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Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules which are based firmly on biological evidence. STDP
learning is capable of detecting spatiotemporal patterns highly obscured by noise. This feature appears attractive from the point
of view of machine learning. In this paper three different additive STDP models of spike interactions were compared in respect
to training performance when the neuron is exposed to a recurrent spatial pattern injected into Poisson noise. The STDP models
compared were all-to-all interaction, nearest-neighbor interaction, and the nearest-neighbor triplet interaction. The parameters
of the neuron model and STDP training rules were optimized for a range of spatial patterns of different sizes by the means of
heuristic algorithm. The size of the pattern, that is, the number of synapses containing the pattern, was gradually decreased from
what amounted to a relatively easy task down to a single synapse. Optimization was performed for each size of the pattern. The
parameters were allowed to evolve freely. The triplet rule, in most cases, performed better by far than the other two rules, while the
evolutionary algorithm immediately switched the polarity of the triplet update. The all-to-all rule achieved moderate results.

1. Introduction

Spiking neural networks (SNNs) are based on the physiolog-
ical function of action potential in the biological cell. Action
potential is a brief event where the electrical membrane
potential of a cell rapidly rises and falls. In neurons, the
trajectory of action potential takes the shape of a spike.
SNNs are considered to be the third generation of artificial
neural networks (ANNs) [1]. When compared to previous
generations of artificial neural networks, SNNs are more
complicated and require more computing power to execute
a task, so that the application of SNNs in pattern recognition
or in other kinds ofmachine learning is impractical currently.
It is reasonable to expect, however, that this is only a
temporary obstacle. The main motivation for this paper is
to discover how well SNNs perform when used for spatial
pattern recognition specifically.

Action potentials in the chemical synapses of a neuron
in most animal species trigger the release of chemical mes-
sengers called neurotransmitters. Neurotransmitters interact
with receptors located on the other side of a synaptic gap

(postsynaptic neuron). Thus sequences of action potentials,
or in other words spike trains, can be seen as a form of
communication. There are two major approaches to inter-
preting neural spikes as data. One is rate coding, where
data are encoded in an averaged count of spikes over a
specific time frame. The other is temporal coding, where
data are encoded in precise timing of individual spikes.
Findings from biological research suggest that rate coding
alone does not have a sufficient data bandwidth to account
for the speed of data transfer in some sensory systems in
living organisms [2, 3]. In contrast to rate coding, temporal
coding has a significantly greater data bandwidth because
it requires a minimal time for the neuron to respond. It
is debatable whether temporal coding takes place in living
neural systems [4], but there is experimental evidence to
support the idea [5–8]. Moreover, the discovery of spike-
timing-dependent plasticity (STDP) suggests that the timing
of spikes is important.

STDP is a form of Hebbian learning induced by tight
temporal correlations between presynaptic and postsynap-
tic spikes. At present several different STDP rules for the
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different types of synapses [9] are known. The STDP rule
which controls change of synaptic strength in the excitatory-
to-excitatory type of chemical synapses appears to target
coincidences of incoming spikes. Over a wide range of
parameters the additive STDP rule leads to a bimodal dis-
tribution of synaptic strengths [10]: presynaptic spikes which
induce an action potential in a postsynaptic neuron result
in increased synaptic strength, while the strength of other
synapses decays. Spikes arriving simultaneously excite the
neuron simultaneously and are therefore more likely to cause
an action potential in a postsynaptic neuron.

In contrast to additive STDP update, where the amount of
change is taken directly from the STDP function and synaptic
strength is limited to a range of between 0 and 1, in multi-
plicative update, where the amount of change is proportional
to synaptic strength, synaptic strengths tend to organize
themselves in a unimodal distribution [11]. Although it is
possible to achieve bimodality using multiplicative update,
during the training of the neuron for a spatiotemporal
pattern, peaks of distribution aremuch closer together than is
the case in additive update.This paper deals with the additive
update rule exclusively.

Probably the simplest example of temporal code is a
spatial pattern. Input from multiple afferent neurons in a
short temporal window can be conceived as a binary map,
where the presence of a presynaptic spike is denoted as
1 and its absence as 0. Alternatively, instead of 1, we can
assign a large probability of a spike and instead of 0 a small
fixed probability, which would mimic spontaneous neural
activity and produce Poisson noise. When such a pattern
is repeatedly injected into Poisson noise, STDP learning
would result in strong synapses associated with ones and
weak synapses associated with zeros. In other words, the
individual neuron acts as a coincidence detector [12]. In the
simplest possible case this sort of training could be reduced to
supervised learning as a simple assignment operation: if the
input synapse is associated with the pattern, then set strength
to 1; otherwise set it to 0.

In order to build a useful pattern recognition machine
based on STDP learning, it is important to understand
the limitations of the model; for example, ask the simple
question: how small can the spatial pattern be in respect
to the number of overall incoming synapses? By making
assumptions about presynaptic and postsynaptic processes,
such as assuming that presynaptic and postsynaptic spike
trains are Poisson distributed, it is possible to gain theoret-
ical insight into the STDP training process. Izhikevich and
Desai [13], for example, derived equations for the expected
value of change of synaptic weight for multiple models of
spike neighborhood interactions for uncorrelated andweakly
correlated Poisson-distributed spike trains. Other authors
used the Fokker-Plank equation to predict the evolution
of synaptic weights [10, 14, 15]. These studies are based on
assumptions of a Poisson process or on modeling mem-
brane potential through the Ornstein-Uhlenbeck process
[15], again assuming that membrane potential is a Gaussian
process. While such methods might be valuable, they are
limited to simple distributions, which is not the case in a
Poisson noise and spatial pattern mixture. Moreover, the

Spike-Response Model I use in my research cannot produce
Poisson-distributed postsynaptic spikes because membrane
potential process has amomentum, exceptwhenpostsynaptic
potentials aremodeled by unit impulses, which is biologically
implausible (see Section 2). Also, membrane potential is
not a Gaussian process because of the skewness induced
by relative hyperpolarization. Relative hyperpolarization also
deforms the distribution of postsynaptic latencies, in some
cases resulting in a bimodal distribution.

Themain goal of this research was to answer the question
of how small the spatial pattern can be relative to the overall
amount of presynaptic inputs. Instead of taking a theoretical
approach, in this work, I benchmarked three different STDP
implementations experimentally. The benchmark was made
with respect to the relative size of the pattern and training
success rate. For this purpose I used a basic genetic algorithm
to optimize neuron and STDP parameters in training for
a spatial pattern in a simulation. The size of the pattern,
that is, the number of synapses containing the pattern, was
gradually decreased from what was a relatively easy task
down to the point training failed. The parameters were
optimized for each size of pattern. Parameters were allowed
to evolve freely, without any restrictions. Such optimization
was made for two different setups: in the first setup afferents
participating in the pattern fired at a rate of 64Hz and
others fired at 39Hz; in the second setup all afferents fired
at 64Hz. Also, I conducted limited experiments with firing
rates at 39Hz/39Hz and 25Hz/39Hz. I compared three dif-
ferent additive STDP implementations: all-to-all interaction,
nearest-neighbor interaction with immediate pairings [16],
and the samenearest-neighbor interactionwith triplet update
[17]. The results from both the 64Hz/39Hz and 64Hz/64Hz
setups were quite unexpected: in the case of triplet update,
the pattern was successfully scaled down to a single synapse;
there was no significant degradation in performance over the
entire range of patterns when the setup was 64Hz/39Hz. In
the case of the single synapse transmitting a periodic spike,
obviously no spatial pattern remained, and the neuron was
tuned to detect either differing rates in the incoming synapse
or, as it seems, the periodic occurrence of the spike. The
genetic algorithm immediately changed the polarity of the
long-term depression of the third spike coefficient. Also, in
the case of the 64Hz/64Hz setup, the polarities of both third
spike coefficients were changed (see Section 2). In the case of
all-to-all interaction I did achieve a single synapse as well, but
the training success rate was significantly reduced.The simple
nearest-neighbor interaction rule reached a definite limit on
pattern size and could not be optimized further. In the case
of 39Hz/39Hz setup the all-to-all rule performed better than
the triplet.

2. Materials and Methods

The neuron was trained for spatial patterns of different
sizes. Neuron and STDP parameters were optimized for each
size of pattern (see Section 2.1). Simulations were executed
in discrete time steps at 1ms precision. The pattern was
created by a number of selected input neurons firing at the
same time after each 40ms of simulation (Figure 1). Also,
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Figure 1: Sample pattern. Spikes generated by Poisson process are
green; injected spatial pattern is red. Afferents which do not belong
to the pattern did not fire during pattern exposure.

all neurons fired spontaneously with a fixed probability at
each simulation step, thus producing Poisson noise. During
pattern exposure all other neurons did not fire; thus at the
time of the pattern exposure the variance of input spikes was
zero. I did this because if I had not, the expected value of
input spikes would be greater than the expected value during
Poisson periods and that would make the training too easy.
Three different spike neighborhood rules were compared: all-
to-all, nearest-neighbor with immediate pairings [16], and
nearest-neighbor with triplet update [17].

This experiment is similar to the one conducted by
Masquelier and colleagues [18]. The key difference is that I
used a spatial rather than a spatiotemporal pattern, and the
patterns were inserted into the noise signal at a regular frame
rate.

I measured training performance in three different setups
of Poisson noise. Initially I set the probability of a noisy
spike to 𝑝 = 0.04 in all afferents. In this setup, the neurons
which participated in the pattern fired more frequently than
those which did not, at 64Hz and 39Hz, respectively. In
the case of a spatiotemporal pattern of sufficient duration it
is possible to eliminate this difference in firing rate, if the
count of spikes in the pattern from individual synapses is
equal to the expected value of Poisson noise. This is not the
case, however, for spatial patterns: in order to maintain equal
firing rates, synapses which belong to the pattern must fire
less frequently during Poisson periods, thus reducing noise
and, presumably, resulting in easier training. On the other
hand, the difference in firing rates also has a great influence
on the training: the heuristic optimization I used could tune
the neuron with the triplet rule to detect increased firing
rate instead of spatial pattern. This was the case when the
pattern was sufficiently small, but not the case when it was
large enough to cause the postsynaptic spike (see Section 3).
Such a mix of spatial and rate coding is compatible to some
extent with observations of the auditory cortex of primates
[8], where a mix of different coding systems seems to convey
more information than spatial or rate coding alone.

Later I reran the optimization with a 64Hz/64Hz setup,
where the firing rate of afferents not participating in the
pattern recognition was increased to 64Hz by setting the
probability of a noisy spike to 𝑝 = 64/975 ≈ 0.066. Here
the triplet rule also performed better than the other two,
but the rate of success was lower, and the behavior of the
neuronwhen the pattern became small was very different (see
Section 3).

I also conducted limited experiments with reduced noise
in the afferents which did participate in the pattern at
39Hz/39Hz and 25Hz/39Hz. Here the probabilities of a
noisy spike were set to 𝑝 = (39 − 25)/975 ≈ 0.014 and
0, respectively. In this case the triplet rule lost its advantage
over all-to-all but still performed significantly better than the
nearest-neighbor rule.

2.1. Heuristic Optimization. The basic idea was to discover
the lower limits of STDP training with respect to the spatial
pattern or in other words to answer the question of how
small the spatial pattern can be. Since additive STDP tends
to produce a bimodal distribution of synaptic strengths, the
idea was to maximize the difference between the strengths of
synapses which transmit the pattern and those which do not.
In addition, the neuron must remain responsive at the end of
the training and ideally selective only to the pattern. Instead
of minimizing the firing latencies of the trained neuron, for
the sake of simplicity, I made the assumption that the neuron
firing rate should be approximately the same as the rate of
pattern injection. For this purpose, I introduced a Gaussian
component into the objective function:

𝑓 =

{{

{{

{

∑

𝑡

𝑒
−(𝜆−𝜉)

2
/𝛿
Δ𝜇
𝑤

if Δ𝜇
𝑤
> 0

∑

𝑡

Δ𝜇
𝑤

if Δ𝜇
𝑤
≤ 0,

(1)

where Δ𝜇
𝑤
is the observed difference between the means of

strengths of synapses which were associated with the pattern
and those which were not; 𝜆 is the observed firing rate
(times per second); 𝜉 = 25 is the target firing rate; and
𝛿 = 20 defines the tolerated deviation from the target rate.
At the beginning of the training all synaptic strengths were
set to the same value 𝑤

0
, so that at the very beginning of

the training the value of Δ𝜇
𝑤
was zero. The value of the

objective function was the sum of observations at each time
step in the simulation. In this way, the performance of the
training was taken into account from the very beginning
of the simulation, and, in this manner, the speed of the
training was also increased by maximizing the objective
function. The heuristic search to maximize the objective
function (1) was executed in 7-dimensional space for nearest-
neighbor and all-to-all rules and in 11-dimensional space for
the triplet rule. The optimized parameters were 𝜗, 𝑤

0
, 𝑤min,

𝜂, 𝐴pre, 𝑇pre, and 𝑇post. For the triplet rule there were four
additional parameters: 𝐴pre3, 𝐴post3, 𝑇pre3, and 𝑇post3 (see
equations below). For the heuristic search I used a very basic
genetic algorithm. There were 100 agents, and after each trial
60 agents were replaced by the offspring of the top 20
performers. Offspring were generated from the parent agent
by applying normally distributed mutations. The mean of
the normal distribution was the parent value; the standard
deviation formutations was 1 for time dimensions (𝑇pre,𝑇pre3,
𝑇post, and𝑇post3) and 0.01 for all other dimensions. Each agent
in each generation executed 10 independent trials and the
values of the objective function were added together from
all 10 trials. Each trial took 5,000 iterations (milliseconds).
The heuristic search was executed for 1500 generations.There
were 300 afferents in each agent.
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Figure 2: STDP neighborhood rules. (a) Nearest-neighbor with immediate pairings. (b) Triplet update. (c) All-to-all.

In my first 64Hz/39Hz experiment initial pattern size
𝑛 was set to 24, equal to twice the expected spike count
generated by Poisson noise. Pattern size was then decreased
to 12, 8, 4, 2, and 1.

In the 64Hz setup, pattern sizes were 19, 15, 12, 8, and 4.
Pattern size 𝑛 = 19 approximates the expected spike count
generated by Poisson noise, which was 19.2. Here for the
initial conditions I reused the parameters obtained for 𝑛 = 24

in the 64Hz/39Hz setup, with an exception for the triplet rule
(see Section 3).

For the 39Hz/39Hz and 25Hz/39Hz experiments, initial
parameters were taken from the 64Hz/39Hz setup 𝑛 = 8

results (an exception was again made for the triplet rule; see
Section 3 for details) and the pattern size remained the same;
𝑛 = 8.

After optimization of parameters, the success rate of
training was evaluated by training the neuron for the same
pattern 1,000 times. The success criterion was Δ𝜇

𝑤
≥ 0.3 and

12 < 𝜆 < 50 at the end of the training (see (1)).
I reran the genetic optimization several times and the

results were all similar.

2.2. The Neuron Model. For the neuron model I used a ver-
sion of the Spike-Response Model (SRM) [19]. The same
model was used in my previous work [20]. In the particular
model, a membrane potential 𝑢(𝑡) at time 𝑡 is given by

𝑢 (𝑡) =
{

{

{

5𝜗 if 𝑡 = 𝑡spike

−𝑊
𝑟
𝑒
(𝑡spike−𝑡)/𝑇𝑟 +∑𝜖 (𝑡) otherwise,

(2)

where𝑊
𝑟
and𝑇
𝑟
define the amplitude and duration of relative

refraction and 𝑡spike is the time of the last spike generated
by the given (postsynaptic) neuron. At the beginning of the
simulation 𝑡spike was always set to −10

6. The spike occurs
when the membrane potential reaches the threshold value 𝜗.
The postsynaptic potential 𝜖

𝑗
(𝑡) arriving from an individual

synapse 𝑗 is given by

𝜖
𝑗
(𝑡)

= 𝑤
𝑗
(𝑒
−Δ𝑡/𝑇

𝑚 (1 + 𝑥
𝑚
𝑗
(𝑡)) − 𝑒

−Δ𝑡/𝑇
𝑠 (1 + 𝑥

𝑠
𝑗
(𝑡))) ,

(3)

where𝑤
𝑗
is the strength of the synapse;𝑇

𝑚
and𝑇
𝑠
are the time

constants; and Δ𝑡 = 𝑡 − 𝑡pre, where 𝑡pre is the time of the last
presynaptic spike. Note that when 𝑥

𝑚
and 𝑥

𝑠
are zero, (3) is

reduced to the simple function of two exponentials: 𝜖
𝑗
(𝑡) =

𝑤
𝑗
(exp(−Δ𝑡/𝑇

𝑚
) − exp(−Δ𝑡/𝑇

𝑠
)). Variables 𝑥

𝑚
and 𝑥

𝑠
are

introduced only to simplify the integration of exponentials
during the simulation and are given by

𝑥
𝑚
𝑗
(𝑡)

=

{{

{{

{

𝑤
𝑗(𝑡−1)

𝑤
𝑗(𝑡)

𝑒
−Δ𝜏/𝑇

𝑚 (1 + 𝑥
𝑚
𝑗
(𝑡 − 1)) if 𝑡 = 𝑡pre

𝑥
𝑚
𝑗
(𝑡 − 1) if 𝑡 ̸= 𝑡pre

𝑥
𝑠
𝑗
(𝑡) =

{{

{{

{

𝑤
𝑗(𝑡−1)

𝑤
𝑗(𝑡)

𝑒
−Δ𝜏/𝑇

𝑠 (1 + 𝑥
𝑠
𝑗
(𝑡 − 1)) if 𝑡 = 𝑡pre

𝑥
𝑠
𝑗
(𝑡 − 1) if 𝑡 ̸= 𝑡pre,

(4)

where Δ𝜏 is the time difference between the previous and the
last presynaptic spikes. Initial values for 𝑥

𝑚
and 𝑥

𝑠
are zero

and are updated only at the moment of the presynaptic spike.
For derivation of (4) please see [20].

During all experiments time constants were set to 𝑇
𝑟
=

10, 𝑇
𝑚
= 10, and 𝑇

𝑠
= 0.5.𝑊

𝑟
was dependent on a threshold

value and was set to 2𝜗.

2.3. Plasticity. Spike-timing-dependent plasticity is a form of
Hebbian learning; it can be modeled as a function of time
difference between presynaptic and postsynaptic spikes; the
value of the function is the amount of change in synaptic
strength. Persistent strengthening of a synapse is referred
to as long-term potentiation (LTP) and persistent reduction
of synaptic strength is referred to as long-term depression
(LTD).

In this work I investigate only one of the STDP rules that
is known to be common in excitatory-to-excitatory synapses.
It should be noted that a number of different STDP rules
have been discovered which vary depending on synapse type
or even according to their position on the dendrite [9, 12,
21, 22]. Neighborhood functions used for comparison are
represented in Figure 2. Triplet update (Figure 2(b)) was
used in combination with the nearest-neighbor interaction in
Figure 2(a). STDP updates were modeled by (5), (6), and (7).
Nearest-neighbor is

Δ𝑤
𝑗
=

{{{{

{{{{

{

𝜂𝑒
−Δ𝑡/𝑇post if Δ𝑡 > 0

−𝜂𝐴pre𝑒
−Δ𝑡/𝑇pre if Δ𝑡 < 0

0 if Δ𝑡 = 0.

(5)
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Nearest-neighbor with the triplet update is

Δ𝑤
𝑗

=

{{{{

{{{{

{

𝜂 (1 + 𝐴post3𝑒
−Δ𝑡post3/𝑇post3) 𝑒

−Δ𝑡/𝑇post if Δ𝑡 > 0

−𝜂 (𝐴pre + 𝐴pre3𝑒
−Δ𝑡pre3/𝑇pre3) 𝑒

−Δ𝑡/𝑇pre if Δ𝑡 < 0

0 if Δ𝑡 = 0.

(6)

All-to-all is

Δ𝑤
𝑗
=

{{{{

{{{{

{

𝜂𝑒
−Δ𝑡/𝑇post (1 + 𝑦post) if Δ𝑡 > 0

−𝜂𝐴pre𝑒
−Δ𝑡/𝑇pre (1 + 𝑦pre) if Δ𝑡 < 0

0 if Δ𝑡 = 0,

(7)

where Δ𝑤
𝑗
is the amount of change of strength of an indi-

vidual synapse; 𝜂 is the training step; Δ𝑡 is the time difference
between postsynaptic and presynaptic spikes; and𝐴pre,𝐴pre3,
𝐴post3, 𝑇pre, 𝑇pre3, 𝑇post, and 𝑇post3 are the parameters which
control amplitudes and slopes of STDP functions. Variables
𝑦post and 𝑦pre were computed in the same way as the 𝑥

variables in the neuron model in (4). The only difference was
that weights were not present in this case. Synaptic strengths
were kept between 1 and 𝑤min, where 1 > 𝑤min > 10

−6 in
order to avoid infinity in (4).

3. Results

The results from the 64Hz/39Hz and 64Hz experiments
are presented in Figure 3. The triplet rule in both setups
performed much better than its competitors, although in the
64Hz triplet experiment there was a significant degradation
in performance for 𝑛 = 8. The simple nearest-neighbor
rule performed the worst, and heuristic search failed to find
suitable parameters for the 𝑛 = 4 spike pattern in the
64Hz/39Hz setup and for the 𝑛 = 12 in the 64Hz setup.

It has to be stated that in the 64Hz setup (Figure 3(b))
the genetic algorithm initially failed to find the point where
the triplet rule would performbetter than all-to-all, andwhen
the pattern size was 15, it performed worse than nearest-
neighbor. This could not be the global optimum because
nearest-neighbor is a special case of the triplet, where 𝐴pre3
and 𝐴post3 are zero; therefore at the optimal point the triplet
rule should perform at least equally to nearest-neighbor. So
here optimization got stuck in a local optimum. To validate
this, I used the nearest-neighbor parameters obtained for
𝑛 = 15 as initial parameters for the triplet, except 𝐴pre3 and
𝐴post3 that were set to zero; 𝑇pre3 = 2𝑇pre and 𝑇post3 = 2𝑇post.
The results were significantly better: the triplet performed
better than the other two. In order to eliminate possible
unfair competition, I reran genetic optimization for nearest-
neighbor and all-to-all for 3,000 generations, with no success
in improving the parameters. Although these results cannot
be conclusive, they strongly suggest that the triplet rule can
perform better.

When pattern size was relatively large, results from both
the 64Hz/39Hz and 64Hz experiments were quite similar:
the trained neuron was selective to the pattern and fired

mostly after the pattern time with 2-millisecond latency.
The latency was caused by the PSP kernel function chosen
(see (3)). In the 64Hz/39Hz setup the triplet rule retained
selectivity down to the 𝑛 = 4 pattern and in the case of all-to-
all this was 𝑛 = 8 (see Figure 4); in the 64Hz setup selectivity
was lost sooner: the triplet rule retained selectivity down to
𝑛 = 8 and 𝑛 = 12 for the all-to-all rule.

When the pattern became too small, the genetic algo-
rithm found conditions where STDP training would result
in certain equilibria of synaptic strengths, and consequently
the neuron firing rate was more or less constant, but even
so, the synaptic strengths associated with the pattern tended
to grow close to the maximal value, which was 1, while
the remaining strengths were distributed above the minimal
value. The neuron was not selective because the combined
strength of the synapses associated with the pattern was not
sufficient to cause the postsynaptic spike. Particularly when
𝑛 = 1, a spatial pattern does not even exist. In the case of the
simple nearest-neighbor rule, this kind of behavior was not
observed.

It must be stated that in the 64Hz setup genetic opti-
mization could not improve the training success rate for the
triplet and all-to-all, as the pattern became too small and
neuron was not selective to it. In Figure 3(b) the dashed
line indicates that optimization was discontinued, and for
measuring success rate parameters were taken from previous
optimization results, which were 𝑛 = 4 for the triplet and
𝑛 = 8 for the all-to-all.

When the pattern is relatively small (see Figure 3, black
markers), training with the parameters obtained from the
64Hz/39Hz and 64Hz experiments for the triplet rule results
in very different behaviors. Parameters from the 64Hz/39Hz
experiment were tuned to detect an increased rate: I replaced
the spatial pattern with a pure Poisson process with firing
rates of 64Hz and 39Hz, respectively, and repeated the triplet
experiment with the same parameters. Training failed when
𝑛 > 4, and thus a coincidence of spikes was required
to train the neuron under the given parameters. Training
was successful, however, when 𝑛 ≤ 4, and therefore when
the pattern was small, synapses grew stronger because of
increased input firing rate, not because of coincidences of
input spikes. This, however, was not the case with the 64Hz
experiment. I made a few tests with the triplet rule and 𝑛 =

1 pattern size. In my experiment spatial pattern consists of
spikes and gaps. When spikes and gaps are replaced with the
pure 64Hz Poisson noise, training obviously fails; the success
rate is simply equal to the measured probability for a random
synapse to grow stronger than the mean value plus 0.3 (see
Section 2.1 for training success criteria).When only gaps were
replaced with Poisson noise, the training success was reduced
from 0.99 to 0.7. When only spikes in the pattern were
replaced with noise, but gaps were still persistent, the training
success rate reduced to 0.14, which seems to be slightly above
random chance (measured probability of a random chance
of success was ∼0.12). This suggests that parameters were
tuned to detect deformations of a Poisson process, and these
deformations could be induced by either a periodic spike or
periodic gap. However, I cannot claim with certainty that
STDP can detect periodic gaps in a Poisson process.
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Figure 3: Training success rate versus pattern size. Black markers denote the training when synaptic strengths were bimodal, but the neuron
was not selective to the pattern. (a) Results from the 64Hz/39Hz setup. (b) Results from the 64Hz setup. Dashed lines indicate that there
was no heuristic optimization made, but previous optimized parameters were reused.
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Figure 5: Evolution of synaptic strengths. Results were taken from singular successful trainings when pattern size was 𝑛 = 12 for the
64Hz/39Hz setup. (a) is means of synaptic strengths; (b) shows variances. Red denotes synapses associated with the pattern; black denotes
synapses not associated with the pattern.

I also conducted an additional test with the triplet rule
in the 64Hz setup: I replaced the spatial pattern with a
spatiotemporal one, by distributing spikes of a pattern in time
with 10ms latency; gaps from noisy afferents were removed.
In this case, training was successful for 𝑛 = 4 with a success
rate of ∼0.5 and for 𝑛 = 8 of ∼0.2. Training failed for 𝑛 = 12.
This indicates that parameters obtained for relatively small
patterns were appropriate for detecting certain deformations
of a Poisson process of spikes from an individual afferent, but
not coincidences of spikes.

In the all-to-all rule and the small pattern in the
64Hz/39Hz setup where the STDP window was inverted
(see Figure 3(a), black markers; see Table S1 of the Sup-
plementary Material available online at http://dx.doi.org/
10.1155/2016/1746514), training failed when the pattern was
replaced with pure noise. I tried to preserve only the gaps
or only the periodic spike, with no success in training. In
the 64Hz setup, however, removing gaps and replacing the
spatial pattern with a spatiotemporal one with 10ms latency
between spikes boosted the performance of the all-to-all rule
to a success rate above 0.8 for 𝑛 ≤ 12. It should be noted
that when 𝑛 = 8 and 𝑛 = 12 the spatiotemporal pattern
overlaps, so that there were coincidences of two or three
spikes correspondingly. Training failed when 𝑛 = 15.

The nearest-neighbor rule in all cases could only be
trained to the spatial pattern, and all attempts to replace
spatial pattern with Poisson noise or a spatiotemporal pattern
resulted in training failure.

It is worth noting that the number of input neurons easily
could be scaled up by any factor, by scaling the threshold
value 𝜗 and the size of the spatial pattern by the same factor
and keeping the STDP parameters unchanged, except for
training step 𝜂, which requires additional tuning in the case
of the 64Hz/39Hz setup and 𝑛 = 1 (in this particular case,
I had to change the value of 𝜂 from 0.662 to 0.9; otherwise

training was not successful). This nonlinear dependency of
the training step needs further research. In the case of a
small pattern in nonselective mode, the pattern size may
remain unchanged after scaling. For the 64Hz/39Hz setup
I successfully scaled the triplet model up by a factor of 20,
which is 6,000 inputs with pattern sizes of 𝑛 = 1 and
𝑛 = 8. The neuron was trained thus without any noticeable
degradation of the success rate of the training. In fact I
observed a slight improvement in the training success rate.
That is, the neuron was able to find a single synapse with
increased firing rate among the 5,999 others and to learn a
spatial pattern made by 160 input neurons among the 5,840
others. I also successfully repeated the same scaling by a factor
of 20 with the 64Hz setup, for 𝑛 = 1 and 𝑛 = 19.

Figure 5 is a comparison of the synaptic strength evolu-
tions of successful trainings where pattern size was 𝑛 = 12

for the 64Hz/39Hz setup. Results were gathered from single
runs of 5,000ms duration. The three columns represent the
three rules, and (a) shows means of synaptic strengths and
(b) shows variances. In the case of the triplet rule, synaptic
strengths were much more stable. When training with the
triplet rule, variance of strengths was almost one-tenth that
of nearest-neighbor or all-to-all. Comparing the all-to-all rule
to the simple nearest-neighbor rule, synaptic strengths were a
bitmore stable in the case of the all-to-all. Strength evolutions
in the 64Hz setup were very similar (see Supplementary
Material, Figure S1).

From the parameters obtained through heuristic opti-
mization, we can make a few interesting observations. In
the case of the triplet rule and the 64Hz/39Hz setup (see
Figure 6; Supplementary Material, Table S1), LTP occurred at
the left side of the STDP window (Figure 7), that is, where
𝑡pre > 𝑡post, and presynaptic spikes were closely correlated to
postsynaptic ones. The right side of the STDP window shows
a very steep slope, and its amplitude diminishes as the pattern
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size becomes smaller; in the case of the pattern size 𝑛 = 1,
the right side of the STDP window showed very little or no
influence.

In the 64Hz setup LTP also occurred at the left side of
STDP window, but the value of this LTP was significantly
lower (see Figure 8). Also, in comparison to the 64Hz/39Hz

experiment, the right side of STDP window was not dimin-
ished, and LTD occurred on the right side when presynaptic
and postsynaptic spikes were close in time.

Also, in the case of all-to-all rule and 64Hz/39Hz setup,
LTP and LTD switched places when pattern became small at
𝑛 = 4, and at the same time the neuron lost its selectivity
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to the pattern (see Figure 6). It is interesting to note that
switches of LTP and LTD in the synapses of the same neuron
have been observed in biology: synapses distant from the
soma have different STDP window polarity than synapses
proximate to the soma. This has been observed in the visual
cortex [23] and in the barrel cortex [24]. Another interesting
observation about the all-to-all rule is that, in the case of a
small pattern, the neuron fires at a persistent rate, despite
the 𝑤min value approaching close to zero. This indicates
that such an inverted STDP window is capable of attaining
equilibrium in synaptic strengths when exposed to Poisson
noise. It was also interesting to note that the behavior of the
inverted STDP window for all-to-all interaction contradicted
the equilibrium properties predicted by the Izhikevich and
Desai equation [13]: equilibria for parameters found by
heuristic optimization should not be stable. The Izhikevich
andDesai equations, however, are based on the assumption of
a Poisson-distributed postsynaptic spike train, which was not
the case for an SRM neuron with relative refraction. At this
time I have no solid explanation for why the neuron retained
a stable firing rate; this requires additional research.

In the 64Hz setup, the all-to-all rule did not switch
the polarity of LTP and LTD (see Figure 8). The behavior,

however, was somewhat similar: the all-to-all rule attained
equilibria in synaptic strengths and postsynaptic neuron fired
at persistent rate.

I conducted a limited experiment with the 39Hz/39Hz
and 25Hz/39Hz setups, where noise in afferents participating
in the pattern produced reduced Poisson noise or no noise at
all (see Figure 9; Supplementary Material, Table S3).

In this experiment, the all-to-all and nearest-neighbor
rules resulted in an increased success rate as the noise of the
afferents participating in the pattern was reduced, but the
success rate of the triplet rule decreased at the point of 39Hz;
the triplet rule performed worse than the all-to-all rule, but
better than nearest-neighbor.

Initially in this experiment I took the optimized param-
eters from the 64Hz/39Hz and 𝑛 = 8 results as the initial
conditions for all three rules and evolved parameters with
changed firing rate, but maintaining 𝑛 = 8. Later, in the
same way as in the 64Hz/64Hz setup, I reused optimized
parameters from the nearest-neighbor for initial conditions
for the triplet. This helped improve the performance of the
triplet, but not to the point where it could perform better than
all-to-all at the 39Hz. At 25Hz triplet and all-to-all had a very
similar success rate.
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Figure 9: Training success rate versus firing rate in the 39Hz/39Hz
and 25Hz/39Hz setups; 𝑛 = 8. The firing rate of all eight afferents
participating in the pattern was reduced from 64Hz to 39Hz and
25Hz. Other afferents fired at 39Hz. Success rate values at 64Hz are
taken from Figure 3(a).

4. Discussion

At the moment, the practical application of STDP learning
to real-world data is problematic. One cannot simply take
a set of real-world processes, convert these into parallel
spike trains, and expect STDP to detect correlations. The
parameters of the neuron must be tuned according to the
properties of the input spike trains and/or vice versa. From
a practical point of view this makes little sense: if good prior
knowledge about the data is required before applying STDP
training, then one may use other traditional tools which
are much more efficient than STDP. The only way to make
STDP useful for real-world applications is to build adaptive
neural networks significantlymore sophisticated than the one
I used in this paper. Even such a simple task as differentiating
mutually inclusive spatial patterns, for example, requires a
complicated neural circuit. I presented one possible solution
for mutually inclusive patterns in my previous work [20].The
results of my experiment do not suggest the use of the triplet
STDP implementation for direct applications, but rather that
the triplet might be a good candidate for consideration in the
design of artificial spiking networks.

In this paper I applied STDP learning to static spatial
patterns.This is not necessarily the best application for STDP,
and it is known that STDP can be applied for different prob-
lems. For instance, STDP can detect rate-modulated patterns
[25], which are more biologically plausible than static spike
patterns. Also, it was shown that STDP in a winner-take-all
network can approximate expectation-maximization [26].

It should be said that this work covers only a fraction
of the variety of the phenomenological models of STDP.
Spike pairings in the nearest-neighbor can be implemented
differently by using symmetric or postsynaptic centered

interpretations [11]; I did not research reduced multiplicative
update [27]; also I did not include the all-to-all version of the
triplet [17].

The main purpose of this paper is to demonstrate that
changing the sign of additional trace variables of triplet
STDP implementation potentially can result in a far better
coincidence detector than STDP implementations based
on two trace variables. The triplet rule (Figure 2(b)) was
originally suggested by Pfister and Gerstner [17]. In their
original work they successfully reproduced STDP behavior
found in biological neurons, in both the visual cortex [28] and
hippocampal culture [29]. Pfister and Gerstner used positive
values for 𝐴pre3 and 𝐴post3 (see Section 2.3, (7)). In the case
of training for spatial patterns, however, genetic optimization
immediately changed the polarity of 𝐴pre3; and in the 64Hz
setup, it changed 𝐴post3 as well (see Supplementary Material,
Tables S1 and S2). Taking a closer look at the LTD side of the
original triplet rule (Figure 2(b)), it is evident that positive
𝐴pre3 increases LTD in cases where the previous presynaptic
spike was strongly correlated to the postsynaptic one and
therefore reduces the existing correlation. This feature, while
it might be biologically plausible, has a negative impact on
training for spatial patterns. If 𝐴pre3 is set to a negative value,
the result is the opposite, and LTD is either lessened or
replaced by LTP.Moreover, this setup of the triplet rule favors
spike triplets in a window of a specific duration and therefore
is suitable for selecting synapses with a higher spiking rate
because the higher the rate is, the higher the probability of
the occurrence of a triplet in a smaller temporal window is.
Thus it was not surprising in the least that the heuristic search
changed the polarity of𝐴pre3. What was surprising, however,
was the magnitude of positive impact on training overall. At
the same time, I have no solid explanation for why the genetic
algorithm changed the polarity of 𝐴post3 in the case of the
64Hz setup and why exclusively for this setup. Such negative
𝐴post3 would cause LTD when two postsynaptic spikes are
close in time and presynaptic spike is closely correlated to the
last postsynaptic one (see Figure 8, triplet). At this time I can
only speculate that this LTD would be induced mostly when
the postsynaptic neuron fires frequently, thus helping prevent
too high a firing rate.

Another interesting observation that follows from my
experiment is that the triplet implementation of STDP can
achieve stable equilibria of synaptic strengths when exposed
to a Poisson process of input spikes. At the same time,
STDP can detect an increased spiking rate or a certain
deformation of a Poisson process even in a single synapse,
when the influence of that individual synapse on the overall
postsynaptic membrane potential is negligible. In such a case
the neuron is incapable of encoding the data, which makes
it difficult to apply this feature to competitive learning, for
example, in a single winner-take-all circuit, such as the one
used byMasquelier and colleagues [30].There are no reasons
why synaptic weights cannot be modified after the training
by increasing the contrast of synaptic weights, however, thus
making the neuron selective to the input of even a single
synapse.

When the pattern was relatively small (Figure 3, black
markers), the neuron was incapable of detecting a spatial
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pattern; thus it failed at coincidence detection, even in the
case of inverted all-to-all rule in the 64Hz/39Hz setup, since
trainingwas successful at 𝑛 = 1. Nevertheless, it demonstrates
a variety of interesting properties of STDP learning which
require additional research. It is important to understand that
STDP training may increase synaptic strength for multiple
reasons. Without a good understanding why and when
synaptic strengths grow or decay, the interpretation of STDP
training results could be problematic.

The results of this experiment need to be accepted with
caution because the results of heuristic optimization are only
approximate and there is no proof that heuristic optimization
approached global optima rather than getting stuck in a
local optimum. While it shows that using the triplet rule
makes very good results possible, it does not prove that it
is impossible to achieve better results with the all-to-all or
nearest-neighbor rule. At this stage of research the amount
of data is insufficient to draw solid conclusions other than
the fact that the triplet rule can perform extremely well under
certain conditions. For this reason, and to limit the scope of
the paper, I have not represented the dynamics of variables
during genetic optimization. The results of this experiment
should therefore be accepted as evidence, but not as proof.

The biological plausibility of the triplet parameters dis-
covered is questionable, but this experiment was not intended
to validate biological hypotheses. The heuristic search dis-
covered parameters appropriate for a mixture of the Poisson
process and periodic spatial patterns. Such conditions do not
necessarily exist in the biological realm. In the case of the
Poisson process, for example, intervals between input spikes
are distributed exponentially, while this is questionable in
the case of the actual postsynaptic potential process [31]. The
Spike-Response Model with relative refraction cannot even
produce a Poisson spike train. The results of this experiment
should nonetheless be interesting from the perspective of
machine learning.
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