1

|𝑢
𝑛

𝑘
| is increasing with respect to 𝑛

in the case when max
1≤𝑘≤𝑁𝑥−1

|𝑢
𝑛

𝑘
| ≤ 1 (cf. (97)), we conclude

from (95) and (99) that (ii) of Theorem 16 holds. Thus, the
proof of Theorem 16 has been completed.

Remark 17. By (63) we get the suitable mesh size of space Δ𝑥.
In fact, for each 𝜀 ∈ (0, 1], 𝛿 ∈ (0, 1) we take the constant
𝑐̃
0
∈ (0, 1), Δ𝑡 ∈ (0, 1], Δ𝑥 ∈ (0, 1] such that

Δ𝑡 ≤

𝑐̃
0
𝛿𝜀
2

1 − 𝛿

,

Δ𝑡

(Δ𝑥)
2
=

1 − 𝑐̃
0

2

.

(100)

Then, we have

Δ𝑡 =

1 − 𝑐̃
0

2

⋅ (Δ𝑥)
2

≤

𝑐̃
0
𝛿𝜀
2

1 − 𝛿

. (101)

Thus, we have the following condition of Δ𝑥:

0 < Δ𝑥 < 𝜀√

2𝑐̃
0
𝛿

(1 − 𝑐̃
0
) (1 − 𝛿)

. (102)

Remark 18. We can take 𝑐
0
= 0 in (63) for the explicit finite

difference scheme to the following usual heat equation with
Neumann boundary condition:

𝑢
𝜀

𝑡
− 𝑢
𝜀

𝑥𝑥
= 0 in 𝑄 fl (0, 𝑇) × (0, 1) ,

𝑢
𝜀

𝑥
(𝑡, 0) = 𝑢

𝜀

𝑥
(𝑡, 1) = 0, 𝑡 ∈ (0, 𝑇) ,

𝑢
𝜀

(0, 𝑥) = 𝑢
𝜀

0
(𝑥) , 𝑥 ∈ (0, 1) .

(103)

Taking into account Theorem 16, we provide the numer-
ical experiments of (𝐷𝑃)𝜀

𝛿
as follows. To this end, we use the

following numerical data.

Numerical Data of (𝐷𝑃)𝜀
𝛿

Thenumerical data is 𝑇 = 0.01, 𝛿 = 0.01,Δ𝑥 = 0.005,
𝑐
0
= 0.6.
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Figure 9: 𝜀 = 0.05, Δ𝑡 = 0.000005, Δ𝑥 = 0.005, and 𝛿 = 0.01.

Also, we consider the initial data 𝑢𝜀
0
(𝑥) defined by

𝑢
𝜀

0
(𝑥) =

{
{
{
{

{
{
{
{

{

−0.5, if 𝑥 ∈ [0.00, 0.25] ,

−0.5 sin (2𝜋𝑥) , if 𝑥 ∈ [0.25, 0.75] ,

0.5, if 𝑥 ∈ [0.75, 1.00] .

(104)

5.1. The Case When 𝜀 = 0.05 and Δ𝑡 = 0.000005. Now, we
consider the case when 𝜀 = 0.05 and Δ𝑡 = 0.000005. In this
case, we observe that

Δ𝑡

(Δ𝑥)
2
=

0.000005

(0.005)
2
= 0.2 =

1 − 𝑐
0

2

,

𝑐
0
𝛿𝜀
2

1 − 𝛿

=

0.6 × 0.01 × (0.05)
2

1 − 0.01

= 0.00001515151515 . . . .

(105)

Therefore, we have

𝑐
0
𝛿𝜀
2

1 − 𝛿

= 0.00001515151515 ⋅ ⋅ ⋅ > Δ𝑡, (106)

which implies that criteria condition (63) holds.Thus, we can
provide the stable numerical experiment of (𝐷𝑃)𝜀

𝛿
. Indeed,

we provide Figure 9, which implies the stable numerical
experiment of (𝐷𝑃)𝜀

𝛿
.

5.2. The Case When 𝜀 = 0.007 and Δ𝑡 = 0.000005. Now, we
consider the case when 𝜀 = 0.007 and Δ𝑡 = 0.000005. In this
case, we observe that

Δ𝑡

(Δ𝑥)
2
=

0.000005

(0.005)
2
= 0.2 =

1 − 𝑐
0

2

,

𝑐
0
𝛿𝜀
2

1 − 𝛿

=

0.6 × 0.01 × (0.007)
2

1 − 0.01

= 0.00000029696969 . . . .

(107)

Therefore, we have

𝑐
0
𝛿𝜀
2

1 − 𝛿

= 0.00000029696969 ⋅ ⋅ ⋅ < Δ𝑡, (108)
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Figure 10: 𝜀 = 0.007, Δ𝑡 = 0.000005, Δ𝑥 = 0.005, and 𝛿 = 0.01.
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Figure 11: 𝜀 = 0.007, Δ𝑡 = 0.0000002, Δ𝑥 = 0.005, and 𝛿 = 0.01.

which implies that criteria condition (63) does not hold.
Therefore, we provide the unstable numerical experiment of
(𝐷𝑃)
𝜀

𝛿
. Indeed, we have Figure 10.

5.3. The Case When 𝜀 = 0.007 and Δ𝑡 = 0.0000002. Now, we
consider the case when 𝜀 = 0.007 and Δ𝑡 = 0.0000002. In this
case, we have

Δ𝑡

(Δ𝑥)
2
=

0.0000002

(0.005)
2

=

1

125

≤ 0.2 =

1 − 𝑐
0

2

,

𝑐
0
𝛿𝜀
2

1 − 𝛿

= 0.00000029696969 ⋅ ⋅ ⋅ > Δ𝑡,

(109)

which implies that criteria condition (63) holds.Therefore, we
provide the stable numerical experiment of (𝐷𝑃)𝜀

𝛿
. Indeed, we

have Figure 11, which implies the stable numerical experiment
of (𝐷𝑃)𝜀

𝛿
.

Remark 19. We observe fromTheorem 16 that, in order to get
the stable numerical results of (𝐷𝑃)𝜀

𝛿
, we have to choose the

suitable constants 𝜀 and 𝛿 and the mesh size of time Δ𝑡 and
spaceΔ𝑥.Therefore, if we perform a numerical experiment of
(𝑃)
𝜀 for sufficient small 𝜀, we had better consider the original

problem (𝑃)
𝜀 by using a primal-dual active set method in [2],

a Lagrange multiplier method in [9], and so on.

5.4. Conclusion of PDE Problem (𝐷𝑃)
𝜀

𝛿
. By Theorem 16 and

the numerical experiments as above, we conclude that the
mesh size of time Δ𝑡 and space Δ𝑥must be satisfied:

0 < Δ𝑡 ≤

𝑐
0
𝛿𝜀
2

1 − 𝛿

,

0 ≤

Δ𝑡

(Δ𝑥)
2
≤

1 − 𝑐
0

2

for some constant 𝑐
0
∈ (0, 1) ,

(110)

in order to get the stable numerical experiments of (𝐷𝑃)𝜀
𝛿
.

Also, by Theorems 7 and 16, we conclude that the value
𝛿𝜀
2

/(1 − 𝛿) is very important to perform a numerical
experiment of (𝐷𝐸)𝜀

𝛿
and (𝐷𝑃)𝜀

𝛿
.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

This work was supported by Grant-in-Aid for Scientific
Research (C) no. 26400179, JSPS.

References

[1] S. M. Allen and J.W. Cahn, “Amicroscopic theory for antiphase
boundary motion and its application to antiphase domain
coarsening,” Acta Metallurgica, vol. 27, no. 6, pp. 1085–1095,
1979.

[2] L. Blank, H. Garcke, L. Sarbu, and V. Styles, “Primal-dual
active set methods for Allen-Cahn variational inequalities with
nonlocal constraints,”NumericalMethods for Partial Differential
Equations, vol. 29, no. 3, pp. 999–1030, 2013.

[3] L. Bronsard and R. V. Kohn, “Motion by mean curvature as
the singular limit of Ginzburg-Landau dynamics,” Journal of
Differential Equations, vol. 90, no. 2, pp. 211–237, 1991.

[4] X. Chen, “Generation and propagation of interfaces for
reaction-diffusion equations,” Journal of Differential Equations,
vol. 96, no. 1, pp. 116–141, 1992.

[5] X. Chen and C. M. Elliott, “Asymptotics for a parabolic double
obstacle problem,” Proceedings of the Royal Society. London.
Series A. Mathematical, Physical and Engineering Sciences, vol.
444, no. 1922, pp. 429–445, 1994.

[6] P. de Mottoni and M. Schatzman, “Evolution géométrique
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