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A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve
some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of
metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely
investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial
intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this
paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential
evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on
classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared
with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been
improved (up to 7.14 percent).

1. Introduction

Deep learning (DL) is mainly motivated by the research of
artificial intelligent, in which the general goal is to imitate
the ability of human brain to observe, analyze, learn, and
make a decision, especially for complex problem [1]. This
technique is in the intersection amongst the research area of
signal processing, neural network, graphical modeling, opti-
mization, and pattern recognition. The current reputation of
DL is implicitly due to drastically improve the abilities of
chip processing, significantly decrease the cost of computing
hardware, and advanced research in machine learning and
signal processing [2].

In general, the model of DL technique can be classi-
fied into discriminative, generative, and hybrid models [2].
Discriminative models, for instance, are CNN, deep neural
network, and recurrent neural network. Some examples of
generative models are deep belief networks (DBN), restricted
Boltzmann machine, regularized autoencoders, and deep
Boltzmann machines. On the other hand, hybrid model
refers to the deep architecture using the combination of a
discriminative and generative model. An example of this

model is DBN to pretrain deep CNN, which can improve
the performance of deep CNN over random initialization.
Among all of the hybrid DL techniques, metaheuristic opti-
mization for training a CNN is the focus of this paper.

Although the sound character of DL has to solve a variety
of learning tasks, training is difficult [3–5]. Some examples
of successful methods for training DL are stochastic gradient
descent, conjugate gradient, Hessian-free optimization, and
Krylov subspace descent.

Stochastic gradient descent is easy to implement and also
fast in the process for a case with many training samples.
However, this method needs several manual tuning scheme
to make its parameters optimal, and also its process is princi-
pally sequential; as a result, it was difficult to parallelize them
with graphics processing unit (GPU). Conjugate gradient, on
the other hand, is easier to check for convergence as well as
more stable to train. Nevertheless, CG is slow, so that it needs
multiple CPUs and availability of a vast number of RAMs [6].

Hessian-free optimization has been applied to train
deep autoencoders [7], proficient in handling underfitting
problem, and more efficient than pretraining + fine tuning
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proposed by Hinton and Salakhutdinov [8]. On the other
side, Krylov subspace descent is more robust and simpler
thanHessian-free optimization as well as looks like it is better
for the classification performance and optimization speed.
However, Krylov subspace descent needs more memory than
Hessian-free optimization [9].

In fact, techniques of modern optimization are heuristic
or metaheuristic. These optimization techniques have been
applied to solve any optimization problems in the research
area of science, engineering, and even industry [10].However,
research on metaheuristic to optimize DL method is rarely
conducted. Onework is the combination of genetic algorithm
(GA) and CNN, proposed by You and Pu [11]. Their model
selects the CNN characteristic by the process of recombina-
tion and mutation on GA, in which the model of CNN exists
as individual in the algorithm of GA. Besides, in recombina-
tion process, only the layers weights and threshold value of
C1 (convolution in the first layer) and C3 (convolution in the
third layer) are changed inCNNmodel. Another work is fine-
tuning CNN using harmony search (HS) by Rosa et al. [12].

In this paper, we compared the performance of three
metaheuristic algorithms, that is, simulated annealing (SA),
differential evolution (DE), andHS, for optimizing CNN.The
strategy employed is looking for the best value of the fitness
function on the last layer usingmetaheuristic algorithm; then
the results will be used again to calculate the weights and
biases in the previous layer. In the case of testing the per-
formance of the proposed methods, we use MNIST (Mixed
National Institute of Standards and Technology) dataset.
This dataset comprises images of digital handwritten digits,
containing 60,000 training data items and 10,000 testing data
items. All of the images have been centered and standardized
with the size of 28 × 28 pixels. Each pixel of the image is
represented by 0 for black and 255 for white, and in between
are different shades of gray [13].

This paper is organized as follows: Section 1 is an intro-
duction, Section 2 explains the used metaheuristic algo-
rithms, Section 3 describes the convolution neural networks,
Section 4 gives a description of the proposed methods,
Section 5 presents the result of simulation, and Section 6 is
the conclusion.

2. Metaheuristic Algorithms

Metaheuristic is well known as an efficient method for hard
optimization problems, that is, the problems that cannot
be solved optimally using deterministic approach within a
reasonable time limit. Metaheuristic methods work for three
main purposes: for fast solving of problem, for solving large
problems, and for making a more robust algorithm. These
methods are also simple to design as well as flexible and easy
to implement [14].

In general, metaheuristic algorithms use the combination
of rules and randomization to duplicate the phenomena of
nature. The biological system imitations of metaheuristic
algorithm, for instance, are evolution strategy, GA, and DE.
Phenomena of ethology for examples are particle swarm
optimization (PSO), bee colony optimization (BCO), bac-
terial foraging optimization algorithms (BFOA), and ant

colony optimization (ACO). Phenomena of physics are SA,
microcanonical annealing, and threshold accepting method
[15]. Another form of metaheuristic is inspired by music
phenomena, such as HS algorithm [16].

Classification of metaheuristic algorithm can also be
divided into single-solution-based and population-based
metaheuristic algorithm. Some of the examples for single-
solution-based metaheuristic are the noising method, tabu
search, SA, TA, and guided local search. In the case of meta-
heuristic based on population, it can be classified into swarm
intelligent and evolutionary computation. The general term
of swarm intelligent is inspired by the collective behavior
of social insect colonies or animal societies. Examples of
these algorithms are GP, GA, ES, and DE. On the other side,
the algorithm for evolutionary computation takes inspiration
from the principles of Darwinian for developing adaptation
into their environment. Some examples of these algorithms
are PSO, BCO, ACO, and BFOA [15]. Among all these
metaheuristic algorithms, SA, DE, and HS are used in this
paper.

2.1. Simulated Annealing Algorithm. SA is a technique of
random search for the problem of global optimization. It
mimics the process of annealing in material processing [10].
This technique was firstly proposed in 1983 by Kirkpatrick et
al. [17].

The principle idea of SA is using random search, which
not only allows changes that improve the fitness function
but also maintains some changes that are not ideal. As
an example, in minimum optimization problem, any better
changes that decrease the fitness function value 𝑓(𝑥) will be
accepted, but some changes that increase 𝑓(𝑥) will also be
accepted with a transition probability (𝑝) as follows:

𝑝 = exp(−Δ𝐸
𝑘𝑇

) , (1)

where Δ𝐸 is the energy level changes, 𝑘 is Boltzmann’s
constant, and 𝑇 is temperature for controlling the process of
annealing.This equation is based on the Boltzmann distribu-
tion in physics [10]. The following is standard procedure of
SA for optimization problems:

(1) Generate the solution vector: the initial solution vector
is randomly selected, and then the fitness function is
calculated.

(2) Initialize the temperature: if the temperature value is
too high, it will take a long time to reach convergence,
whereas a too small value can cause the system tomiss
the global optimum.

(3) Select a new solution: a new solution is randomly
selected from the neighborhood of the current solu-
tion.

(4) Evaluate a new solution: a new solution is accepted
as a new current solution depending on its fitness
function.

(5) Decrease the temperature: during the search process,
the temperature is periodically decreased.
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(6) Stop or repeat: the computation is stopped when the
termination criterion is satisfied. Otherwise, steps (2)
and (6) are repeated.

2.2. Differential Evolution Algorithm. Differential evolution
was firstly proposed by Price and Storn in 1995 to solve
the Chebyshev polynomial problem [15]. This algorithm is
created based on individuals difference, exploiting random
search in the space of solution, and finally operates the
procedure of mutation, crossover, and selection to obtain the
suitable individual in system [18].

There are some types in DE, including the classical form
DE/rand/1/bin; it indicates that in the process ofmutation the
target vector is randomly selected, and only a single different
vector is applied. The acronym of bin shows that crossover
process is organized by a rule of binomial decision. The
procedure of DE algorithm is shown by the following steps:

(1) Determining parameter setting: population size is the
number of individuals. Mutation factor (F) controls
the magnification of the two individual differences to
avoid search stagnation. Crossover rate (CR) decides
howmany consecutive genes of themutated vector are
copied to the offspring.

(2) Initialization of population: the population is pro-
duced by randomly generating the vectors in the
suitable search range.

(3) Evaluation of individual: each individual is evaluated
by calculating their objective function.

(4) Mutation operation: mutation adds identical variable
to one or more vector parameters. In this operation,
three auxiliary parents (𝑥𝑝1

𝑀
, 𝑥
𝑝2

𝑀
, 𝑥
𝑝3

𝑀
) are selected

randomly, in which they will participate in mutation
operation to create a mutated individual 𝑥mut

𝑀
as

follows:

𝑥
mut
𝑀
= 𝑥
𝑝1

𝑀
+ F (𝑥𝑝2

𝑀
− 𝑥
𝑝3

𝑀
) , (2)

where 𝑝1, 𝑝2, 𝑝3 ∈ {1, 2, . . . , 𝑁} and𝑁 = 𝑝1 ̸= 𝑝2 ̸=
𝑝3.

(5) Combination operation: recombination (crossover) is
applied after mutation operation.

(6) Selection operation: this operation determines
whether the offspring in the next generation should
become a member of the population or not.

(7) Stopping criterion: the current generation is substi-
tuted by the new generation until the criterion of
termination is satisfied.

2.3. Harmony Search Algorithm. Harmony search algorithm
is proposed by Geem et al. in 2001 [19]. This algorithm is
inspired by the musical process of searching for a perfect
state of harmony. Like harmony in music, solution vector of
optimization and improvisation from the musician are anal-
ogous to structures of local and global search in optimization
techniques.

In improvisation of the music, the players sound any
pitch in the possible range together that can create one
vector of harmony. In the case of pitches creating a real
harmony, this experience is stored in the memory of each
player and they have the opportunity to create better harmony
next time [16]. There are three possible alternatives when
one pitch is improvised by a musician: any one pitch is
played from her/his memory, a nearby pitch is played from
her/his memory, and an entirely random pitch is played with
the range of possible sound. If these options are used for
optimization, they have three equivalent components: the use
of harmony memory, pitch adjusting, and randomization. In
HS algorithm, these rules are correlated with two relevant
parameters, that is, harmony consideration rate (HMCR) and
pitch adjusting rate (PAR). The procedure of HS algorithm
can be summarized into five steps as follows [16]:

(1) Initialize the problem and parameters: in this algo-
rithm, the problem can be maximum or minimum
optimization, and the relevant parameters areHMCR,
PAR, size of harmony memory, and termination
criterion.

(2) Initialize harmony memory: the harmony memory
(HM) is usually initialized as a matrix that is created
randomly as a vector of solution and arranged based
on the objective function.

(3) Improve a new harmony: a vector of new harmony
is produced from HM based on HMCR, PAR, and
randomization. Selection of new value is based on
HMCR parameter by range 0 through 1.The vector of
new harmony is observed to decide whether it should
be pitch-adjusted using PAR parameter. The process
of pitch adjusting is executed only after a value is
selected from HM.

(4) Update harmony memory: the new harmony substi-
tutes the worst harmony in terms of the value of the
fitness function, in which the fitness function of new
harmony is better than worst harmony.

(5) Repeat (3) and (4) until satisfying the termination
criterion: in the case of meeting the termination
criterion, the computation is ended. Alternatively,
process (3) and (4) are reiterated. In the end, the
vector of the best HM is nominated and is reflected
as the best solution for the problem.

3. Convolution Neural Network

CNN is a variant of the standard multilayer perceptron
(MLP). A substantial advantage of this method, especially for
pattern recognition compared with conventional approaches,
is due to its capability in reducing the dimension of data,
extracting the feature sequentially, and classifying one struc-
ture of network [20]. The basic architecture model of CNN
was inspired in 1962, from visual cortex proposed by Hubel
and Wiesel.

In 1980, Fukushimas Neocognitron created the first
computation of this model, and then in 1989, following the
idea of Fukushima, LeCun et al. found the state-of-the-art
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Figure 1: Architecture of CNN by LeCun et al. (LeNet-5).

performance on a number of tasks for pattern recognition
using error gradient method [21].

The classical CNN by LeCun et al. is an extension of
traditional MLP based on three ideas: local receptive fields,
weights sharing, and spatial/temporal subsampling. These
ideas can be organized into two types of layers, which are
convolution layers and subsampling layers. As is showed
in Figure 1, the processing layers contain three convolution
layers C1, C3, andC5, combined in betweenwith two subsam-
pling layers S2 and S4 and output layer F6.These convolution
and subsampling layers are structured into planes called
features maps.

In convolution layer, each neuron is linked locally to a
small input region (local receptive field) in the preceding
layer. All neurons with similar feature maps obtain data
from different input regions until the whole of plane input is
skimmed, but the same of weights is shared (weights sharing).

In subsampling layer, the feature maps are spatially
downsampled, in which the size of the map is reduced by a
factor 2. As an example, the feature map in layer C3 of size
10 × 10 is subsampled to a conforming feature map of size
5× 5 in the subsequent layer S4.The last layer is F6 that is the
process of classification [21].

Principally, a convolution layer is correlated with some
feature maps, the size of the kernel, and connections to the
previous layer. Each feature map is the results of a sum of
convolution from the maps of the previous layer, by their
corresponding kernel and a linear filter. Adding a bias term
and applying it to a nonlinear function, the 𝑘th feature map
𝑀
𝑘

𝑖𝑗
with theweights𝑊𝑘 and bias 𝑏𝑘 is obtained using the tanh

function as follows:

𝑀
𝑘

𝑖𝑗
= tanh ((𝑊𝑘 × 𝑥)

𝑖𝑗
+ 𝑏𝑘) . (3)

The purpose of a subsampling layer is to reach spatial
invariance by reducing the resolution of feature maps, in
which each pooled feature map relates to one feature map of
the preceding layer. The subsampling function, where 𝑎𝑛×𝑛

𝑖
is

the inputs, 𝛽 is a trainable scalar, and 𝑏 is trainable bias, is
given by the following equation:

𝑎𝑗 = tanh(𝛽 ∑
𝑁×𝑁

𝑎
𝑛×𝑛

𝑖
+ 𝑏) . (4)

After several convolutions and subsampling, the last
structure is classification layer. This layer works as an input
for a series of fully connected layers that will execute the
classification task. It has one output neuron every class label,
and in the case of MNIST dataset, this layer contains ten
neurons corresponding to their classes.

4. Design of Proposed Methods

The architecture of this proposed method refers to a simple
CNN structure (LeNet-5), not a complex structure like
AlexNet [22]. We use two variations of design structure. First
is i-6c-2s-12c-2s, where the number of C1 is 6 and that of C3
is 12. Second is i-8c-2s-16c-2s, where the number of C1 is 8
and that of C3 is 18. The kernel size of all convolution layers
is 5 × 5, and the scale of subsampling is 2. This architecture
is designed for recognizing handwritten digits from MNIST
dataset.

In this proposed method, SA, DE, and HS algorithm are
used to train CNN (CNNSA, CNNDE, and CNNHS) to find
the condition of best accuracy and also tominimize estimated
error and indicator of network complexity.This objective can
be realized by computing the lost function of vector solution
or the standard error on the training set. The following is the
lost function used in this paper:

𝑦 =

1

2

(

∑
𝑁

𝑖=𝑁
(𝑜 − 𝑢)

2

𝑁

)

0.5

, (5)

where 𝑜 is the expected output, 𝑢 is the real output, and𝑁 is
some training samples. In the case of termination criterion,
two situations are used in this method. The first is when
the maximum iteration has been reached and the second
is when the loss function is less than a certain constant.
Both conditions mean that the most optimal state has been
achieved.

4.1. Design of CNNSA Method. Principally, algorithm on
CNN computes the values of weight and bias, in which on
the last layer they are used to calculate the lost function.These
values of weight and bias in the last layer are used as solution
vector, denoted as 𝑥, to be optimized in SA algorithm, by
adding Δ𝑥 randomly.
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Result: accuracy, time
initialization and set-up: i-6c-2s-12c-2s;
calculation process: weights (𝑤), biases (𝑏), lost function 𝑓(𝑥);
solution vector (𝑥): 𝑤 and 𝑏 on the last layer;
while termination criterion is not satisfied do
for number of 𝑥󸀠 do
𝑥
󸀠
= 𝑥 + Δ𝑥, 𝑓(𝑥󸀠);

if 𝑓(𝑥󸀠) ≤ 𝑓(𝑥) then
𝑥 ← 𝑥

󸀠;
else

𝑥 ← 𝑥
󸀠 with a transition probability (𝑝);

end
end
decrease the temperature: 𝑇 = 𝑐 × 𝑇;
update 𝑥 for all layer;

end

Algorithm 1: CNNSA.

Result: accuracy, time
initialization and set-up: i-6c-2s-12c-2s;
calculation process: weights (𝑤), biases (𝑏), lost function 𝑓(𝑥);
individual 𝑥𝑖

𝑀
in population: 𝑤 and 𝑏 on the last layer;

while termination criterion is not satisfied do
for each of individual 𝑥𝑖

𝑀
in population 𝑃𝑀 do

select auxiliary parents 𝑥1
𝑀
, 𝑥
2

𝑀
, 𝑥
3

𝑀
;

create offspring 𝑥child
𝑀

using mutation and recombination;
𝑃𝑀+1 = 𝑃𝑀+1∪ Best (𝑥

child
𝑀
, 𝑥
𝑖

𝑀
);

end
𝑀 = 𝑀 + 1;
update 𝑥 for all layer;

end

Algorithm 2: CNNDE.

Δ𝑥 is the essential aspect of this proposed method.
Selection in the proper of this value will significantly increase
the accuracy. For example, in CNNSA to one epoch, if Δ𝑥 =
0.0008 × rand, then the accuracy is 88.12, in which this value
is 5.73 greater than the original CNN (82.39). However, if
Δ𝑥 = 0.0001 × rand, its accuracy is 85.79 and its value is only
3.40 greater than the original CNN.

Furthermore, this solution vector is updated based on
SA algorithm. When the termination criterion is satisfied,
all of weights and biases are updated for all layers in the
system. Algorithm 1 is the CNNSA algorithm of the proposed
method.

4.2. Design of CNNDEMethod. At the first time, this method
computes all the values of weight and bias. The values of
weight and bias on the last layer (𝑥) are used to calculate the
lost function, and then by adding Δ𝑥 randomly, these new
values are used to initialize the individuals in the popula-
tion.

Similar to CNNSAmethod, selection in the proper of Δ𝑥
will significantly increase the value of accuracy. In the case of

one epoch in CNNDE as an example, if Δ𝑥 = 0.0008 × rand,
then the accuracy is 86.30, in which this value is 3.91 greater
than the original CNN (82.39). However, if Δ𝑥 = 0.00001 ×
rand, its accuracy is 85.51.

Furthermore, these individuals in the population are
updated based on the DE algorithm. When the termination
criterion is satisfied, all of weights and biases are updated for
all layers in the system. Algorithm 2 is the CNNDE algorithm
of the proposed method.

4.3. Design of CNNHSMethod. At the first time like CNNSA
and CNNDE, this method computes all the values of weight
and bias. The values of weight and bias on the last layer (𝑥)
are used to calculate the lost function, and then by adding Δ𝑥
randomly, these new values are used to initialize the harmony
memory.

In this method, Δ𝑥 is also an important aspect, while
selection of the proper of Δ𝑥 will significantly increase the
value of accuracy. For example of one epoch in CNNHS (i-
8c-2s-16c-2s), if Δ𝑥 = 0.0008 × rand, then the accuracy is
87.23, in which this value is 7.14 greater than the original CNN
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Result: accuracy, time
initialization and set-up: i-6c-2s-12c-2s;
calculation process: weights (𝑤), biases (𝑏), lost function 𝑓(𝑥);
harmony memory 𝑥𝑖

𝑀
: 𝑤 and 𝑏 on the last layer;

while termination criterion is not satisfied do
for number of search do

if rand <HMCR then
𝑥
𝑖

new from HM;
else

if rand < PAR then
𝑥
𝑖

new = 𝑥
𝑖

new + Δ𝑥

else
𝑥
𝑖

new = 𝑥
𝑖

𝑀
+ rand

end
end

end
𝑥
𝑖

new = 𝑥min + rand(𝑥max − 𝑥min)

end

Algorithm 3: CNNHS.

Table 1: Accuracy and its standard deviation for design: i-2s-6c-2s-12c.

Epoch CNN CNNSA CNNDE CNNHS
Accuracy Standard deviation Accuracy Standard deviation Accuracy Standard deviation Accuracy Standard deviation

1 82.39 n/a 88.12 0.39 86.30 0.33 87.23 0.95
2 89.06 n/a 92.77 0.43 91.33 0.19 91.20 0.33
3 91.13 n/a 94.61 0.31 93.45 0.28 93.24 0.40
4 92.33 n/a 95.57 0.16 94.63 0.44 93.77 0.12
5 93.11 n/a 96.29 0.14 95.15 0.15 94.89 0.33
6 93.67 n/a 96.61 0.18 95.67 0.20 95.17 0.43
7 94.25 n/a 96.72 0.12 96.28 0.20 95.65 0.20
8 94.77 n/a 96.99 0.11 96.59 0.11 96.08 0.24
9 95.37 n/a 97.11 0.06 96.68 0.17 96.16 0.11
10 95.45 n/a 97.37 0.14 96.86 0.10 96.98 0.06

(80.09). However, if Δ𝑥 = 0.00001 × rand, its accuracy is
80.23; the value is only 0.14 greater than CNN.

Furthermore, this harmony memory is updated based on
theHS algorithm.When the termination criterion is satisfied,
all of weights and biases are updated for all layers in the
system.Algorithm 3 is theCNNHSalgorithmof the proposed
method.

5. Simulation and Results

In this paper, the primary goal is to improve the accuracy
of original CNN by using SA, DE, and HS algorithm. This
can be performed by minimizing the classification task error
tested on theMNIST dataset. Some of the example images for
MNIST dataset are shown in Figure 2.

In CNNSA experiment, the size of neighborhood was set
= 10 and maximum of iteration (maxit) = 10. In CNNDE, the
population size = 10 andmaxit = 10. In CNNHS, the harmony
memory size = 10 and maxit = 10. Since it is difficult to make
sure of the control of parameter, in all of the experiment the

values of 𝑐 = 0.5 for SA, F = 0.8 and CR = 0.3 for DE, and
HMCR= 0.8 and PAR = 0.3 for HS.We also set the parameter
of CNN, that is, the learning rate (𝛼 = 1) and the batch size
(100).

As for the epoch parameter, the number of epochs is 1 to
10 for every experiment. All of the experiment was imple-
mented in MATLAB-R2011a, on a personal computer with
processor Intel Core i7-4500u, 8GB RAM running memory,
Windows 10, with five separate runtimes. The original pro-
gram of this simulation is DeepLearn Toolbox from Palm
[23].

All of the experiment results of the proposedmethods are
compared with the experiment result from the original CNN.
These results for the design of i-6c-2s-12c-2s are summarized
in Table 1 for accuracy, Table 2 for the computational time,
and Figure 3 for error and its standard deviation as well as
Figure 4 for computational time and its standard deviation.
The results for the design of i-8c-2s-16c-2s are summarized
in Table 3 for accuracy, Table 4 for the computational time,
and Figure 5 for error and its standard deviation as well
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Table 2: Computation time and its standard deviation for design: i-2s-6c-2s-12c.

Epoch CNN CNNSA CNNDE CNNHS
Time Standard deviation Time Standard deviation Time Standard deviation Time Standard deviation

1 93.21 n/a 117.48 1.12 138.58 0.90 160.92 0.85
2 225.05 n/a 243.43 9.90 278.08 1.66 370.59 5.87
3 318.84 n/a 356.49 1.96 414.64 2.43 414.13 0.63
4 379.44 n/a 479.83 1.95 551.39 2.28 554.51 0.73
5 479.04 n/a 596.35 4.08 533.21 1.42 692.90 2.90
6 576.38 n/a 721.48 1.48 640.30 6.19 829.56 1.95
7 676.57 n/a 839.55 1.19 744.89 3.98 968.18 1.97
8 768.24 n/a 960.69 1.74 852.74 4.48 1105.2 1.39
9 855.85 n/a 1082.18 2.54 957.89 5.78 1245.54 4.96
10 954.54 n/a 1202.52 2.08 1373.1 1.51 1623.13 4.36

Table 3: Accuracy and its standard deviation for design: i-2s-8c-2s-16c.

Epoch CNN CNNSA CNNDE CNNHS
Accuracy Standard deviation Accuracy Standard deviation Accuracy Standard deviation Accuracy Standard deviation

1 80.09 n/a 86.36 0.76 84.78 1.24 87.23 0.57
2 89.04 n/a 91.18 0.25 91.63 0.30 92.15 0.55
3 90.98 n/a 93.56 0.20 93.67 0.17 93.69 0.31
4 92.27 n/a 94.69 0.16 94.86 0.43 94.63 0.20
5 93.17 n/a 95.51 0.12 95.57 0.04 95.30 0.16
6 93.79 n/a 96.23 0.08 96.20 0.14 95.80 0.25
7 94.74 n/a 96.52 0.08 96.52 0.32 95.71 0.24
8 95.22 n/a 96.95 0.07 96.68 0.19 96.40 0.13
9 95.54 n/a 97.18 0.08 97.10 0.00 96.84 0.27
10 96.05 n/a 97.35 0.02 97.32 0.04 96.77 0.04

Table 4: Computation time and its standard deviation for design: i-2s-8c-2s-16c.

Epoch CNN CNNSA CNNDE CNNHS
Time Standard deviation Time Standard deviation Time Standard deviation Time Standard deviation

1 145.02 n/a 175.08 0.64 289.54 0.78 196.10 1.35
2 323.62 n/a 353.55 2.69 586.96 12.56 395.43 0.60
3 520.16 n/a 614.71 12.10 868.82 4.02 597.391 1.83
4 692.80 n/a 718.53 31.05 1185.49 34.95 794.43 1.70
5 729.05 n/a 885.64 12.53 1451.64 4.99 1023.72 12.51
6 879.17 n/a 1051.30 1.30 1045.26 40.62 1255.93 32.54
7 1308.21 n/a 1271.03 25.55 1554.67 7.86 1627.30 64.56
8 1455.06 n/a 1533.30 8.55 15.39 106.75 1773.92 2251
9 1392.62 n/a 1726.50 32.31 1573.52 18.42 2123.32 95.76
10 1511.74 n/a 2054.40 35.85 2619.62 37.37 2354.90 87.68

Figure 2: Example of some images fromMNIST dataset.
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Figure 3: Error and its standard deviation (i-6c-2s-12c-2s).
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Figure 4: Computation time and its standard deviation (i-6c-2s-12c-2s).
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Figure 5: Error and its standard deviation (i-8c-2s-16c-2s).
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Figure 6: Computation time and its standard deviation (i-8c-2s-16c-2s).
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Figure 7: Error versus computation time for 100 epochs.

as Figure 6 for computational time and its standard devia-
tion.

The experiments of original CNN are conducted at only
one time for each epoch because the value of its accuracy will
not change if the experiment is repeated with the same con-
dition. In general, the tests conducted showed that the higher
the epoch value, the better the accuracy. For example, in one
epoch, compared to CNN (82.39), the accuracy increased to
5.73 for CNNSA (88.12), 3.91 for CNNDE (86.30), and 4.84

for CNNHS (87.23). While in 5 epochs, compared to CNN
(93.11), the increase of accuracy is 3.18 for CNNSA (96.29),
2.04 for CNNDE (94.15), and 1.78 for CNNHS (94.89). In
the case of 100 epochs, as shown in Figure 7, the increase in
accuracy compared to CNN (98.65) is only 0.16 for CNNSA
(98.81), 0.13 for CNNDE (98.78), and 0.09 for CNNHS
(98.74).

The experiment results show that CNNSA presents the
best accuracy for all epochs. Accuracy improvement of
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Figure 8: Example of some images from CIFAR dataset.
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Figure 9: CNN versus CNNSA for objective.

CNNSA, compared to the original CNN, varies for each
epoch, with a range of values between 1.74 (9 epochs) and 5.73
(1 epoch). The computation time for the proposed method,
compared to the original CNN, is in the range of 1.01 times
(CNNSA, two epochs: 246/244) up to 1.70 times (CNNHS,
nine epochs: 1246/856).

In addition, we also test our proposed method with
CIFAR10 (Canadian Institute for Advanced Research)
dataset. This dataset consists of 60,000 color images, in
which the size of every image is 32 × 32. There are five
batches for training, composed of 50,000 images, and one
batch of test images consists of 10,000 images. The CIFAR10
dataset is divided into ten classes, where each class has 6,000

images. Some example images of this dataset are showed in
Figure 8.

The experiment of CIFAR10 dataset was conducted in
MATLAB-R2014a. We use the number of epochs 1 to 15
for this experiment. The original program is MatConvNet
from [24]. In this paper, the program was modified with
SA algorithm. The results can be seen in Figure 9 for
objective, Figure 10 for top-1 error, and Figure 11 for a top-
5 error, Table 5 for Comparison of CNN and CNNSA
for train as well as Table 6 for Comparison of CNN and
CNNSA for validation. In general, these results show that
CNNSA works better than original CNN for CIFAR10
dataset.
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Figure 10: CNN versus CNNSA for top-1 error.
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Figure 11: CNN versus CNNSA for top-5 error.

6. Conclusion

This paper shows that SA, DE, and HS algorithms improve
the accuracy of the CNN. Although there is an increase
in computation time, error of the proposed method is
smaller than the original CNN for all variations of the
epoch.

It is possible to validate the performance of this proposed
method on other benchmark datasets such as ORL, INRIA,
Hollywood II, and ImageNet. This strategy can also be
developed for other metaheuristic algorithms such as ACO,
PSO, and BCO to optimize CNN.

For the future study, metaheuristic algorithms applied
to the other DL methods need to be explored, such as the
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Table 5: Comparison of CNN and CNNSA for train.

Epoch CNN CNNSA
Objective Top-1 error Top-5 error Objective Top-1 error Top-5 error

1 1.4835700 0.10676 0.52868 0.009493 0.00092 0.00168
2 1.0443820 0.03664 0.36148 0.013218 0.00094 0.00188
3 0.9158232 0.02686 0.31518 0.010585 0.00094 0.0017
4 0.8279042 0.02176 0.28358 0.008023 0.00096 0.00188
5 0.7749367 0.01966 0.26404 0.009285 0.00106 0.00186
6 0.7314783 0.01750 0.25076 0.013674 0.00102 0.00175
7 0.6968027 0.01566 0.23968 0.117740 0.0009 0.00168
8 0.6654411 0.01398 0.22774 0.011239 0.0011 0.0018
9 0.6440073 0.01320 0.21978 0.011338 0.00106 0.0018
10 0.6213060 0.01312 0.20990 0.009957 0.00116 0.0019
11 0.6024042 0.01184 0.20716 0.008434 0.00096 0.00176
12 0.5786811 0.01090 0.19954 0.009425 0.0011 0.00192
13 0.5684009 0.01068 0.19548 0.012485 0.00082 0.0018
14 0.5486258 0.00994 0.18914 0.012108 0.00098 0.00184
15 0.5347288 0.00986 0.18446 0.009675 0.0011 0.00186

Table 6: Comparison of CNN and CNNSA for validation.

Epoch CNN CNNSA
Objective Top-1 error Top-5 error Objective Top-1 error Top-5 error

1 1.148227 0.0466 0.3959 0.034091 0.0039 0.0087
2 0.985902 0.0300 0.3422 0.061806 0.0044 0.0091
3 0.873938 0.0255 0.2997 0.054007 0.0050 0.0091
4 0.908667 0.0273 0.3053 0.054711 0.0051 0.0091
5 0.799778 0.0226 0.2669 0.043632 0.0044 0.0091
6 0.772151 0.0209 0.2614 0.071143 0.0057 0.0091
7 0.784206 0.0210 0.2593 0.065040 0.0050 0.0095
8 0.732094 0.0170 0.2474 0.048466 0.0061 0.0095
9 0.761574 0.0217 0.2532 0.056708 0.0056 0.0091
10 0.763323 0.0207 0.2515 0.044423 0.0048 0.0086
11 0.720129 0.0165 0.2352 0.047963 0.0041 0.0087
12 0.700847 0.0167 0.2338 0.063033 0.0055 0.0087
13 0.729708 0.0194 0.2389 0.068989 0.0052 0.0096
14 0.747789 0.0192 0.2431 0.056425 0.0049 0.0091
15 0.723088 0.0182 0.2355 0.052753 0.0052 0.0095

recurrent neural network, deep belief network, and AlexNet
(a newer variant of CNN).
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