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Quantum properties of a lengthening pendulum are studied under the assumption that the length of the string increases at a steady
rate. Advanced analysis for various physical problems in several types of quantum states, such as propagators, Wigner distribution
functions, energy eigenvalues, probability densities, and dispersions of physical quantities, is carried out using quantum wave
functions of the system. In particular, the time behavior of Gaussian-type wave packets is investigated in detail. The probability
density for a Gaussian wave packet displaced in the positive 𝜃 at 𝑡 = 0 oscillates back and forth from the center (𝜃 = 0).
This phenomenon is very similar to the classical motion of the pendulum. As a consequence, we can confirm that there is a
correspondence between its quantum and classical behaviors.Whenwe analyze a dynamical system in view of quantummechanics,
the quantum and classical correspondence is very important in order for the associated quantum theory to be valid and viable.

1. Introduction

If the Hamiltonian of a system is dependent on time, it is
classified as a time-dependent Hamiltonian system (TDHS).
Typical examples of TDHSs include a damped harmonic
oscillator [1–3], a harmonic oscillator driven by a time-vary-
ing force [4, 5], and a harmonic oscillator with time-depend-
ent parameters such as time-dependent mass [6–9] and/or
frequency [10–12]. A powerful method for solving quan-
tum solutions of a TDHS is the invariant operator method
[13–17].

Among various types of TDHSs, we study quantum
dynamical properties of a lengthening pendulum [18–23] in
this paper. This kind of pendulum is an interesting topic
as a fundamental nonstationary mechanical system and its
study may enable us to acquire elementary methods for
manipulating more complicated general dynamical systems.
The derivation of quantum mechanical solutions of such
time-varying swinging objects and the analysis of them with
high precision demands exquisite theory of quantum physics
and chaos based on advanced mathematical techniques.

Much attention has been paid to the classical and quan-
tum problems of the lengthening pendulum up to now. The
time variation of angular and linear amplitudes has been
analyzed by Brearley for a simple lengthening pendulum
under the assumption that the amplitude of the oscillation
is small [18]. The characteristics of quantum wave func-
tions in Fock state for the lengthening pendulum have
been investigated by Um et al. [21]. The research group of
McMillan et al. [23] studied a parametric amplification of
its oscillatory motion and the physical mechanism associated
with the energy transfer to the pendulum via a time-varying
parameter (the length of pendulum) under the assumption
that the lengthening pendulum is driven by an arbitrary
force. Nevertheless, as far as we know, the exact analytical
solutions have not been obtained yet due to the diffi-
culty in mathematical treatment of the differential equation
describing the motion of the pendulum, which involves a
sinusoidal function. The derivation of quantum solutions
of the system with higher accuracy than what we can do
by hand requires the aid of computer programs such as
MATLAB [23].
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The pendulum or the lengthening thereof not only is a
goodmathematicalmodel for practicing a nontrivial problem
in mechanics but also can possibly be applied to many
actual systems. A gravitational pendulum which has been
used as a seismic sensor of translation and rotation is one
of its well-known applications [24]. Usually seismologists
use a kind of sensing device (pendulum) in order to detect
earthquakewaves, which ismore complicated than the simple
pendulum. The theory of the lengthening pendulum can
also be applied to analyzing a drifting spiral motion of a
charged particle in mirror-confined plasma [25]. In this case,
a position-dependent magnetic field, which is a dense and
weak magnetic field, is responsible for the change of the
rotational radius along its spiral motion.

We will study in this work several quantum states of
the lengthening pendulum beyond the Fock state. We will
compare quantummotions of the pendulumwith its classical
behaviors. Quantized energy and its dispersion will be inves-
tigated via a rigorous development of the quantum theory
associated with the pendulum.

This paper is organized as follows. The fundamental
mechanics of the lengthening pendulum is surveyed in
Section 2 and various quantum mechanical properties of
the system are analyzed in the subsequent sections. Sec-
tion 3 is devoted to the study of the time behavior of the
quantized energy. Path integral formulation of quantum
mechanics for the system is treated in Section 4. Wigner
distribution function (WDF) of the system is investigated
in Section 5. Quantum properties of the superposition of
two neighboring states are discussed in Section 6. The cor-
respondence between classical and quantum mechanics for
the pendulum is demonstrated in Section 7 through Gaus-
sian wave packet description of the system. The con-
cluding remarks are given in Section 8 which is the last sec-
tion.

2. Fundamentals of
the Lengthening Pendulum

Now we are carrying out a survey of the fundamentals of
the lengthening pendulum. Let us consider a pendulum of a
relatively massive object hung by a vertical string from a fixed
ceiling and assume that it swings from its fixed equilibrium
position. Suppose that the length of the pendulum increases
with a constant rate 𝑘 from its initial length 𝑙

0
.

𝑙 (𝑡) = 𝑙
0
+ 𝑘𝑡. (1)

In case 𝑘 is sufficiently small, the pendulum undergoes an
adiabatic change and such case will only be considered in this
review.

We do not regard the quantum effects of the 𝑙-component
for the sake of simplicity. Then, the Hamiltonian considered
up to the second order in 𝜃 is given by [21]
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where H(𝑡) = 𝑚𝑘
2
/2 − 𝑚𝑔𝑙(𝑡). A classical solution of the

system can be represented as [22]
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(4)

where 𝐽 and 𝑁 are Bessel functions of the first kind and the
second kind, respectively, and 𝜉(𝑡) = 2[𝑔𝑙(𝑡)]

1/2
/𝑘. A more

general solution for this system is given in [21].
The construction of the annihilation and creation oper-

ators is useful for developing a quantum theory of a TDHS.
According to the invariant operator theory [15], the formulae
of them are somewhat different from those of the simple
harmonic oscillator. For instance, the annihilation operator
is given by [21]
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Of course, the Hermitian adjoint, �̂�†, of the above equation
plays the role of the creation operator.These operators satisfy
the boson commutation relation, such that [�̂�, �̂�†] = 1.

If we use the property of this commutation relation, we
can easily derive the wave functions in Fock state, which
are represented in terms of some time functions 𝜙

𝑛
(𝜃, 𝑡) and

time-dependent phases 𝜖
𝑛
(𝑡) [21, 22]:
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where the quantum number is given by 𝑛 = 1, 2, 3, . . ..
(All subsequent 𝑛 will follow this convention unless we
particularly specify it.)The explicit forms of 𝜙
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where𝐻
𝑛
is 𝑛th-order Hermite polynomial and
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The wave functions given in (6) are the basic information
necessary for studying quantum features of the system. We
will investigate quantum characteristics of the pendulum for
more complicated cases in the next section.

3. Quantized Energy

Bohr tried to merge quantum and classical mechanics by
introducing a correspondence principle between them. Even
though the results of quantum and classical descriptions for
a system more or less overlap under particular limits, their
underlying principles are quite different from each other.
There are significant differences between consequences of
the two theories when the quantum number is sufficiently
low, whereas those with a higher quantum number look very
similar. It is well known that we can compute the probability
for finding the pendulumat a particular angle from the square
of the given wave function. In cases of higher energy states,
the most probable angle of the pendulum will shift away
from the center (𝜃 = 0) and the intervals between any two
adjacent peaks in the graph of probability densities in Fock
state become narrow. Due to this trend associated with the
probability density, the behavior of the quantum pendulum
in a high energy limit may look like that of the counterpart
classical one.

Another difference between them is that while the clas-
sical probability density function is confined within the two
classical turning points, the quantum probabilities extend
beyond the classically allowed angle. Formore detailed inves-
tigations about this consequence, we consider the quantum
and the classical energies of the system that are given by
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Let us evaluate the probability that the pendulum stays
outside the classically allowed region. If we denote the ampli-
tude of angle as Θ, the maximum classical potential energy
is given by 𝑚𝑔𝑙(𝑡)Θ2/2 +H(𝑡). Then, regarding the classical
turning point of the pendulum associated with the ground
state wave packet, we equate the ground state energy 𝐸

0

with the maximum classical potential energy:
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2
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Thus, by inserting (10) with 𝑛 = 0 into the left-hand side
of this equation, the classical amplitude can be evaluated to
be
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The probability density outside the classically allowed region
is given by

𝑃outside = 2∫
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2
𝑑𝜃 ≃ 2∫

∞
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2
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Here, factor 2 is multiplied considering the equal contribu-
tion of the probability from outside of the opposite turning
angle, [−𝜋, −Θ]. In addition, we have supposed that the
oscillating amplitude is sufficiently small in order to replace
the integral interval [Θ, 𝜋] in (14) with [Θ,∞].This extension
of the scope of integration will also be equally applied in
further similar calculations. By substituting (6) with 𝑛 = 0

into (14), we have

𝑃outside = √
4

𝜋
[1 − erf (√Λ (𝑡)Θ)] . (15)

This is the probability that the quantum pendulum remains
within the classically forbidden regions.

In fact, the description of quantized energy for a TDHS,
such as (10), is a delicate problem. While some authors [1, 3,
11, 21, 22] including ours have investigated quantized energy
levels for specific TDHSs, there is another opinion [26, 27]
that such energy levels do not exist for the case of TDHSs.
Hence, explicit demonstrations of the existence of quantized
energy levels may be an interesting research topic for further
study in the future in this field.

4. Propagator

The path integral formulation of quantum mechanics was
found by Feynman [28] as an alternative quantumdescription
of dynamical systems. Historically, this achievement was
partly inspired by Dirac’s idea of a quantum mechanical
description [29]. The techniques of path integrals continued
to be advanced until now, leading to providing many useful
tools for solving problems in quantum mechanics. One of
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the efficient uses of the path integral method is to evaluate
a propagator. This achieved great success in both quantum
mechanics and quantum field theory, because a propagator
involves all the information of the quantum system.Through
the analysis of the propagator, we can confirm how to
propagate quantum wave packets from an initial angle and
time (𝜃, 𝑡) to a final angle and time (𝜃, 𝑡).

In terms of wave functions, the propagator is given by
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Let us calculate the complete analytical form of the propaga-
tor of the system using this definition. By inserting (6) with
(7), we have
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From the use of Mehler’s formula [30]
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it becomes
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We can use this result in estimating the evolution of quantum
states under the given Hamiltonian of the pendulum and in
studying the dynamics of the pendulum with varying length.
More precisely, the propagator enables us to know how the
initial state 𝜓(𝜃, 𝑡) evolves to an arbitrary later state 𝜓(𝜃, 𝑡)
via the following equation
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) . (20)

The propagator plays an important role in modern physics.

5. Wigner Distribution Function

The investigation of the probability distribution is useful
for understanding the novel features of quantum mechanics.
The WDF [31] may be the most useful one among vari-
ous distribution functions that are needed when we study
quantum statistical mechanics. Many quantum mechanical

characteristics of a dynamical system, which are absent in
classical mechanics, can be derived fromWDF.

TheWDFs in phase space are given by
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We replace the range of the integration [−𝜋, 𝜋]with [−∞,∞]

for the same reason as that of the previous integration in (14).
Using the integral formula of the form [32]
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we can evaluate (21), leading to
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This can be used to study the probability distribution for
𝜃 and 𝑝

𝜃
of the pendulum within a quantum mechanical

view point. Figure 1 shows the WDF for several values of
𝑡. Exact marginal distributions can be achievable with the
use of a WDF, whereas it cannot be done by means of
the Husimi distribution function [33]. It is allowed that the
WDF takes negative values as well as positive ones in phase
space. The negativity of the WDF is, in fact, one of the
primary nonclassical effects of quantum mechanics [34, 35].
The WDF, given in (23), enables us to study the quantum
statistical properties of the system in configuration space.
Some imaginary distribution functions that can be used in
a wide branch of physics were also proposed in the literature
by other authors [36–40]. The width of𝑊

𝑛
in the angle space

becomes small while that in the angular momentum space
becomes large as time goes by.
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Figure 1: The WDF given in (23) as a function of angle 𝜃 and angular momentum 𝑝
𝜃
where 𝑡 = 0 for (a), 𝑡 = 2.5 for (b), and 𝑡 = 5 for (c).

We have used ℏ = 1, 𝑘 = 0.2, 𝑚 = 1, 𝑙
0
= 1, 𝑔 = 1, and 𝑛 = 5. The width of 𝑊

𝑛
associated with 𝜃 becomes small with time while that

associated with 𝑝
𝜃
becomes large.

6. Superposition of Two Neighboring States

The general solution of the Schrödinger equation is a linear
combination of separated solutions given in (6):

𝜓 (𝜃, 𝑡) =
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state, it is necessary to evaluate the eigenvalue equation of the
Hamiltonian, which is
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It is well known that quantum mechanics predicts only
the probability for happening of particular results among a
large number of mutually independent possible outcomes
in physical systems. An arbitrary state function representing
any dynamical state can be expanded in terms of Fock state

wave functions. As a first example, let us consider the case
that (25) is a superposition of two neighboring states:
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and 𝛿 are arbitrary real constants.The expec-

tation values of canonical variables in this state can be easily
evaluated to be [41]
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From these equations, we can confirm that the expectation
values of �̂� and �̂�

𝜃
oscillate with time.

Through the similar procedure, the expectation value of
the energy operator can also be obtained as

𝐸 = (𝑛 + 1)
ℏ

2
(
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𝑚𝑙2 (𝑡)
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) +H (𝑡) . (29)

This is the same as the average energy of the 𝑛th state and
(𝑛 + 1)th state energies with the same proportion. This
energy corresponds to that of an instantaneous eigenstate and
varies with time like a classical one. However, this reduces
to a constant value when 𝑘 = 0, which is associated with
the results of standard quantum mechanics for the simple
pendulum represented in many text books in this field.

7. Gaussian Wave Packets

As a next example, we consider the case that the initial state
function is given by

𝜓 (𝜃, 0) =
4
√
𝜂
2

𝜋
𝑒
−(1/2)𝜂

2
𝜃
2

, (30)

where 𝜂 is some constant which is real. In view of quantum
theory, the probabilistic predictions are always obtained by
squaring the modulus of a probability amplitude. The prob-
ability amplitudes that the oscillator stays in 𝑛th eigenstates
are

𝑐
𝑛
= ∫

𝜋

−𝜋

𝜓
∗

𝑛
(𝜃, 0) 𝜓 (𝜃, 0) 𝑑𝜃. (31)

Then, using (6), (30), and (31) after replacing the interval of
the integration [−𝜋, 𝜋] with [−∞,∞], we obtain that

𝑐
𝑛
=

√𝑛!

2𝑛/2 (𝑛/2)!
[

2√Λ (0)𝜂

Λ (0) 𝜅1 (0) + 𝜂
2
(
Λ (0) 𝜅

∗

1
(0) − 𝜂

2

Λ (0) 𝜅1 (0) + 𝜂
2
)

𝑛

]

1/2

⋅ 𝑒
𝑖(𝑛+1/2)𝛾(0)

,

(32)

for 𝑛 = 0, 2, 4, . . .. On the other hand, 𝑐
𝑛
= 0 for 𝑛 = 1, 3, 5, . . ..

Hence, odd order amplitudes do not contribute to the state
function.

Onemay also possibly consider other types of wave pack-
ets described as a superposition of Fock state wave functions.
Now, we are going to choose a state which seems appropriate
for studying whether there is a quantum and classical corre-
spondence concerning the behavior of the lengthening pen-
dulum. At the early era of quantum mechanics, Schrödinger
tried to explain the relation between quantum and classical
mechanics by introducing coherent wave packets [42]. In
order to find the possibility for the existence of a quantum
solution relevant to a particular wave packet whose center
oscillates with the same period as the classical motion, let us
consider a state function that is expressed at 𝑡 = 0 as

𝜓 (𝜃, 0) =
4
√
Λ (0)

𝜋
𝑒
−(1/2)Λ(0)(𝜃−𝛽)

2

, (33)

where 𝛽 is a real constant with the dimension of angle. This
is the same as (30) except that 𝜂2 is replaced by Λ(0) and the
center of the initial wave packet is displaced by an amount
𝛽. In this case, the probability amplitudes 𝑐

𝑛
can also be

obtained using the same method as that of the first case (the
nondisplaced Gaussian case) performed with (31), such that

𝑐
𝑛
=

1

√2𝑛𝑛!

𝛽
𝑛

[𝜅
2
(0) /2]

𝑛+1/2

⋅ 𝑒
(1/2)[1/𝜅2(0)−Λ(0)]𝛽

2
+𝑖(𝑛+1/2)𝛾(0)

,

(34)

where 𝜅
2
(𝑡) = 2 + 𝑖Π(𝑡). Here we have supposed that the

increase of the length of string is sufficiently slow. With the
help of (6) and (34) the time evolution of the state function
(25) becomes

𝜓 (𝜃, 𝑡) =
4
√
Λ (𝑡)

𝜋
√

2

𝜅
2
(0)

exp [
2𝛽

𝜅
2
(0)

⋅ 𝑒
𝑖[𝛾(0)−𝛾(𝑡)]

(√Λ (𝑡)𝜃 −
1

2

𝛽

𝜅
2 (0)

𝑒
𝑖[𝛾(0)−𝛾(𝑡)]

)]

⋅ 𝑒
(1/2)[1/𝜅2(0)−Λ(0)]𝛽

2

𝑒
−(1/2)Λ(𝑡)𝜅1(𝑡)𝜃

2

𝑒
(𝑖/2)[𝛾(0)−𝛾(𝑡)]

.

(35)

The corresponding probability density is obtained by squar-
ing the above equation. Thus, a direct evaluation gives

𝜓 (𝜃, 𝑡)

2
= √

Λ (𝑡)

𝜋

2
𝜅2 (0)



⋅ exp[−Λ (𝑡) (𝜃 −
𝛽 [𝑋 (𝑡) + 𝑋

∗
(𝑡)]

√Λ (𝑡)
)

2

]

⋅ 𝑒
[4/|𝜅2(0)|

2
−Λ(0)]𝛽

2

,

(36)

where 𝑋(𝑡) = 𝑒
𝑖[𝛾(0)−𝛾(𝑡)]

/𝜅
2
(0). The wave packet equation

(36) is a time-dependent Gaussian shape. We depicted this
wave packet in Figure 2. The wave packet not only converges
to the center (𝜃 = 0) but also oscillates back and forth
around the center as time goes by. The amplitude of such
oscillation is determined depending on the magnitude of 𝛽.
This quantum behavior is very similar to the classical motion
of the pendulum. The width of the wave packet is 1/√2Λ(𝑡).
The probabilities for the contribution of 𝑛th quantum state
𝜓
𝑛
(𝜃, 𝑡) to the state function are 𝑃

𝑛
= |𝑐
𝑛
|
2. Thus, using (34),

we have

𝑃
𝑛
=

1

2𝑛𝑛!

𝛽
2𝑛

[
𝜅2 (0)

 /2]
2𝑛+1

𝑒
[2/|𝜅2(0)|

2
−Λ(0)]𝛽

2

. (37)

These probabilities do not vary with time. The mean value of
quantum numbers which contribute to the state function is
𝑛 = ∑

𝑛
𝑛𝑃
𝑛
. Using (37), we see that this can be evaluated to

be

𝑛 =
𝛽
2

2 [
𝜅2 (0)

 /2]
3
𝑒
[4/|𝜅2(0)|

2
−Λ(0)]𝛽

2

. (38)
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Figure 2: The probability density |𝜓|2 given in (36) as a function of
angle 𝜃 and time 𝑡 for ℏ = 1, 𝑘 = 1, 𝑚 = 1, 𝑙

0
= 6, 𝑔 = 1, and

𝛽 = 0.5. We see that the wave packet oscillates around the center
like a classical one.

Thus, for the case that |𝛽| is large, the contribution of high
energy states is also large.

The dispersion of 𝑛 is given by Δ𝑛 = [∑
𝑛
𝑛
2
𝑃
𝑛
−

(∑
𝑛
𝑛𝑃
𝑛
)
2
]
1/2. This can be easily calculated as

Δ𝑛 =
{

{

{

1

4
{

𝜅2 (0)


2

− exp[( 4

𝜅2 (0)

2
− Λ (0))𝛽

2
]}

𝛽
4

[
𝜅2 (0)


2
/4]
3

+
𝛽
2

2 [
𝜅2 (0)

 /2]
3

}

}

}

1/2

𝑒
(1/2)[4/|𝜅2(0)|

2
−Λ(0)]𝛽

2

.

(39)

Figure 3(a) reveals that Δ𝑛 increases as 𝛽 grows.
We can also evaluate the dispersion of energy from Δ𝐸 =

[∑
𝑛
𝐸
2

𝑛
𝑃
𝑛
− (∑
𝑛
𝐸
𝑛
𝑃
𝑛
)
2
]
1/2. Through a mathematical proce-

dure similar to that of the calculation of Δ𝑛, we have

Δ𝐸 =
ℏ𝛽

𝜅2 (0)

2
[

4𝛽
2

𝜅2 (0)

2
(
ℏΛ (𝑡)

𝑚𝑙2 (𝑡)

𝜅1 (𝑡)

2

+
𝑚𝑔𝑙 (𝑡)

ℏΛ (𝑡)
)(

𝜅2 (0)


2
− 𝑒
(4/|𝜅2(0)|

2
−Λ(0))𝛽

2

)

+
8H (𝑡)

ℏ
(

𝜅2 (0)


2
− 1) + 2 (

𝜅2 (0)
 − 1)]

1/2

⋅ 𝑒
[2/|𝜅2(0)|

2
−Λ(0)/2]𝛽

2

.

(40)

From Figure 3(b), we can confirm that Δ𝐸 increases as 𝛽
grows. However, Δ𝐸 decreases with time.

0.05
0.1

0.15

0.2 0

10

20

30

40

50

t

0
0.02
0.04
0.06
0.08

0

Δ
n

𝛽

(a)

0
0.005
0.01

0.015
0.02

0.025

Δ
E

0.05
0.1

0.15

0.2 0

10

20

30

40

50

t
0

𝛽

(b)

Figure 3:The dispersion Δ𝑛 (39) and Δ𝐸 (40) as a function of 𝛽 and
time 𝑡 for ℏ = 1, 𝑘 = 0.5, 𝑚 = 1, 𝑙

0
= 10, and 𝑔 = 1. Note that Δ𝑛

increases as 𝛽 grows.

8. Conclusion

On the basis of the Schrödinger solutions that can be
obtained by taking advantage of the ladder operators �̂� and
�̂�
†, various quantum states of the lengthening pendulum

have been investigated. We obtained the energy eigenvalues,
propagator,WDFs, uncertainties, and probability densities in
several types of quantum states.The quantum behavior of the
pendulum was analyzed rigorously and compared to that of
the classical one.

The propagator given in (19) entirely determines the
quantum behavior of the lengthening pendulum in a grav-
itation. If we know the wave function at an initial angle
and time, it is possible to estimate probability amplitude for
another angle at a subsequent time using the propagator.
Wigner distribution function of the system was derived as
shown in (23).This can be a negative value in some regions of
phase space as well as a positive one, which signifies a novel
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nonclassical feature of the quantum system. We can confirm
fromFigure 1 that thewidth of𝑊

𝑛
associatedwith 𝜃 decreases

as time goes by while that associated with 𝑝
𝜃
increases.

This appearance is due to the fact that the uncertainty in
𝜃 decreases with time while that in 𝑝

𝜃
increases. For the

variation of the uncertainty for 𝜃 and 𝑝
𝜃
, you can refer to [41].

As the length of string increases, mechanical energy can-
not be conserved because some amount of work is extracted
from the system [22]. This is the reason why the amplitude
decreases with time, not only for the classical pendulum but
for the quantum one as well.

From (28), we see that the expectation values of canonical
variables in the superposition of the two neighboring states
oscillate with time. The quantum energy in this case varies
with time as shown in (29). For the state that is described
by (30), the odd order probability amplitudes disappear since
(30) is an even function about 𝜃.

To investigate the existence of the quantum and classical
correspondence for the behavior of the lengthening pendu-
lum, we have supposed that the form of the state function
at 𝑡 = 0 is given by (33). The initial angle in this case is
displaced toward a positive 𝜃 by an amount 𝛽. The resulting
probability density is represented in (36) which is a Gaussian
shape. From Figure 2, we can confirm that this probability
density oscillates back and forth from the center depending
on themagnitude of𝛽, while its width becomes narrower over
time as the quantum energy decays. So to speak, its quantum
behavior is very similar to that of the classical oscillation
of the pendulum. Therefore, the correspondence between
quantum and classical behaviors holds.

Indeed, the quantum and classical correspondence for
a certain quantum theory is a crucial requirement for the
validity of the associated quantum theory. The invariant
operator theory we used here is sound and enables us to
obtain reasonable quantum solutions for a time-dependent
dynamical system. Further, we know that it sometimes gives
the exact quantum solutions for a system of which the
classical solutions are completely known.
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