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Galerkin method is presented to solve singularly perturbed differential-difference equations with delay and advanced shifts using
fitting factor. In the numerical treatment of such type of problems, Taylor’s approximation is used to tackle the terms containing
small shifts. A fitting factor in the Galerkin scheme is introduced which takes care of the rapid changes that occur in the boundary
layer. This fitting factor is obtained from the asymptotic solution of singular perturbations. Thomas algorithm is used to solve the
tridiagonal system of the fitted Galerkin method. The method is analysed for convergence. Several numerical examples are solved
and compared to demonstrate the applicability of the method. Graphs are plotted for the solutions of these problems to illustrate
the effect of small shifts on the boundary layer solution.

1. Introduction

Singularly perturbed differential-difference equations
(SPDDEs) arise very frequently in the mathematical model-
ling of real life situations in science and engineering [1–3].
In the mathematical modelling of a physical system as
in control theory, the presence of small time parasitic
parameters like moments of inertia, resistances, inductances,
and capacitances increases the order and stiffness of these
systems. The suppression of these small constants results in
the reduction of the order of the system. Such systems are
termed as singular perturbation systems and when these
systems take into account the past history as well as the
present state of the physical system then they are called
singularly perturbed delay differential equations. Delay
differential equations arise in first-exit time problems in
neurobiology and in mathematical formulation of various
practical phenomena in biosciences. A differential-difference
equation with the presence of shift terms induces large
amplitudes and exhibits oscillations, resonance, turning
point behaviour, and boundary and interior layers. Hence, to

control such behaviour, we need some simple and efficient
numerical techniques.

Lange and Miura [3–7] published a series of papers
extending themethod ofmatched asymptotic expansions ini-
tially developed for ordinary differential equations to obtain
approximate solution of singularly perturbed differential-
difference equations.

Numerical analysis of singularly perturbed differential-
difference turning point problems was initiated by Kadalba-
joo and Sharma. In a series of papers, [8–10], they gave many
robust numerical techniques for the solution of such type of
problems. Kadalbajoo and Sharma [8] elucidate a numerical
method to solve boundary value problems for singularly
perturbed differential-difference equation with mixed shifts.
Kadalbajoo and Sharma [9] proposed a numerical method
to solve boundary value problems for a singularly perturbed
differential-difference equation of amixed type, that is, which
contains both types of terms having negative shifts as well as
positive shifts, and considered the case in which the solution
of the problem exhibits rapid oscillations. Kadalbajoo and
Sharma [10] described a numerical approach based on finite
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difference method to solve a mathematical model arising
from a model of neuronal variability. Kadalbajoo and Kumar
[11] used B-spline collocation method with fitted mesh for
the solution of singularly perturbed differential-difference
equations with small delay.

Patidar and Sharma [12] combined fitted-operator meth-
ods with Micken’s nonstandard finite difference techniques
for the numerical approximations of singularly perturbed
linear delay differential equations. Kadalbajoo et al. [13]
derived 𝜀-uniformly convergent fitted methods for the solu-
tion of singularly perturbed differential-difference equation
(SPDDE). Kumar and Sharma [14] presented a numerical
scheme based on B-spline collocation to approximate the
solution of boundary value problems for singularly perturbed
differential-difference equations with delay and advance.

With this motivation, an exponentially fitting factor is
introduced in Galerkin method for the solution of singularly
perturbed differential-difference equation with delay and
advanced parameters. In Section 2, description of the prob-
lem is given. In Section 3, numerical scheme for the solution
of the problem is presented and Section 4 deals with conver-
gence analysis of the proposed scheme. To demonstrate the
efficiency of the proposed method, numerical experiments
are carried out for several test problems and the results are
given in Section 5. Finally the conclusions are given in the
last section.

2. Description of the Problem

Consider a linear singularly perturbed differential-difference
equation of the following form:

𝜀𝑦󸀠󸀠 (𝑥) + 𝑝 (𝑥) 𝑦󸀠 (𝑥) + 𝑞 (𝑥) 𝑦 (𝑥 − 𝛿) + 𝑟 (𝑥) 𝑦 (𝑥)
+ 𝑠 (𝑥) 𝑦 (𝑥 + 𝜂) = 𝑓 (𝑥) (1)

on (0, 1), under the boundary conditions

𝑦 (𝑥) = 𝜑 (𝑥) on − 𝛿 ≤ 𝑥 ≤ 0,
𝑦 (1) = 𝛾 (𝑥) on 1 ≤ 𝑥 ≤ 1 + 𝜂. (2)

Here 𝜀 is a small parameter such that 0 < 𝜀 ≪ 1, 𝑝(𝑥),𝑞(𝑥), 𝑟(𝑥), 𝑠(𝑥), 𝑓(𝑥), 𝜙(𝑥), and 𝛾(𝑥) are smooth functions,
and 0 < 𝛿 = 𝑜(𝜀), 0 < 𝜂 = 𝑜(𝜀) are, respectively, the delay
(negative shift) and the advance (positive shift) parameters. If𝑝(𝑥) − 𝛿𝑞(𝑥) + 𝜂𝑠(𝑥) > 0, the solution of (1) with (2) exhibits
layer at the left end of the interval and if𝑝(𝑥)−𝛿𝑞(𝑥)+𝜂𝑠(𝑥) <0, the layer exists at the right end of the interval.

Since the solution 𝑦(𝑥) of boundary value problem
equations (1) and (2) is sufficiently differentiable, we expand
the terms 𝑦(𝑥 − 𝛿) and 𝑦(𝑥 + 𝜂) using Taylor series; we get

𝑦 (𝑥 − 𝛿) ≈ 𝑦 (𝑥) − 𝛿𝑦󸀠 (𝑥) + 𝑂 (𝛿2) , (3)

𝑦 (𝑥 + 𝜂) ≈ 𝑦 (𝑥) + 𝜂𝑦󸀠 (𝑥) + 𝑂 (𝜂2) . (4)

Using (3) and (4) in (1), we get

𝜀𝑦󸀠󸀠 (𝑥) + 𝑎 (𝑥) 𝑦󸀠 (𝑥) + 𝑏 (𝑥) 𝑦 (𝑥)
= 𝑓 (𝑥) + 𝑂 (𝛿2 + 𝜂2) . (5)

Equation (5) is an asymptotically equivalent second-order
singular perturbation problem of (1) with boundary condi-
tions

𝑦 (0) = 𝜑 (0) , (6a)

𝑦 (1) = 𝛾 (1) . (6b)

Since 0 < 𝛿 ≪ 1 and 0 < 𝜂 ≪ 1, the transition from (1)
to (5) is admitted. This replacement is significant from the
computational point of view. For more details on the validity
of this transition, one can refer El’sgol’ts and Norkin [15].
Thus, the solution of (5) provides a good approximation to
the solution of (1).

Here,

𝑎 (𝑥) = 𝑝 (𝑥) − 𝛿𝑞 (𝑥) + 𝜂𝑠 (𝑥) ,
𝑏 (𝑥) = 𝑞 (𝑥) + 𝑟 (𝑥) + 𝑠 (𝑥) . (7)

3. Numerical Scheme

3.1. Left-End Boundary Layer Problem. Let 0 = 𝑥0, 𝑥1, . . .,𝑥𝑁 = 1 be a decomposition of the considered interval [0, 1]
into 𝑁 equal intervals with constant mesh length ℎ. Then
we have the nodes 𝑥𝑖 = 𝑖ℎ, for 0, 1, . . . , 𝑁. Assume that𝑎(𝑥), 𝑏(𝑥), and 𝑓(𝑥) are sufficiently continuously differen-
tiable functions in [0, 1]. If 𝑎(𝑥) ≥ 𝑀 > 0 in [0, 1]where𝑀 is
a positive constant, (5) has a unique solution 𝑦(𝑥) which, in
general, displays a boundary layer of width 𝑂(𝜀) at 𝑥 = 0.

Lemma 1 (Doolan et al. [16] and O’Malley [17]). Let 𝑦̃(𝑥) =𝑦0 + 𝑧0 be the zeroth-order asymptotic approximation to
the solution of (5), where 𝑦0 represents the zeroth-order
approximate outer solution (i.e., the solution of the reduced
problem of (5)) and 𝑧0 represents the zeroth-order approximate
solution in the boundary layer region of (5).

Then for a fixed positive integer 𝑖,

lim
ℎ→0

𝑦 (𝑖ℎ) ≈ 𝑦0 (0) + (𝜑 (0) − 𝑦0 (0)) 𝑒−𝑎(0)𝑖𝜌
where 𝜌 = ℎ

𝜀 .
(8)

Proof. Let 𝑦0(𝑥) be the solution of the reduced problem of (5)

𝑝 (𝑥) 𝑦󸀠0 (𝑥) + 𝑞 (𝑥) 𝑦0 (𝑥) = 𝑓 (𝑥) , 𝑦0 (1) = 𝛾 (1) (9)
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and 𝑧0(𝑡) is the solution of the boundary value problem (cf.
O’Malley [17])

𝑧󸀠󸀠0 (𝑡) + 𝑝 (0) 𝑧󸀠0 (𝑡) = 0,
𝑧0 (0) = 𝜑 (0) − 𝑦0 (0) ,

𝑧0 (∞) = 0
where 𝑡 = 𝑥

𝜀 .
(10)

From the theory of singular perturbation, the zeroth-
order asymptotic approximation to the solution of (4) is (cf.
O’Malley [17])

𝑦̃ (𝑥) ≈ 𝑦0 (𝑥) + 𝑎 (0)
𝑎 (𝑥) (𝜑 (0) − 𝑦0 (0)) 𝑒−∫𝑥0 (𝑎(𝑥)/𝜀)𝑑𝑥. (11)

As we are considering the differential equations on suffi-
ciently small subintervals, the coefficients could be assumed
to be locally constant. Hence,

𝑦̃ (𝑥) ≈ 𝑦0 (𝑥) + (𝜑 (0) − 𝑦0 (0)) 𝑒−(𝑎(0)/𝜀)𝑥. (12)

So, at the nodal points, we have

𝑦̃ (𝑥𝑖) ≈ 𝑦0 (𝑥𝑖) + (𝜑 (0) − 𝑦0 (0)) 𝑒(𝑎(0)/𝜀)𝑥𝑖 ,
𝑖 = 0, 1, . . . , 𝑁; (13)

that is,

𝑦̃ (𝑖ℎ) ≈ 𝑦0 (𝑖ℎ) + (𝜑 (0) − 𝑦0 (0)) 𝑒−(𝑎(0)/𝜀)𝑖ℎ. (14)

Therefore

lim
ℎ→0

𝑦̃ (𝑖ℎ) ≈ 𝑦0 (0) + (𝜑 (0) − 𝑦0 (0)) exp {−𝑎 (0) 𝑖𝜌}
for 𝑖 = 0, 1, 2, 3, . . . , 𝑁, (15)

where 𝜌 = ℎ/𝜀.
Now, we consider the difference scheme [18] by Galerkin

method as follows:
Select a set of basis functions 𝜑𝑗(𝑥), 𝑗 = 0, 1, . . . , 𝑁,

which will define an interpolation scheme for the approx-
imate solution over a grid of points 𝑎 = 𝑥0 < 𝑥1 <⋅ ⋅ ⋅ < 𝑥𝑁+1 = 𝑏. For simplicity, we use piecewise Lagrange
polynomials 𝑙𝑖(𝑥) of first degree as the basis functions. These
interpolating polynomials are

𝑙0 (𝜉) = 𝜉 − 𝜉1𝜉0 − 𝜉1 =
(1 − 𝜉)

2 , (16)

𝑙1 (𝜉) = 𝜉 − 𝜉0𝜉1 − 𝜉0 =
(1 + 𝜉)

2 (17)

in local element coordinates −1 ≤ 𝜉 ≤ 1.
The 𝑁 nodal values of the approximate solution 𝑦 at the

interior nodes 𝑥1, 𝑥2, . . . , 𝑥𝑁 are determined using this basis.
The given boundary conditions determine the value of 𝑦(𝑥)

at the end nodes 𝑥0 and 𝑥𝑁+1. The Galerkin method is now
employed to obtain the integral equations; we have

(𝜀𝑦󸀠󸀠 (𝑥) + 𝑎 (𝑥) 𝑦󸀠 (𝑥) + 𝑏 (𝑥) 𝑦 (𝑥) , 𝜑𝑗)
= (𝑓 (𝑥) , 𝜑𝑗) for 𝑗 = 1, 2, . . . , 𝑁 (18)

which is an integral equation ∫𝑥𝑁𝑥0 (𝜀𝑦󸀠󸀠(𝑥) + 𝑎(𝑥)𝑦󸀠(𝑥) +
𝑏(𝑥)𝑦(𝑥))𝜙𝑗𝑑𝑥 = ∫𝑥𝑁𝑥0 𝑓(𝑥)𝜑𝑗𝑑𝑥.

Since 𝑦 is sum of piecewise linear Lagrange polynomials,
the second-order derivatives appearing in (17) vanish except
at the element boundaries 𝑥𝑖, where they become infinite.

By integration by parts, (18) becomes

− (𝜀𝑑𝑦𝑑𝑥 ,
𝑑𝜙𝑗
𝑑𝑥 ) + (𝑎 (𝑥) 𝑑𝑦𝑑𝑥 + 𝑏 (𝑥) 𝑦, 𝜙𝑗)

+ (𝜀𝑑𝑦𝑑𝑥𝜙𝑗)
𝑏

𝑎
= (𝑓 (𝑥) , 𝜙𝑗) .

(19)

Using the substitution of trial function 𝑦(𝑥) = 𝜙0(𝑥) +
∑𝑁𝑖=1 𝑦𝑖𝜙𝑗(𝑥) into the integral equation (19), we have

𝑁∑
𝑖=1

𝑦𝑖 (𝜀𝑑𝜙𝑖𝑑𝑥 , 𝑑𝜙𝑗𝑑𝑥 ) − 𝑁∑
𝑖=1

𝑦𝑖 (𝑎 (𝑥) 𝑑𝜙𝑖𝑑𝑥 + 𝑏 (𝑥) 𝜙𝑖, 𝜙𝑗)

= −𝛼(𝑑𝑙0𝑑𝑥 ,
𝑑𝜙𝑗
𝑑𝑥 ) − 𝛽(𝑑𝑙𝑁+1𝑑𝑥 , 𝑑𝜙𝑗𝑑𝑥 )

+ 𝛼(𝑎 (𝑥) 𝑑𝑙0𝑑𝑥 + 𝑏 (𝑥) 𝑙0, 𝜙𝑗)

+ 𝛽(𝑎 (𝑥) 𝑑𝑙𝑁+1𝑑𝑥 + 𝑏 (𝑥) 𝑙𝑁+1, 𝜙𝑗)

+ (𝜀𝑑𝑦𝑑𝑥𝜙𝑗)
𝑏

𝑎
− (𝑓 (𝑥) , 𝜙𝑗)

(20)

for 𝑗 = 1, 2, . . . , 𝑁.
It can be observed that all quantities on the right side of

(20) can be computed from known boundary data to obtain𝑁 equations in the𝑁unknown values𝑦𝑖 at the interior nodes.
The integrals in (20) can be solved by taking advantage of

local coordinate (𝜉) system.
Since

𝑥 = (𝑏 − 𝑎)
2 𝜉 + (𝑏 + 𝑎)

2 = ℎ
2𝜉 +

(𝑏 + 𝑎)
2 ,

𝜉 = 2
ℎ (𝑥 − (𝑏 + 𝑎)

2 ) 󳨐⇒
𝑑𝜉
𝑑𝑥 = 2

ℎ ,
(21)
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we have, by simple integration,

∫𝑏
𝑎

𝑑𝜙𝑖𝑑𝑥
𝑑𝜙𝑗
𝑑𝑥 𝑑𝑥 = ∫1

−1

𝑑𝑙0𝑑𝜉
𝑑𝜉
𝑑𝑥

𝑑𝑙1𝑑𝜉
𝑑𝜉
𝑑𝑥

ℎ
2𝑑𝜉 =

−1
ℎ ,

for 𝑖 = 𝑗 − 1,
∫𝑏
𝑎

𝑑𝜙𝑖𝑑𝑥
𝑑𝜙𝑗
𝑑𝑥 𝑑𝑥 = ∫1

−1

𝑑𝑙1𝑑𝜉
𝑑𝜉
𝑑𝑥

𝑑𝑙0𝑑𝜉
𝑑𝜉
𝑑𝑥

ℎ
2𝑑𝜉 =

−1
ℎ ,

for 𝑖 = 𝑗 + 1,
∫𝑏
𝑎

𝑑𝜙𝑖𝑑𝑥
𝑑𝜙𝑗
𝑑𝑥 𝑑𝑥 = ∫1

−1

𝑑𝑙1𝑑𝜉
𝑑𝜉
𝑑𝑥

𝑑𝑙1𝑑𝜉
𝑑𝜉
𝑑𝑥

ℎ
2𝑑𝜉 =

1
ℎ ,
for 𝑖 = 𝑗,

∫𝑏
𝑎

𝑑𝜙𝑖𝑑𝑥
𝑑𝜙𝑗
𝑑𝑥 𝑑𝑥 = 0 for 󵄨󵄨󵄨󵄨𝑖 − 𝑗󵄨󵄨󵄨󵄨 > 1.

(22)

By assuming 𝑎(𝑥), 𝑏(𝑥), and 𝑓(𝑥) as constants, the integral
equation (20) gives, for a typical internal node 𝑗,

𝑦𝑗−1 (−𝜀ℎ + 𝑎
2 − 𝑏ℎ

6 ) + 𝑦𝑗 (2𝜀ℎ − 2𝑏ℎ
3 )

+ 𝑦𝑗+1 (−𝜀ℎ − 𝑎
2 − 𝑏ℎ

6 ) = −𝑓𝑗ℎ.
(23)

Equation (23), when rearranged, gives the following system
of difference equations:

𝜀 (𝑦𝑗+1 − 2𝑦𝑗 + 𝑦𝑗−1
ℎ2 ) + 𝑎(𝑦𝑗+1 − 𝑦𝑗−1

2ℎ )

+ 𝑏(𝑦𝑗−1 + 4𝑦𝑗 + 𝑦𝑗+1
6 ) = 𝑓𝑗;

for 1 ≤ 𝑗 ≤ 𝑁 − 1.

(24)

Now, introduce a fitting factor 𝜎 in the Galerkin scheme as
follows:

𝜎𝜀 (𝑦𝑗+1 − 2𝑦𝑗 + 𝑦𝑗−1
ℎ2 ) + 𝑎𝑗 (𝑦𝑗+1 − 𝑦𝑗−1

2ℎ )

+ 𝑏𝑗 (𝑦𝑗−1 + 4𝑦𝑗 + 𝑦𝑗+1
6 ) = 𝑓𝑗

(25)

for 1 ≤ 𝑗 ≤ 𝑁 − 1 with 𝑦0 = 𝜙(0), 𝑦𝑁 = 𝛾(1). Here 𝜎 is
a fitting factor which is to be determined in such a way that
the solution of (25) converges uniformly to the solution of (5).
Multiplying (25) by ℎ and taking the limit as ℎ → 0 (in [16]),
we get

lim
ℎ→0

(𝜎𝜌 (𝑦𝑗+1 − 2𝑦𝑗 + 𝑦𝑗−1) + 1
2𝑎𝑗 (𝑦𝑗+1 − 𝑦𝑗−1))

= 0 if 𝑓𝑗 − 𝑏𝑦𝑗 is bounded
(26)

∴ lim
ℎ→0

(𝜎𝜌 (𝑦 (𝑗ℎ + ℎ) − 2𝑦 (𝑗ℎ) + 𝑦 (𝑗ℎ − ℎ))

+ 1
2𝑎𝑗 (𝑦 (𝑗ℎ + ℎ) − 𝑦 (𝑗ℎ − ℎ))) = 0.

(27)

Now, approximating the solution y(x) by zeroth-order asymp-
totic approximation 𝑦̃(𝑥) and using Lemma 1, we have

lim
ℎ→0

𝑦̃ (𝑖ℎ) = 𝑦0 (0) + (𝜑 (0) − 𝑦0 (0)) 𝑒−𝑎(0)𝑖𝜌,
lim
ℎ→0

𝑦̃ (𝑗ℎ + ℎ) = 𝑦0 (0)
+ (𝜑 (0) − 𝑦0 (0)) 𝑒−𝑎(0)𝑗𝜌𝑒−𝑎(0)𝜌,

lim
ℎ→0

𝑦̃ (𝑗ℎ − ℎ) = 𝑦0 (0)
+ (𝜑 (0) − 𝑦0 (0)) 𝑒−𝑎(0)𝑗𝜌𝑒𝑎(0)𝜌.

(28)

Using the above equations in (27), we get

𝜎 = 𝜌
2𝑎 (0) coth[(

𝑎2 (0) − 𝜀𝑏 (0)
𝑎 (0) ) 𝜌

2] . (29)

From (25), we have

𝑦𝑗−1 (𝜀𝜎
ℎ2 −

𝑎𝑗
2ℎ + 𝑏𝑗

6 ) − 𝑦𝑗 (2𝜀𝜎
ℎ2 − 2𝑏𝑗

3 )

+ 𝑦𝑗+1 (𝜀𝜎
ℎ2 +

𝑎𝑗
2ℎ + 𝑏𝑗

6 ) = 𝑓𝑗
(30)

for 𝑗 = 1, 2, . . . , 𝑁 − 1.
Equation (30) can be written as a three-term recurrence

relation as follows:

𝐸𝑗𝑦𝑗−1 − 𝐹𝑗𝑦𝑖 + 𝐺𝑗𝑦𝑗+1 = 𝐻𝑗; 𝑗 = 1, 2, . . . , 𝑁 − 1, (31)

where

𝐸𝑗 = (𝜀𝜎
ℎ2 −

𝑎𝑗
2ℎ + 𝑏𝑗

6 ) ,

𝐹𝑗 = (2𝜀𝜎
ℎ2 − 2𝑏𝑗

3 ) ,

𝐺𝑗 = (𝜀𝜎
ℎ2 +

𝑎𝑗
2ℎ + 𝑏𝑗

6 ) ,
𝐻𝑗 = 𝑓𝑗.

(32)

The tridiagonal system equation (31) is solved using Thomas
algorithm.

3.2. Right-End Layer Problems. We now discuss the method
for singularly perturbed two-point boundary value problems
with right-end boundary layer of the underlying interval.
Assume that 𝑎(𝑥), 𝑏(𝑥), and 𝑓(𝑥) are sufficiently continu-
ously differentiable functions in [0, 1]. Furthermore, assume
that 𝑎(𝑥) ≤ 𝑀 < 0 in [0, 1], where 𝑀 is a negative constant.
Under these assumptions, (5) has a unique solution 𝑦(𝑥)
which, in general, displays a boundary layer of width 𝑂(𝜀) at𝑥 = 1.
Lemma 2. Let 𝑦(𝑥) = 𝑦0 + 𝑧0 be the zeroth-order asymptotic
approximation to the solution of (5), where 𝑦0 represents the
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zeroth-order approximate outer solution and 𝑧0 represents
the zeroth-order approximate solution in the boundary layer
region.

Then for a fixed positive integer 𝑖,
lim
ℎ→0

𝑦 (𝑖ℎ) ≈ 𝑦0 (0)
+ (𝛽 − 𝑦0 (1)) exp {𝑎 (1) (1𝜀 − 𝑖𝜌)}

where 𝜌 = ℎ
𝜀 .

(33)

Proof. The proof is based on asymptotic analysis (Doolan
et al. [16] and O’Malley [17]) and is similar to the proof of
Lemma 1.

Applying the same procedure as in Section 3 and using
Lemma 2, we get the tridiagonal system equation (20) with
fitting factor as

𝜎 = 𝜌
2𝑎 (0) coth[(

𝑎2 (1) − 𝜀𝑏 (1)
𝑎 (1) ) 𝜌

2] . (34)

4. Convergence Analysis

Writing the tridiagonal system equation (31) in matrix-vector
form, we get

𝐴𝑌 = 𝐶, (35)

in which 𝐴 = (𝑚𝑖 𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1, is a tridiagonal matrix
of order𝑁 − 1, with

𝑚𝑖 𝑖+1 = 𝜎𝜀
ℎ − 𝑎𝑖2 + ℎ𝑏𝑖6 ,

𝑚𝑖 𝑖 = −2𝜎𝜀ℎ − 2ℎ𝑏𝑖3 ,
𝑚𝑖 𝑖−1 = 𝜎𝜀

ℎ − 𝑎𝑖2 + ℎ𝑏𝑖6 ,
(36)

and 𝐶 = (𝑑𝑖) is a column vector with 𝑑𝑖 = ℎ𝐻𝑖, where 𝑖 =1, 2, . . . , 𝑁 − 1 with local truncation error

𝜏𝑖 = ℎ2 [𝑏𝑖6 𝑦󸀠󸀠𝑖 ] + 𝑂 (ℎ3) (37)

and 𝑌 = (𝑦0, 𝑦1, . . . , 𝑦𝑁)𝑡.
We also have

𝐴𝑌 − 𝑇 (ℎ) = 𝐶, (38)

where 𝑌 = (𝑦0, 𝑦1, . . . , 𝑦𝑁)𝑡 denotes the actual solution and𝑇(ℎ) = (𝑇0(ℎ0), 𝑇1(ℎ1), . . . , 𝑇𝑁(ℎ𝑁))𝑡 is the local truncation
error.

From (35) and (38), we get

𝐴(𝑌 − 𝑌) = 𝑇 (ℎ) . (39)

Thus, the error equation is

𝐴𝐸 = 𝑇 (ℎ) , (40)

where 𝐸 = 𝑌 − 𝑌 = (𝑒0, 𝑒1, . . . , 𝑒𝑁)𝑡.
Let the 𝑖th row elements sum of matrix 𝐴 be 𝑆𝑖; then we

have

𝑆𝑖 =
𝑁−1∑
𝑗=1

𝑚𝑖 𝑗 = −𝜀𝜎ℎ + 5ℎ𝑏𝑖6 + 𝑎𝑖2 , for 𝑖 = 1,

𝑆𝑖 =
𝑁−1∑
𝑗=1

𝑚𝑖 𝑗 =
𝑁−1∑
𝑗=1

𝑚𝑖 𝑗 = ℎ𝑏𝑖 = 𝐵𝑖0 ,
for 𝑖 = 2, 3, . . . , 𝑁 − 2,

𝑆𝑖 =
𝑁−1∑
𝑗=1

𝑚𝑖 𝑗 = −𝜎𝜀ℎ + 5ℎ𝑏𝑖6 − 𝑎𝑖2 , for 𝑖 = 𝑁 − 1.

(41)

We can choose ℎ sufficiently small so that the matrix 𝐴 is
irreducible and monotone. It follows that 𝐴−1 exists and its
elements are nonnegative.

Hence, from (40), we get

𝐸 = 𝐴−1𝑇 (ℎ) , (42)

‖𝐸‖ ≤ 󵄩󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩󵄩 ⋅ ‖𝑇 (ℎ)‖ . (43)

Also from the theory of matrices we have

𝑁−1∑
𝑖=1

𝑚𝑘,𝑖𝑆𝑖 = 1, 𝑘 = 1 (1)𝑁 − 1, (44)

where 𝑚𝑘,𝑖 is (𝑘, 𝑖) element of the matrix 𝐴−1 for some 𝑖0
between 1 and𝑁 − 1.

Therefore,

𝑁−1∑
𝑖=1

𝑚𝑘,𝑖 ≤ 1
min1≤𝑖≤𝑁−1𝑆𝑖 =

1
𝐵𝑖𝑜 ≤

1󵄨󵄨󵄨󵄨󵄨𝐵𝑖𝑜 󵄨󵄨󵄨󵄨󵄨
, (45)

where 𝐵𝑖𝑜 = ℎ𝑏𝑖. We define ‖𝐴−1‖ = max1≤𝑘≤𝑁−1∑𝑁−1𝑖=1 |𝑚𝑘,𝑖|
and ‖𝑇(ℎ)‖ = max1≤𝑖≤𝑁−1|𝑇𝑖(ℎ)|.

From (37), (40), (43), and (45), we get

𝑒𝑗 =
𝑁−1∑
𝑖=1

𝑚𝑘,𝑖𝑇𝑖 (ℎ) , 𝑗 = 1 (1)𝑁 − 1 (46)

which implies

𝑒𝑗 ≤ 𝑂 (ℎ2)󵄨󵄨󵄨󵄨󵄨𝐵𝑖𝑜 󵄨󵄨󵄨󵄨󵄨
, 𝑗 = 1 (1)𝑁 − 1. (47)

Therefore,

‖𝐸‖ = 𝑂 (ℎ) ; (48)

that is, our method reduces to a first-order convergent for
uniform mesh.
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Table 1: The maximum absolute errors in solution of Example 1.

𝜀 ↓ 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256
Present method 𝛿 = 0.5𝜀, 𝜂 = 0.5𝜀

10−1 0.03707062 0.01012487 0.00237565 0.0005848 0.00014565 3.6379e − 005
10−2 0.06876102 0.04407092 0.02342131 0.00865832 0.002129327 0.00050922
10−3 0.08556830 0.05231609 0.02808039 0.01392938 0.00720360 0.00356728
10−4 0.08740211 0.05431975 0.03006119 0.01590962 0.00810919 0.00401592
10−5 0.08758721 0.05452232 0.03026147 0.01610995 0.00830856 0.00421487
10−6 0.08760574 0.05454260 0.03028152 0.01613000 0.00832852 0.00423478

Results in Kadalbajoo and Sharma [10]
10−1 0.12011566 0.07181396 0.04482982 0.02694612 0.01516093 0.00775036
10−2 0.18727108 0.10697821 0.05904116 0.30796891 0.01567964 0.00799076
10−3 0.20429729 0.11915028 0.06879232 0.03655236 0.01893849 0.00963304
10−4 0.20614146 0.12048418 0.06989944 0.03721375 0.01932774 0.00984236
10−5 0.20632746 0.12061888 0.07001167 0.03728089 0.01936732 0.00986365
10−6 0.20634608 0.12063236 0.07002291 0.03728761 0.01937129 0.00986578

5. Numerical Examples

To demonstrate the applicability of the method, we have
applied the method on four boundary value problems. These
examples have been chosen because they have been widely
discussed in literature and exact solutions are available for
comparison.

The exact solution of the boundary value problem

𝜀𝑦󸀠󸀠 (𝑥) + 𝑝 (𝑥) 𝑦󸀠 (𝑥) + 𝑞 (𝑥) 𝑦 (𝑥 − 𝛿) + 𝑟 (𝑥) 𝑦 (𝑥)
+ 𝑠 (𝑥) 𝑦 (𝑥 + 𝜂) = 𝑓 (𝑥) (49)

under the boundary conditions

𝑦 (𝑥) = 𝜑 (𝑥) , − 𝛿 ≤ 𝑥 ≤ 0,
𝑦 (𝑥) = 𝛾 (𝑥) , 1 ≤ 𝑥 ≤ 1 + 𝜂, (50)

is

𝑦 (𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥 + 𝑓
𝑐 , (51)

where 𝑐 = (𝑞+𝑟+𝑠), 𝑐1 = (−𝑓+𝛾𝑐+𝑒𝑚2(𝑓−𝜙𝑐))/𝑐(𝑒𝑚1 −𝑒𝑚2),𝑐2 = (𝑓 − 𝛾𝑐 + 𝑒𝑚1(−𝑓 + 𝜙𝑐))/𝑐(𝑒𝑚1 − 𝑒𝑚2),

𝑚1 = − (𝑝 − 𝑞𝛿 + 𝑠𝜂) + √(𝑝 − 𝑞𝛿 + 𝑠𝜂)2 − 4𝑐𝜀
2𝜀 ,

𝑚2 = − (𝑝 − 𝑞𝛿 + 𝑠𝜂) − √(𝑝 − 𝑞𝛿 + 𝑠𝜂)2 − 4𝑐𝜀
2𝜀 .

(52)

Example 1. Consider the model boundary value problem of
the type given by (1)-(2) having the boundary layer at the left
end

𝜀𝑦󸀠󸀠 + 𝑦󸀠 − 2𝑦 (𝑥 − 𝛿) − 5𝑦 + 𝑦 (𝑥 + 𝜂) = 0 (53)

with boundary conditions 𝑦(𝑥) = 1, −𝛿 ≤ 𝑥 ≤ 0, and 𝑦(𝑥) =1, 1 ≤ 𝑥 ≤ 1 + 𝜂.
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Figure 1: Numerical solution of Example 1 for different values of 𝛿
with 𝜀 = 0.1, 𝜂 = 0.05.

The maximum absolute errors are given in Tables 1 and 2
for different values of the delay and advanced parameterswith
perturbation parameter.The effect of the small parameters on
the boundary layer solutions is shown in Figures 1 and 2.

Example 2. Consider the boundary value problem having the
boundary layer at the left end

𝜀𝑦󸀠󸀠 + 𝑦󸀠 − 2𝑦 (𝑥 − 𝛿) + 𝑦 − 𝑦 (𝑥 + 𝜂) = −1 (54)

with boundary conditions 𝑦(𝑥) = 1, −𝛿 ≤ 𝑥 ≤ 0, and 𝑦(𝑥) =1, 1 ≤ 𝑥 ≤ 1 + 𝜂.
The maximum absolute errors are given in Table 3 for

different values of 𝜀 with the delay and advance parameter
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Figure 2: Numerical solution of Example 1 for different values of 𝜂
with 𝜀 = 0.1, 𝛿 = 0.05.

Table 2:Themaximum errors in solution of Example 1 with 𝜀 = 0.1.
𝑁 = 8 𝑁 = 32 𝑁 = 128 𝑁 = 512

Present method
𝛿 ↓ 𝜂 = 0.5𝜀

0.00 0.03724038 0.00231155 0.00014202 8.8820e − 006
0.05 0.03707062 0.00237565 0.00014565 9.0928e − 006
0.09 0.03669100 0.00241210 0.00014764 9.2248e − 006

𝜂 ↓ 𝛿 = 0.5𝜀
0.00 0.03720017 0.00234619 0.00014399 8.9938e − 006
0.05 0.03707062 0.00237565 0.00014565 9.0928e − 006
0.09 0.03690625 0.00239551 0.00014675 9.1626e − 006

Results in Kadalbajoo and Sharma [10]
𝛿 ↓ 𝜂 = 0.5𝜀

0.00 0.09190267 0.03453494 0.01164358 0.00300463
0.05 0.10233615 0.03823132 0.01295871 0.00335137
0.09 0.11018870 0.04110846 0.01400144 0.00362925

𝜂 ↓ 𝛿 = 0.5𝜀
0.00 0.09720079 0.03640446 0.01229476 0.00317786
0.05 0.10233615 0.03823132 0.01295871 0.00335137
0.09 0.10632014 0.03965833 0.01348348 0.00349050

values 𝛿 = 0.5𝜀, 𝜂 = 0.5𝜀. The effect of the small parameters
on the boundary layer solutions is shown in Figures 3 and 4.

Example 3. Consider the boundary value problem of the type
given by (1)-(2) having the boundary layer at the right end

𝜀𝑦󸀠󸀠 − 𝑦󸀠 − 2𝑦 (𝑥 − 𝛿) + 𝑦 − 2𝑦 (𝑥 + 𝜂) = 0 (55)

with boundary conditions 𝑦(𝑥) = 1, −𝛿 ≤ 𝑥 ≤ 0, and 𝑦(𝑥) =−1, 1 ≤ 𝑥 ≤ 1 + 𝜂.
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Figure 3: Numerical solution of Example 2 for different values of 𝛿
with 𝜀 = 0.1, 𝜂 = 0.05.
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Figure 4: Numerical solution of Example 2 for different values of 𝜂
with 𝜀 = 0.1, 𝛿 = 0.05.

The maximum absolute errors are given in Table 4 with𝜀 = 0.1 for different values of the delay and advance parame-
ters.The effect of the small parameters on the boundary layer
solutions is shown in Figures 5 and 6.

Example 4. Consider the boundary value problem having the
boundary layer at the left end

𝜀𝑦󸀠󸀠 + 0.5𝑦󸀠 − 3𝑦 (𝑥 − 𝛿) − 2𝑦 + 2𝑦 (𝑥 + 𝜂) = 1 (56)

with boundary conditions 𝑦(𝑥) = 1, −𝛿 ≤ 𝑥 ≤ 0, and 𝑦(𝑥) =0, 1 ≤ 𝑥 ≤ 1 + 𝜂.



8 Chinese Journal of Mathematics

Table 3: The maximum errors in solution of Example 2.

𝜀 ↓ 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256
Present method 𝛿 = 0.5𝜀, 𝜂 = 0.5𝜀

10−1 0.00470784 0.00123359 0.00029344 7.2455e − 005 1.8125e − 005 4.5281e − 006
10−2 0.01585466 0.00697845 0.00240001 0.00093287 0.00024806 5.8741e − 005
10−3 0.01910533 0.01015879 0.00512445 0.00244082 0.00105444 0.00037664
10−4 0.01944288 0.01049291 0.00545649 0.00277170 0.00138358 0.00067752
10−5 0.01947677 0.01052645 0.00548983 0.00280492 0.00141674 0.00071065
10−6 0.01948016 0.01052981 0.00549316 0.00280824 0.00142006 0.000713967

Results in Kadalbajoo and Sharma [10]
10−1 0.08579690 0.05129568 0.03202130 0.01924723 0.01098354 0.00553597
10−2 0.13376506 0.07641301 0.04217226 0.02199778 0.01119974 0.00570769
10−3 0.14592663 0.08510734 0.04913737 0.02610883 0.01352749 0.00688074
10−4 0.14724390 0.08606013 0.04992817 0.02658125 0.01380553 0.00703026
10−5 0.14737676 0.08615634 0.05000834 0.02662921 0.01383380 0.00704546
10−6 0.14739006 0.08616597 0.05001637 0.02663401 0.01383663 0.00704699

Table 4:Themaximum errors in solution of Example 3 with 𝜀 = 0.1.
𝑁 = 8 𝑁 = 32 𝑁 = 128 𝑁 = 512

Present method
𝛿 ↓ 𝜂 = 0.5𝜀

0.00 0.031377538 0.001800241 0.000112071 7.0036e − 006
0.05 0.029748010 0.001700026 0.000105418 6.5860e − 006
0.09 0.028294285 0.001611053 9.9793e − 005 6.2344e − 006

𝜂 ↓ 𝛿 = 0.5𝜀
0.00 0.027910529 0.001587651 9.8361e − 005 6.1442e − 006
0.05 0.029748010 0.001700026 0.000105418 6.5860e − 006
0.09 0.031068500 0.001781207 0.000110800 6.9223e − 006

Results in Kadalbajoo and Sharma [10]
𝛿 ↓ 𝜂 = 0.5𝜀

0.00 0.09930002 0.03685072 0.01331683 0.00342882
0.05 0.09997296 0.03218424 0.01167102 0.00299572
0.09 0.10044578 0.02850398 0.01038902 0.00266379

𝜂 ↓ 𝛿 = 0.5𝜀
0.00 0.10055269 0.02759534 0.01007834 0.00258299
0.05 0.09997296 0.03218424 0.01167102 0.00299572
0.09 0.09944067 0.03591410 0.01297367 0.00334044

The maximum absolute errors are given in Table 5 and
Table 6 for different values of delay and advanced parameters
with perturbation parameter. The effect of the small param-
eters on the boundary layer solutions is shown in Figures 7
and 8.

6. Discussion and Conclusion

An exponentially fitted Galerkin method has been pre-
sented for solving singularly perturbed differential-difference
equations with delay as well as advance parameters. To
demonstrate the applicability of the method, three examples
with left-end and one with right-end boundary layer have
been solved for different values of the delay, advance, and
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Figure 5: Numerical solution of Example 3 for different values of 𝜂
with 𝜀 = 0.1, 𝜂 = 0.05.

perturbation parameters. The numerical results are taken by
using MATLAB coding and solutions have been compared
with the exact solutions and maximum absolute errors are
presented in tables. To show the efficiency of the method,
we have compared results of the proposed scheme with the
results of Kadalbajoo and Sharma [10]. The rate of conver-
gence in the examples is given in Table 7. It is observed that
the present method approximates the exact solution very well
for which other classical finite difference methods fail to give
good results. The effect of the delay and advance parameters
on the solutions has also been investigated and presented
by using graphs. When the solution of the boundary value
problem exhibits layer behaviour on the left side, the effect of
delay or advance on the solution in the boundary layer region
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Table 5: The maximum errors in solution of Example 4.

𝜀 ↓ 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256
𝛿 = 0.5𝜀, 𝜂 = 0.5𝜀

10−1 0.02753382 0.00616170 0.00156771 0.00038927 9.7155e − 005 2.4278e − 005
10−2 0.09909124 0.05582849 0.02171656 0.00554645 0.00131747 0.00032522
10−3 0.10181648 0.06264442 0.03547474 0.01902508 0.00950250 0.00372083
10−4 0.10207612 0.06281638 0.03556178 0.01906740 0.00989895 0.00504914
10−5 0.10210236 0.06283382 0.03557070 0.01907016 0.00989794 0.00504604
10−6 0.10210499 0.06283557 0.03557159 0.01907044 0.00989798 0.00504673
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Figure 6: Numerical solution of Example 3 for different values of 𝜂
with 𝜀 = 0.1, 𝛿 = 0.05.
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Figure 7: Numerical solution of Example 4 for different values of 𝜂
with 𝜀 = 0.1, 𝜂 = 0.05.

Table 6:Themaximum errors in solution of Example 4 with 𝜀 = 0.1.
𝑁 = 8 𝑁 = 32 𝑁 = 128 𝑁 = 512

𝛿 ↓ 𝜂 = 0.5𝜀
0.00 0.025347510 0.001425327 8.9204e − 005 5.5742e − 006
0.05 0.027533826 0.001567710 9.7155e − 005 6.0690e − 006
0.09 0.028669770 0.001645550 0.000102186 6.3826e − 006

𝜂 ↓ 𝛿 = 0.5𝜀
0.00 0.026174618 0.001478341 9.2083e − 005 5.7527e − 006
0.05 0.027533826 0.001567710 9.7155e − 005 6.0690e − 006
0.09 0.028348272 0.001623113 0.00010057 6.2854e − 006

Table 7: The rate of convergence of the examples with 𝛿 = 0.5𝜀 and𝜂 = 0.5𝜀.
𝜀 ↓ 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64 𝑁 = 128

Example 1
10−2 0.6418 0.9120 1.4357 2.0237 2.0640
10−3 0.7098 0.8977 1.0114 0.9513 1.0139
10−4 0.6862 0.8536 0.9180 0.9723 1.0138
10−5 0.6839 0.8494 0.9095 0.9553 0.9791
10−6 0.6836 0.8489 0.9087 0.9536 0.9758

Example 2
10−2 1.1839 1.5399 1.3633 1.9110 2.0782
10−3 0.9112 0.9873 1.0700 1.2109 1.4852
10−4 0.8898 0.9434 0.9772 1.0024 1.0301
10−5 0.8877 0.9392 0.9688 0.9854 0.9954
10−6 0.8875 0.9388 0.9680 0.9837 0.9920

Example 3
10−2 1.1839 1.5398 1.3633 1.9112 2.0779
10−3 0.9112 0.9872 1.0700 1.2109 1.4853
10−4 0.8898 0.9433 0.9771 1.0024 1.0300
10−5 0.8877 0.9391 0.9688 0.9854 0.9954
10−6 0.8875 0.9387 0.9679 0.9837 0.9920

Example 4
10−2 0.8278 1.3622 1.9692 2.0738 2.0183
10−3 0.7007 0.8204 0.8989 1.0015 1.3527
10−4 0.7004 0.8208 0.8992 0.9458 0.9712
10−5 0.7004 0.8209 0.8994 0.9461 0.9720
10−6 0.7004 0.8209 0.8994 0.9461 0.9718

is negligible while, in the outer region, it is considerable
and the change in the advance affects the solution in similar
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Figure 8: Numerical solution of Example 4 for different values of 𝜂
with 𝜀 = 0.1, 𝛿 = 0.05.

fashion; that is, the width of the layer in the outer region
increases as the advance parameter increases and decreases
as the delay increases, but reversely (Figures 1–4). When
the solution of the boundary value problem exhibits layer
behaviour on the right side, the changes in delay or advance
affect the solution in boundary layer region as well as outer
region. The thickness of the layer increases as the size of the
delay increases while it decreases as the size of the advance
increases (Figures 5 and 6).
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