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We present a model of a polluted groundwater site. The model consists of a coupled system of advection-diffusion-reaction
equations for the groundwater level and the concentration of the pollutant. We use the complete flux scheme for the space
discretization in combination with the 𝜗-method for time integration and we prove a new stability result for the scheme. Numerical
results are computed for the Guarani Aquifer in South America and they show good agreement with results in literature.

1. Introduction

There is a great interest in developing groundwater models
in the last decades. Groundwater is an important component
of water resource systems. For example, more than half
of the United States population depend on groundwater
for drinking water [1]. Unfortunately, since groundwater is
susceptible to pollutants, the quality of groundwater can
be poor and is sometimes even deteriorating. Groundwater
pollution occurs because of, among other things, disposal
of industrial wastes such as gasoline, oil, and chemicals and
agricultural activities such as the use of fertilizers. Also,
uncontrolled hazardous waste, chemicals, road salts, and
contaminants from dumps can make their way down into
the groundwater [2]. Moreover, the groundwater is currently
withdrawing which makes the quality even worse. This all
indicates that groundwater might be unsafe for human use.

To solve these problems, clean water can be injected into
aquifers and polluted groundwater can be pumped out. For
this, the location of injecting and pumping as well as their
rates is of great importance. Decisions have to be made for
the proper locations and the total volume of groundwater that
should be injected and/or pumped. Numerical simulations

of groundwater flow enable us to make predictions about
groundwater level and the amount of pollution and are
therefore very useful. Therefore, mathematical models are
needed for groundwater flow.

In groundwater modeling many different types of models
are considered, for example, flow models, which describe the
hydraulic head, or solute transport models, which describe
the concentration level [3]. Our model is a combination of
both a flow model and a solute transport model. Thus, the
model includes both the concentration of the pollutant and
the groundwater level. New in our model is that we include
the effect of pumping and injecting water.

Our model consists of two equations, a pure diffusion
equation for the groundwater level and an equation of
advection-diffusion-reaction type that describes the con-
centration of the pollutants. For space discretization of
the advection-diffusion-reaction equation we use the finite
volume-complete flux scheme developed in [4, 5]. This
scheme has proven to be a robust method to discretize
advection-diffusion-reaction equations, which is uniformly
second-order accurate, even for dominant advection, yet it
does not produce any spurious oscillations, which makes the
scheme very suitable for groundwater simulations. For the
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Figure 1: Layer of a polluted groundwater site adjacent to an aquifer.

diffusion equation, the complete flux scheme reduces to the
central difference scheme, which we use to discretize the
groundwater level equation. We have applied the complete
flux scheme to various problems from continuum physics,
such as the flow ofmulticomponentmixtures and plasmas [6,
7], incompressible fluid flow [8], or the numerical simulation
of plankton populations [9].

For the temporal integration the 𝜗-method is used. New
stability conditions for the combination of the 𝜗-method
with the finite volume-complete flux scheme for spatial
discretization are derived in this paper.

We have organized our paper as follows. First, in
Section 2, we describe our groundwater model. Next, in
Section 3, we describe two versions of the complete flux
scheme for our model. In Section 4 we derive stability con-
ditions for the fully discrete scheme. The numerical results
are discussed in Section 5. Finally, we end with conclusions
in Section 6.

2. Mathematical Model

The Guarani Aquifer in South America is one of the largest
aquifers in the world. It is a very important source of drinking
water inArgentina, Brazil, Paraguay, andUruguay and should
obviously not be polluted. However, the aquifer is very
vulnerable to pollution due to land-surface activities [10].
Therefore it is interesting to define a model problem for the
transport of polluted water based on the parameters of this
aquifer [11–14].

We consider a groundwater site next to an aquifer. The
groundwater in this basin is polluted and flowing towards the
aquifer. Since the polluted water should not enter the basin
we assume a well at the boundary between basin and aquifer,
where all polluted water is removed. We restrict ourselves to
a one-dimensional domain 0 ≤ 𝑥 ≤ 𝐿, with 𝐿 the width of
the basin, adjacent to the aquifer at 𝑥 > 𝐿. The soil in the
basin consists mainly of clay and clay-like material, so we
choose a uniform one-layer model consisting of clay only.We
measure the groundwater level in the layer relative to a flat
impermeable bottom. Furthermore, we are not particularly
interested in the detailed composition of the polluted water,
and therefore we only consider one typical polluting species,
namely, lodide. The unknowns of our model are therefore
the groundwater level in the layer and the concentration of
lodide. A schematic picture of the groundwater site is shown
in Figure 1.

Polluted groundwater can be removed from the basin
by pumping out polluted water and/or injecting clean water,
which advances the polluted water towards the well, where
it is taken out. We investigate the impact of pumping and
injecting on the (rate of) removal of polluted water.

The governing equations are the conservation laws of
volume, or rather mass, of the ground water and the mass
balance equation for lodide. Pumping and injecting are
included as source terms in these equations. Our model is
inspired by [15] and its governing equations read

𝜕ℎ

𝜕𝑡
= 𝑎

𝜕
2
ℎ

𝜕𝑥2
+ 𝑠
ℎ
, (1a)

𝜕𝑐

𝜕𝑡
+
𝜕

𝜕𝑥
(𝑞𝑐) = 𝐷

𝜕
2
𝑐

𝜕𝑥2
+ 𝑠
𝑐
, (1b)

𝑞 = −𝜅
𝜕ℎ

𝜕𝑥
, (1c)

where ℎ (m) is the groundwater level, 𝑐 (kgm−3) the concen-
tration of the pollutant, 𝑞 (ms−1) the velocity of the lodide
pollution, and 𝐷 (m2 s−1) the diffusion coefficient of lodide.
Furthermore, 𝑎 (m2 s−1) is defined as 𝜅/𝑆S with 𝜅 (ms−1),
the hydraulic conductivity, and 𝑆S (m

−1
), the specific storage

(due to the presence of the well of the right side, the pollutant
cannot enter the aquifer. Therefore, the considered ground-
water site is classified as confined. The effect of phreatic
storage usually occurs in unconfined sites and is therefore
not included). The specific storage describes the amount of
water per unit volume of a saturated aquifer that is absorbed
or expelled due to changes in the compression of the fluid and
medium caused by a change in hydraulic head [16]. Since we
consider a uniform site, we assume𝐷, 𝜅, and 𝑆S to be constant
coefficients.The constituent relation in (1c) is Darcy’s law.The
source terms 𝑠

ℎ
(ms−1) and 𝑠

𝑐
(kgm−3 s−1) are given by

𝑠
ℎ
= −𝑝 + 𝑚,

𝑠
𝑐
= 𝑚
𝑓
𝑚,

(2)

with 𝑝 and 𝑚 being the pumping and injection function,
respectively, and with𝑚

𝑓
[kgm−4] being the injecting factor.

From (2) it is evident that both pumping and injecting have
an impact on the water level; however, the concentration of
lodide is only influenced by injection. We have chosen to
describe the pumping and injecting functions 𝑝,𝑚 by the
following Gaussian profiles:

𝑝 (𝑥) = 𝑝
0
exp (−𝑝

𝑤
(𝑥 − 𝑥

𝑝
)
2

) , (3a)

𝑚(𝑥) = 𝑚
0
exp (−𝑚

𝑤
(𝑥 − 𝑥

𝑚
)
2

) , (3b)

where 𝑝
0
(ms−1) is the pumping rate, 𝑥

𝑝
(m) is the pumping

position, 𝑚
0
(ms−1) is the injecting rate, and 𝑥

𝑚
(m) is the

injecting position. The parameters 𝑝
𝑤
(m−2) and 𝑚

𝑤
(m−2)

determine the pumping width and injecting width, respec-
tively.
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We choose a uniform initial groundwater level and
describe the initial lodide concentration as a Gaussian profile,
that is,

ℎ (𝑥, 0) = ℎ
0
, (4a)

𝑐 (𝑥, 0) = 𝑐
0
exp (−𝑐

𝑤
(𝑥 − 𝑥

𝑐
)
2

) , (4b)

where ℎ
0
(ms−1) is the initial groundwater level, 𝑐

0
(kgm−3)

is the maximum initial concentration, 𝑥
𝑐
(m) is the location

of pollution, and 𝑐
𝑤
(m−2) determines the width of the initial

pollution. To complete our model, we prescribe the following
boundary conditions:

𝜕ℎ

𝜕𝑥
(0, 𝑡) = 0,

𝜕𝑐

𝜕𝑥
(0, 𝑡) = 0,

(5a)

ℎ (𝐿, 𝑡) = 𝐻,

𝑐 (𝐿, 𝑡) = 0,

(5b)

where𝐻 is the depth of the aquifer.The boundary conditions
(5a) imply that there is no influx of polluted water at 𝑥 = 0
since 𝑞 = 0 and 𝜕𝑐/𝜕𝑥 = 0. The boundary condition 𝑐(𝐿, 𝑡) =
0means that there is a well located at 𝑥 = 𝐿where all polluted
water is immediately removed. We refer to (1a)–(5b) as the
groundwater model.

3. Numerical Scheme for the
Groundwater Model

In this section we outline the finite volume-complete flux (FV-
CF) scheme for the discretization of the groundwater model;
for a detailed derivation and validation of the scheme, see [4].

First, we present the stationary flux approximation and
subsequently its extension to time-dependent problems.
Consider the stationary version of (1b) formulated as

d𝑓
d𝑥

= 𝑠
𝑐
,

𝑓 = 𝑞𝑐 − 𝐷
d𝑐
d𝑥
,

(6)

where 𝑓 is the flux corresponding to 𝑐. Let us introduce an
equidistant grid 𝑥

𝑗
= (𝑗 − 1)Δ𝑥 (𝑗 = 1, 2, . . . , 𝑁) with Δ𝑥 =

𝐿/(𝑁−1) being the grid size and𝑁 being the number of grid
points. Furthermore, we cover the domain with control
volumes Ω

𝑗
= (𝑥
𝑗−1/2

, 𝑥
𝑗+1/2

) (𝑗 = 2, 3, . . . , 𝑁 − 1), where
𝑥
𝑗+1/2

= 𝑥
𝑗
+ Δ𝑥/2. Integrating the first equation in (6) over

the control volume Ω
𝑗
and using the midpoint rule for the

integral of the source term 𝑠
𝑐
, we obtain the discrete conser-

vation law

𝐹
𝑗+1/2

− 𝐹
𝑗−1/2

= 𝑠
𝑐,𝑗
Δ𝑥, (7)

where 𝐹
𝑗+1/2

is the numerical flux at 𝑥
𝑗+1/2

and 𝑠
𝑐,𝑗
= 𝑠
𝑐
(𝑥
𝑗
).

The complete flux approximation for 𝐹
𝑗+1/2

is derived
from the local BVP for (6) on (𝑥

𝑗
, 𝑥
𝑗+1
), subject to the

boundary conditions 𝑐(𝑥
𝑗
) = 𝑐
𝑗
and 𝑐(𝑥

𝑗+1
) = 𝑐
𝑗+1

. The deri-
vation proceeds in the following steps. First, we integrate
the conservation law in (6) from the interface 𝑥

𝑗+1/2
to 𝑥 ∈

(𝑥
𝑗
, 𝑥
𝑗+1
) to obtain the integral balance. Consider

𝑓 (𝑥) − 𝑓 (𝑥
𝑗+1/2

) = 𝑆 (𝑥) , 𝑆 (𝑥) fl ∫

𝑥

𝑥𝑗+1/2

𝑠
𝑐
(𝜉) d𝜉. (8)

Second, introducing the auxiliary function Λ, defined by

Λ (𝑥) fl
1

𝐷
∫

𝑥

𝑥𝑗+1/2

𝑞 (𝜉) d𝜉 = − 𝜅
𝐷
(ℎ (𝑥) − ℎ (𝑥

𝑗+1/2
)) , (9)

we can rewrite the flux in terms of its integrating factor, that
is,

𝑓 = −𝐷
d
d𝑥

(𝑐𝑒
−Λ
) 𝑒
Λ
. (10)

Next, substituting this expression in (8), isolating the deriva-
tive, integrating the resulting equation from 𝑥

𝑗
to 𝑥
𝑗+1

, and
applying the boundary conditions, we obtain the following
expressions for the flux:

𝑓 (𝑥
𝑗+1/2

) = 𝑓
ℎ
(𝑥
𝑗+1/2

) + 𝑓
𝑖
(𝑥
𝑗+1/2

) , (11a)

𝑓
ℎ
(𝑥
𝑗+1/2

) =
− (𝑒
−Λ(𝑥𝑗+1)𝑐

𝑗+1
− 𝑒
−Λ(𝑥𝑗)𝑐

𝑗
)

∫
𝑥𝑗+1

𝑥𝑗

𝐷−1𝑒−Λ d𝑥
, (11b)

𝑓
𝑖
(𝑥
𝑗+1/2

) =

−∫
𝑥𝑗+1

𝑥𝑗

𝐷
−1
𝑒
−Λ
𝑆 d𝑥

∫
𝑥𝑗+1

𝑥𝑗

𝐷−1𝑒−Λ d𝑥
, (11c)

where 𝑓ℎ(𝑥
𝑗+1/2

) and 𝑓𝑖(𝑥
𝑗+1/2

) are the homogeneous and
inhomogeneous part of the flux, corresponding to the
advection-diffusion operator and the source term, respec-
tively. Finally, to relate the inhomogeneous flux to the source
term, we substitute 𝑆(𝑥) in (11c) and change the order of
integration. This way we find

𝑓
𝑖
(𝑥
𝑗+1/2

) = Δ𝑥∫

1

0

𝐺 (𝜎) 𝑠
𝑐
(𝑥 (𝜎)) d𝜎,

𝜎 (𝑥) =
𝑥 − 𝑥
𝑗

Δ𝑥
,

(12)

where 𝐺(𝜎) is referred to as Green’s function for the flux; see
[4] for more details.

To derive expressions for the numerical flux, we have to
apply appropriate quadrature rules to all integrals involved.
Introducing the Péclet function 𝑃, with an abuse of notation,
defined as

𝑃 fl
𝑞Δ𝑥

𝐷
= −

𝜅Δ𝑥

𝐷

dℎ
d𝑥
, (13)
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Figure 2: The functions 𝐵 (a) and𝑊 (b).

we obtain for the numerical flux 𝐹
𝑗+1/2

the following expres-
sions:

𝐹
𝑗+1/2

= 𝐹
ℎ

𝑗+1/2
+ 𝐹
𝑖

𝑗+1/2
, (14a)

𝐹
ℎ

𝑗+1/2
= −

𝐷

Δ𝑥
(𝐵 (𝑃

𝑗+1/2
) 𝑐
𝑗+1

− 𝐵 (−𝑃
𝑗+1/2

) 𝑐
𝑗
) , (14b)

𝐹
𝑖

𝑗+1/2
= (

1

2
−𝑊(𝑃

𝑗+1/2
)) 𝑠
𝑐,𝑢,𝑗+1/2

Δ𝑥, (14c)

where the functions 𝐵 and𝑊 are defined as

𝐵 (𝑧) fl
𝑧

𝑒𝑧 − 1
;

𝑊 (𝑧) fl
𝑒
𝑧
− 1 − 𝑧

𝑧 (𝑒𝑧 − 1)
,

(15)

see Figure 2. Furthermore, (14a)–(14c) contain the average
Péclet number𝑃

𝑗+1/2
and the upwind value of the source term

𝑠
𝑐,𝑢,𝑗+1/2

, defined as

𝑃
𝑗+1/2

fl
1

2
(𝑃
𝑗
+ 𝑃
𝑗+1
) , (16a)

𝑠
𝑐,𝑢,𝑗+1/2

fl
{

{

{

𝑠
𝑐,𝑗

if 𝑞
𝑗+1/2

≥ 0,

𝑠
𝑐,𝑗+1

if 𝑞
𝑗+1/2

< 0,

(16b)

where𝑃
𝑗
is the central difference approximation of𝑃(𝑥

𝑗
), that

is,

𝑃
𝑗
= −

𝜅

2𝐷
(ℎ
𝑗+1

− ℎ
𝑗−1
) , (17)

and where 𝑞
𝑗+1/2

= (1/2)(𝑞
𝑗
+ 𝑞
𝑗+1
) is the average veloc-

ity. Clearly, also the numerical flux contains two parts,
namely, the homogeneous flux 𝐹ℎ

𝑗+1/2
, corresponding to the

advection-diffusion operator, and the inhomogeneous flux
𝐹
𝑖

𝑗+1/2
, taking into account the effect of the source term. We

refer to the flux approximations in (14a)–(14c) as the complete
flux (CF) scheme.

Note that for 𝑃 = 0 or |𝑃| → ∞ the homogeneous
flux 𝐹ℎ

𝑗+1/2
reduces to the central difference flux 𝐹cd

𝑗+1/2
or the

upwind flux 𝐹uw
𝑗+1/2

, respectively. Indeed, rearranging terms in
(14b) we can write the expression for the homogeneous flux
as a weighted average of 𝐹cd

𝑗+1/2
and 𝐹uw

𝑗+1/2
, that is,

𝐹
ℎ

𝑗+1/2
= 𝑞
𝑗+1/2

[2𝑊(

𝑃
𝑗+1/2


)
1

2
(𝑐
𝑗
+ 𝑐
𝑗+1
)

+ (1 −𝑊(

𝑃
𝑗+1/2


)) 𝑐
𝑢,𝑗+1/2

] −
𝐷

Δ𝑥
(𝑐
𝑗+1

− 𝑐
𝑗
)

= 2𝑊(

𝑃
𝑗+1/2


) 𝐹

cd
𝑗+1/2

+ (1 − 2𝑊(

𝑃
𝑗+1/2


))

⋅ 𝐹
uw
𝑗+1/2

,

(18)

where 𝑐
𝑢,𝑗+1/2

is the upwind value of 𝑐 at the interface 𝑥
𝑗+1/2

.
Consequently, the numerical flux 𝐹

𝑗+1/2
does not produce

spurious oscillations for |𝑃| → ∞, contrary to the central
difference schemewhich generates these oscillations for |𝑃| >
2. This allows us to use much coarser grid for the CF
scheme than would be required for the central difference
scheme. Moreover, we can show that the inclusion of the
inhomogeneous term guarantees second-order convergence
in the limit |𝑃| → ∞; see [17].

Next, we consider the time-dependent version of the
conservation law, which reads

𝜕𝑐

𝜕𝑡
+
𝜕𝑓

𝜕𝑥
= 𝑠
𝑐
,

𝑓 = 𝑞𝑐 − 𝐷
𝜕𝑐

𝜕𝑥
,

(19)

with corresponding semidiscrete conservation law. Consider

̇𝑐
𝑗
Δ𝑥 + 𝐹

𝑗+1/2
− 𝐹
𝑗−1/2

= 𝑠
𝑐,𝑗
Δ𝑥, (20)
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where ̇𝑐
𝑗
(𝑡) ≈ 𝜕𝑐/𝜕𝑡(𝑥

𝑗
, 𝑡). For the numerical flux 𝐹

𝑗+1/2
we

have two options. First, we can simply take the flux approxi-
mation (14a)–(14c), henceforth referred to as the stationary
complete flux (SCF) scheme. Combining the semidiscrete
conservation law (20) with the complete flux approximation
(14a)–(14c) we obtain

̇𝑐
𝑗
Δ𝑥 − 𝛼

𝑗−1/2
𝑐
𝑗−1

+ (𝛼
𝑗+1/2

+ 𝛽
𝑗−1/2

) 𝑐
𝑗
− 𝛽
𝑗+1/2

𝑐
𝑗+1

= Δ𝑥 (𝛾
𝑗−1/2

𝑠
𝑐,𝑗−1

+ (1 − 𝛾
𝑗+1/2

+ 𝛿
𝑗−1/2

) 𝑠
𝑐,𝑗

− 𝛿
𝑗+1/2

𝑠
𝑐,𝑗+1

) ,

(21)

where the coefficients are defined by

𝛼
𝑗+1/2

fl
𝐷

Δ𝑥
𝐵 (−𝑃

𝑗+1/2
) ,

𝛽
𝑗+1/2

fl
𝐷

Δ𝑥
𝐵 (𝑃
𝑗+1/2

) ,

(22a)

𝛾
𝑗+1/2

fl max (1
2
−𝑊(𝑃

𝑗+1/2
) , 0) ,

𝛿
𝑗+1/2

fl min(1
2
−𝑊(𝑃

𝑗+1/2
) , 0) .

(22b)

The alternative is to include the time derivative in the source
term; that is, we introduce the modified source term �̂�

𝑐
as

�̂�
𝑐
fl 𝑠
𝑐
−
𝜕𝑐

𝜕𝑡
, (23)

and we replace 𝑠
𝑐
in (14c) by �̂�

𝑐
. The inhomogeneous numer-

ical flux then changes to

𝐹
𝑖

𝑗+1/2
= (

1

2
−𝑊(𝑃

𝑗+1/2
)) (𝑠
𝑐,𝑢,𝑗+1/2

− ̇𝑐
𝑢,𝑗+1/2

) Δ𝑥, (24)

where ̇𝑐
𝑢,𝑗+1/2

denotes the upwind value of 𝜕𝑐/𝜕𝑡 at the
interface 𝑥

𝑗+1/2
. Obviously, the homogeneous flux remains

the same. We refer to this flux approximation as the transient
complete flux (TCF) scheme. The corresponding semidis-
cretization then reads

Δ𝑥 (𝛾
𝑗−1/2

̇𝑐
𝑗−1

+ (1 − 𝛾
𝑗+1/2

+ 𝛿
𝑗−1/2

) ̇𝑐
𝑗
− 𝛿
𝑗+1/2

̇𝑐
𝑗+1
)

− 𝛼
𝑗−1/2

𝑐
𝑗−1

+ (𝛼
𝑗+1/2

+ 𝛽
𝑗−1/2

) 𝑐
𝑗
− 𝛽
𝑗+1/2

𝑐
𝑗+1

= Δ𝑥 (𝛾
𝑗−1/2

𝑠
𝑐,𝑗−1

+ (1 − 𝛾
𝑗+1/2

+ 𝛿
𝑗−1/2

) 𝑠
𝑐,𝑗

− 𝛿
𝑗+1/2

𝑠
𝑐,𝑗+1

) .

(25)

To discretize (1a) we also use the FV-CF scheme. In
this case the corresponding Péclet function is identically 0,
and since 𝑊(0) = 1/2, the inhomogeneous flux vanishes.
Consequently, the scheme reduces to the standard central
difference scheme. Consider

ℎ̇
𝑗
Δ𝑥 +

𝑎

Δ𝑥
(−ℎ
𝑗−1

+ 2ℎ
𝑗
− ℎ
𝑗+1
) = Δ𝑥𝑠

ℎ,𝑗
. (26)

For time integration of either (21) or (25) coupled with
(26) we use the 𝜗-method [18]. However, since the Péclet

numbers 𝑃
𝑗+1/2

depend on the numerical approximation
ℎ
𝑗
, we apply a predictor-corrector approach where we first

integrate (26), update the Péclet numbers, and subsequently
integrate either (21) or (25).

4. Stability Analysis

In this sectionwe investigate stability of the 𝜗-method applied
to both (21) and (25). To that purpose we assume that 𝑞(𝑥) =
Const and ignore boundary conditions and source term. For
the latter ODE-system we moreover assume that 𝑞 > 0.

Both semidiscretizations give rise to an ODE system of
the form

M ̇c + Ac = Bs
𝑐
+ b, (27)

where the discretization matrices A and B represent the
homogeneous and inhomogeneous flux differences, respec-
tively. Furthermore,M = Δ𝑥I for the SCF scheme andM = B
for the TCF scheme. The 𝜗-method applied to (27) reads

1

Δ𝑡
M (c𝑛+1 − c𝑛) + (1 − 𝜗)Ac𝑛 + 𝜗Ac𝑛+1

= (1 − 𝜗) (Bs𝑛
𝑐
+ b𝑛) + 𝜗 (Bs𝑛+1

𝑐
+ b𝑛+1) ,

0 ≤ 𝜗 ≤ 1,

(28)

where c𝑛 denotes the approximation of c(𝑡) at time level 𝑡
𝑛
=

𝑛Δ𝑡 (𝑛 = 0, 1, 2, . . .) with Δ𝑡 > 0 being the time step, and
so forth. In the stability analysis which follows, we ignore the
source term s

𝑐
and the boundary term b. We first consider

(25); the stability result for (21) follows readily as a special
case.

Theorem 1. The 𝜗-method applied to the TCF semidiscretisa-
tion (25) is stable if the following conditions hold:

0 ≤ 𝜗 <
1

2
,

𝑑 ≤
1

1 − 2𝜗
𝑊 (𝑃)𝐶(

1

2
𝑃) ,

1

2
≤ 𝜗 ≤ 1,

(29)

with 𝑑 = 𝐷Δ𝑡/Δ𝑥2 and 𝑃 = 𝑞Δ𝑥/𝐷 and where the function 𝐶
is defined by

𝐶 (𝑧) =
tanh (𝑧)

𝑧
. (30)
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Proof. Substituting the parameters 𝛼
𝑗±1/2

, and so forth,
defined in (22a) and (22b), the 𝜗-method for (25) reads

Δ𝑥(
1

2
−𝑊 (𝑃))

1

Δ𝑡
(𝑐
𝑛+1

𝑗−1
− 𝑐
𝑛

𝑗−1
) + Δ𝑥(

1

2
+𝑊 (𝑃))

⋅
1

Δ𝑡
(𝑐
𝑛+1

𝑗
− 𝑐
𝑛

𝑗
) + (1 − 𝜗)

𝐷

Δ𝑥
[−𝐵 (𝑃) 𝑐

𝑛

𝑗+1

+ (𝐵 (−𝑃) + 𝐵 (𝑃)) 𝑐
𝑛

𝑗
− 𝐵 (−𝑃) 𝑐

𝑛

𝑗−1
] + 𝜗

⋅
𝐷

Δ𝑥
[−𝐵 (𝑃) 𝑐

𝑛+1

𝑗+1
+ (𝐵 (−𝑃) + 𝐵 (𝑃)) 𝑐

𝑛+1

𝑗

− 𝐵 (−𝑃) 𝑐
𝑛+1

𝑗−1
] = 0,

(31)

where we have used ̇𝑐
𝑢,𝑗+1/2

= ̇𝑐
𝑗
since 𝑞 > 0. To investigate

stability, we substitute the discrete Fourier mode. Consider

𝑐
𝑛

𝑗
= 𝑔
𝑛e𝑖𝑘𝑥𝑗 , (32)

and we obtain the following expressions for the amplification
factor 𝑔, that is,

𝑔 =
𝑎
1
+ 𝑖𝑎
2
− (1 − 𝜗) 𝑑 (𝑏

1
+ 𝑖𝑏
2
)

𝑎
1
+ 𝑖𝑎
2
+ 𝜗𝑑 (𝑏

1
+ 𝑖𝑏
2
)

,

𝑎
1
= (

1

2
−𝑊 (𝑃)) cos𝜑 + 1

2
+𝑊 (𝑃) ,

𝑎
2
= −(

1

2
−𝑊 (𝑃)) sin𝜑,

𝑏
1
= 2 (𝐵

+
+ 𝐵
−
) sin2 (1

2
𝜑) ,

𝑏
2
= 𝑃 sin𝜑,

𝜑 = 𝑘Δ𝑥,

(33)

with 0 ≤ 𝜑 < 𝜋. Elaborating the stability requirement |𝑔|2 ≤
1, we find

a ⋅ b + (𝜗 − 1
2
) 𝑑 |b|2 ≥ 0, (∗)

with a = (𝑎1 𝑎2)
𝑇 and b = (𝑏1 𝑏2)

𝑇. Straightforward
evaluation gives

a ⋅ b = 4𝑝
1
(𝜑) sin2 (1

2
𝜑) ,

|b|2 = 4𝑝2 (𝜑) sin
2
(
1

2
𝜑) ,

𝑝
1
(𝜑) =

1

2
[cos2 (1

2
𝜑) + 2𝑊 (𝑃) sin2 (1

2
𝜑)]

⋅ (𝐵 (𝑃) + 𝐵 (−𝑃)) + 𝑃(𝑊 (𝑃) −
1

2
) cos2 (1

2
𝜑) ,

𝑝
2
(𝜑) = (𝐵 (𝑃) + 𝐵 (−𝑃))

2 sin2 (1
2
𝜑) + 𝑃

2

⋅ cos2 (1
2
𝜑) ,

(34)

And, consequently, (∗) reduces to

𝑝
1
(𝜑) + (𝜗 −

1

2
) 𝑑𝑝
2
(𝜑) ≥ 0. (∗∗)

Next, straightforward differentiation gives

𝑝


1
(𝜑) = 𝐵 (𝑃) (𝑊 (𝑃) −

1

2
) sin𝜑 ≤ 0,

𝑝


2
(𝜑) = 2𝐵 (𝑃) 𝐵 (−𝑃) sin𝜑 ≥ 0,

(35)

for 0 ≤ 𝜑 < 𝜋, from which we conclude that 1 = 𝑝
1
(0) ≥

𝑝
1
(𝜋) = 𝑊(𝑃)(𝐵(𝑃) + 𝐵(−𝑃)) > 0 and 0 < 𝑃

2
= 𝑝
2
(0) ≤

𝑝
2
(𝜋) = (𝐵(𝑃)+𝐵(𝑃))

2. It is obvious that, for 1/2 ≤ 𝜗 ≤ 1, the
inequality (∗∗) unconditionally holds. Consider next the case
0 ≤ 𝜗 < 1/2. A sufficient condition for stability is then

𝑝
1
(𝜋) + (𝜗 −

1

2
) 𝑑𝑝
2
(𝜋) ≥ 0, (36)

from which the stability result readily follows.

Corollary 2. The 𝜗-method applied to (21) is stable if

0 ≤ 𝜗 <
1

2
,

𝑑 ≤
1

1 − 2𝜗

1

2
𝐶(

1

2
𝑃) ,

1

2
≤ 𝜗 ≤ 1,

(37)

with 𝑑, 𝑃, and 𝐶 defined in Theorem 1.

Proof. Take𝑊(𝑃) = 1/2 and repeat the proof of Theorem 1.

To conclude, the standard stability result for the 𝜗-
method applied to (26) follows, if we substitute 𝑃 = 0 in the
stability condition (37); see [18].

5. Numerical Results

In this section we present numerical solutions for three dif-
ferent scenarios of the groundwater model: first, no injecting
and no pumping and consequently also no flow, second,
injecting and no pumping, and third, both injecting and
pumping. We refer to these scenarios as no flow, inject-
ing, and injecting-pumping, respectively. The corresponding
parameter values are given in Table 1 and are based on [11–14].
All numerical solutions are computed in dimensionless form
using the TCF scheme in combination with the trapezoidal
rule for time integration (𝜗 = 1/2), on a grid with 𝑁 = 127

grid points andwith (dimensionless) time stepΔ𝑡 = 10−3, and
subsequently converted to full dimensional form. Numerical
solutions for the SCF scheme are similar and are not included.

The choice of𝑁 and Δ𝑡 is justified by the grid validation
of the numerical solution presented in Table 2. In this table
we present the numerical approximations of 𝑐 and ℎ at 𝑥 =
(1/2) 𝐿 and at time 𝑡 = 𝑇 computed with (dimensionless)
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Figure 3: No-flow scenario: lodide concentration.

Table 1: Parameters values of the groundwater model.

Parameter Value Unit
𝑎 1.5 × 10

−1 m2 year−1

𝐷 1.6 × 10
−2 m2 year−1

𝜅 4.0 × 10
−3 m year−1

𝑆
𝑆

2.6 × 10
−3 m−1

𝐿 3.0 × 10
1 m

𝐻 1.5 × 10
2 m

ℎ
0

1.5 × 10
2 m

𝑚
𝑓

10
−12 kgm−4

𝑇 5 year
𝑝
0

0, 0, 7.5 × 10
2 m year−1

𝑝
𝑤

—, 102, 102 m
𝑥
𝑝

—, —, 21 m
𝑚
0

0, 7.5 × 10
3
, 3.0 × 10

3 m year−1

𝑚
𝑤

—, 102, 102 m
𝑥
𝑚

—, 0, 9 m
𝑐
0

3.7 × 10
−8 kgm−3

𝑐
𝑤

0.14 m−2

𝑥
𝑐

15 m

time step Δ𝑡 = 10
−3 on a sequence of grids, to verify the

dependence of the numerical solution on the grid. Clearly, for
𝑁 ≥ 127 the numerical solution is practically independent of
the grid.

To verify the order of convergence of the SCF and
TCF semidiscretizations, we repeatedly compute 𝑐((1/2) 𝐿, 𝑇)

by successively halving the grid size and apply Richardson
extrapolation [19]. For the (dimensionless) time step we take
Δ𝑡 = 10

−6. Let 𝐶(Δ𝑥) denote the numerical approximation
of 𝑐((1/2) 𝐿, 𝑇) computed with grid size Δ𝑥. If the semidis-
cretization is 𝑝th order convergent, we have

2
𝑝
≈

𝐶 (Δ𝑥/2) − 𝐶 (Δ𝑥)

𝐶 (Δ𝑥/4) − 𝐶 (Δ𝑥/2)
š 𝑟 (Δ𝑥) . (38)

We will present 𝑟(Δ𝑥) values for the injecting and injecting-
pumping scenario.

5.1. No-Flow Scenario. In this case we do not include pump-
ing nor injecting. Since the initial groundwater level is con-
stant, there is no flow of the pollutant and the concentration
equation is just a diffusion equation. Consequently, the SCF
andTCF schemes reduce to the central difference scheme.We
show the result in Figure 3.The figure shows a little spreading
of the initial concentration, with themaximumvalue reduced
to approximately 90% of its initial value. No pollutant is
removed.

5.2. Injecting Scenario. In this scenario we inject clean water
at the left of the domain and do not pump any polluted water.
The clean water forces the polluted water to the well on the
right where it is removed. The solution is shown in Figure 4.
The source term 𝑠

ℎ
is virtually 0 outside a very small layer

near 𝑥 = 0 and this implies that in the steady limit for
𝑡 → ∞ the groundwater level tends to a linear profile, and,
consequently, the velocity 𝑞 approaches a constant. Since the
diffusion coefficient𝐷 is very small, transport of the pollutant
is dominated by advection, as is evident from Figure 4. A
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Table 2: A grid validation for both 𝑐 and ℎ. The values are computed for 𝑥
𝑗
= (1/2)𝐿 and 𝑡

𝑛
= 𝑇.

𝑁
No flow Injecting Injecting-pumping

𝑐((1/2)𝐿, 𝑇) ℎ((1/2)𝐿, 𝑇) 𝑐((1/2)𝐿, 𝑇) ℎ((1/2)𝐿, 𝑇) 𝑐((1/2)𝐿, 𝑇) ℎ((1/2)𝐿, 𝑇)

2
3
+ 1 3.64𝐸 − 08 1.50𝐸02 8.30𝐸 − 09 2.56𝐸02 3.30𝐸 − 08 1.57𝐸02

2
4
+ 1 3.62𝐸 − 08 1.50𝐸02 2.07𝐸 − 08 2.05𝐸02 1.94𝐸 − 08 1.88𝐸02

2
5
+ 1 3.60𝐸 − 08 1.50𝐸02 2.63𝐸 − 08 1.98𝐸02 2.28𝐸 − 08 1.86𝐸02

2
6
+ 1 3.60𝐸 − 08 1.50𝐸02 2.72𝐸 − 08 1.98𝐸02 2.36𝐸 − 08 1.86𝐸02

2
7
+ 1 3.60𝐸 − 08 1.50𝐸02 2.74𝐸 − 08 1.98𝐸02 2.38𝐸 − 08 1.86𝐸02

2
8
+ 1 3.60𝐸 − 08 1.50𝐸02 2.74𝐸 − 08 1.98𝐸02 2.38𝐸 − 08 1.86𝐸02
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Figure 4: Injecting scenario: lodide concentration and groundwater level. The red profiles in (b) and (d) denote the initial conditions.
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Figure 5: Injecting scenario: (a) a zoom of the lodide concentration near 𝑥 = 𝐿 and (b) total pollution relative to the initial pollution.

Table 3: Injecting scenario: 𝑟(Δ𝑥) values as a function of𝑁.

𝑁 SCF TCF 𝑃max

2
5
+ 1 1.18 11.77 51.0

2
6
+ 1 1.52 −1.86 25.6

2
7
+ 1 2.24 1.40 12.8

2
8
+ 1 3.18 2.60 6.4

2
9
+ 1 3.74 3.31 3.2

2
10
+ 1 3.93 3.67 1.6

Table 4: Injecting-pumping scenario: 𝑟(Δ𝑥) values as a function of
𝑁.

𝑁 SCF TCF 𝑃max

2
5
+ 1 −5.55 6.61 32.4

2
6
+ 1 0.29 −7.58 16.3

2
7
+ 1 1.51 0.79 8.2

2
8
+ 1 2.85 2.38 4.1

2
9
+ 1 3.63 3.21 2.0

2
10
+ 1 3.94 3.62 1.0

zoom-in of the lodide concentration near 𝑥 = 𝐿 is presented
in Figure 5(a), confirming that all polluted water is removed
at the right end of the domain.

After about 25 years the total pollution, integrated over
the entire domain, has decreased to less than 5%of its original
value, which is shown in Figure 5(b). This means that the
pollution moves with a speed of less than 1 meter a year. At
the same time, the groundwater level increases.

In Table 3 we present the 𝑟(Δ𝑥) values for both the SCF
and TCF schemes as a function of the number of grid points

𝑁 = 𝐿/Δ𝑥 + 1. Clearly, both schemes show second-order
convergence for Δ𝑥 → 0. In addition, we have included
the (in absolute value) maximum Péclet number 𝑃max =

max
𝑗,𝑛
|𝑃
𝑛

𝑗+1/2
|, indicating that advection is dominant on the

coarser grids.

5.3. Injecting-Pumping Scenario. In this scenario we add
pumping to the model. We inject water just left of the
concentration plume at 𝑥 = 𝑥

𝑚
and pump polluted water

out at the right of the plume at 𝑥 = 𝑥
𝑝
. We show the results

in Figure 6. From this figure we can distinguish different
regimes of the solution. First, left of the injection peak, the
groundwater level increases in time. Second, between the
injection and pumping peaks both source terms are virtually
0 leading to a linear decreasing groundwater level ℎ and a
concentration profile 𝑐 propagating at constant velocity, just
as in the injecting scenario. Third, near 𝑥 = 𝑥

𝑝
, the source

term 𝑠
ℎ
< 0 resulting in the flattening of the groundwater

level ℎ and a decrease of the velocity 𝑞. Thus, left of the
pumping peak, the pollutant moves faster than at the right,
and since 𝑚 > 𝑝, the pollutant piles up. Finally, beyond the
pumping peak the groundwater level is again linear and the
pollutant is transported with constant velocity towards the
well. A zoom-in of the lodide concentration near 𝑥 = 𝐿 is
given in Figure 7(a).

Note that the groundwater level profile has not increased
that much compared to the previous situation. This results
in a longer period for the pollutant to be removed, and after
about 33 years the pollution has decreased to less than 1% of
the original amount. We have shown this in Figure 7(b).

The 𝑟(Δ𝑥) values are presented in Table 4, from which
we conclude that also in this scenario the SCF and TCF
schemes demonstrate second-order convergence for the grid
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Figure 6: Injecting-pumping scenario: lodide concentration and groundwater level. The red profiles in (b) and (d) denote the initial
conditions.

size Δ𝑥 → 0. We see that, for removing the pollutant from
the site, the steepness of the groundwater level is of great
importance, that is, the steeper the faster it is removed. In the
situations we have considered, it takes approximately 20 to
30 years to remove the lodide. At first sight, this seems to be
very long. However, one has to keep inmind that the soil type
is clay, which has a low hydraulic conductivity. Our results
correspond to some of the results in the literature, which also

find that pollutants in groundwater move with only a few feet
a year.

6. Summary and Conclusions

In this section we present our main conclusions and propose
some extensions to the model. Our model describes a
polluted groundwater site next to the Guarani Aquifer in
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Figure 7: Injecting-pumping scenario: (a) a zoom-in of the lodide concentration near𝑥 = 𝐿. (b) Total pollution relative to the initial pollution.

South America.We have included both injecting of clean and
pumping of polluted water.

Since the governing equation for the concentration of pol-
lutant is of advection-diffusion-reaction type, we employed
the complete flux scheme for space discretization.The scheme
has proven to be very suitable, since it is uniformly second-
order accurate, even for dominant advection, and it does not
produce any spurious oscillations. For time integration we
use the 𝜗-scheme. A stability condition for the fully discrete
scheme is derived.

We have investigated the effect of injecting and pumping
on the (rate of) removal of pollutants and conclude that
the injection of clean water upstream of the pollution peak
together with pumping out polluted water downstream of the
pollution peak enhances the removal of polluted water.

Our model can be extended and improved in many
different ways of which we mention a few. First, the source
terms could bemademore realistic by letting themdepend on
the concentration of the pollutant as well as the groundwater
level. Also a possibility is to make the source terms time
dependent. In this way one could choose not to pump
anymore if it would not affect the removal any further.
Another possibility is to extend themodel to two dimensions.
Also here, one could still use the finite volume-complete flux
scheme to solve the advection-diffusion-reaction equation. A
two-dimensional extension of the scheme is included in [4].
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