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We create a matrix integral transforms method; it allows us to describe analytically the consistent mathematical models. An
explicit constructions for direct and inverse Fouriermatrix transformswith discontinuous coefficients are established.We introduce
special types of Fourier matrix transforms: matrix cosine transforms, matrix sine transforms, andmatrix transforms with piecewise
trigonometric kernels.The integral transforms of such kinds are used for problems solving ofmathematical physics in homogeneous
and piecewise homogeneous media. Analytical solution of iterated heat conduction equation is obtained. Stress produced in the
elastic semi-infinite solid by pressure is obtained in the integral form.

1. Introduction

Matrix integral Fourier transforms with sine, cosine, and
piecewise trigonometric kernels represent an important
branch of mathematical analysis. It is based on the expansion
of a function over a set of cosine or sine basis functions.
Integral Fourier transforms of such kinds have shown their
special applicability in description of consistentmathematical
models. To show the versatility of these transforms, we solve
the problems of mathematical physics in homogeneous and
piecewise homogeneous media. We find analytical solutions
of iterated heat conduction equation and solve a problem
about stress in the elastic semi-infinite solid.

Given a real function 𝑓(𝑥), which is defined over the
positive real line 𝑥 ≥ 0, for 𝜆 ≥ 0, which is piecewise
continuous and absolutely integrable over [0,∞), the Fourier
𝑐𝑜𝑠𝑖𝑛𝑒 transform of 𝑓(𝑥) is defined as

𝐹 [𝑓] (𝜆) = �̃� (𝜆) = ∫
∞

0

cos 𝜆𝑥𝑓 (𝑥) 𝑑𝑥 (1)

subject to the existence of the integral. The inverse Fourier
𝑐𝑜𝑠𝑖𝑛𝑒 transform is given by

𝐹−1 [�̃�] (𝜆) = 𝑓 (𝑥) =
2

𝜋
∫
∞

0

cos 𝜆𝑥�̃� (𝜆) 𝑑𝜆 (2)

again subject to the existence of the integral used in the
definition.The functions 𝑓(𝑥) and �̃�(𝜆), if they exist, are said
to form a Fourier cosine transform pair.

Given a real function 𝑓(𝑥), which is defined over the
positive real line 𝑥 ≥ 0, for 𝑥 ≥ 0, which is piecewise
continuous and absolutely integrable over [0,∞), the Fourier
𝑠𝑖𝑛𝑒 transform of 𝑓(𝑥) is defined as

𝐹 [𝑓] (𝜆) = �̃� (𝜆) = ∫
∞

0

sin 𝜆𝑥𝑓 (𝑥) 𝑑𝑥 (3)

subject to the existence of the integral. The inverse Fourier
transform is given by

𝐹−1 [�̃�] (𝜆) = 𝑓 (𝑥) =
2

𝜋
∫
∞

0

sin 𝜆𝑥�̃� (𝜆) 𝑑𝜆 (4)

again subject to the existence of the integral used in the
definition.The functions 𝑓(𝑥) and �̃�(𝜆), if they exist, are said
to form a Fourier transform pair.

Given a real function 𝑓(𝑥), which is defined over the
positive real line 𝑥 ≥ 0, for 𝑥 ≥ 0, which is piecewise
continuous and absolutely integrable over [0,∞), the Fourier
type transform of 𝑓(𝑥) is defined as

𝐹 [𝑓] (𝜆) = �̃� (𝜆) = ∫
∞

0

(ℎ sin 𝜆𝑥 − 𝜆 cos 𝜆𝑥) 𝑓 (𝑥) 𝑑𝑥 (5)

subject to the existence of the integral.
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Theorem 1. The unit normalization constant used here pro-
vides a definition for the inverse Fourier type transform, given
by

𝐹−1 [�̃�] (𝜆) =
2

𝜋
∫
∞

0

�̃� (𝜆)
ℎ sin 𝜆𝑥 − 𝜆 cos 𝜆𝑥

ℎ2 + 𝜆2
𝑑𝜆 (6)

again subject to the existence of the integral used in the
definition.

Proof. Let function 𝑓(𝑥) take the following form:

𝑓 (𝑥) =
2

𝜋
∫
∞

0

�̃� (𝜆)
ℎ sin 𝜆𝑥 − 𝜆 cos 𝜆𝑥

ℎ2 + 𝜆2
𝑑𝜆. (7)

Then,

ℎ𝑓 (𝑥) + 𝑓 (𝑥) =
2

𝜋
∫
∞

0

�̃� (𝜆) sin 𝜆𝑥 𝑑𝜆. (8)

Due to the inverse Fourier 𝑐𝑜𝑠𝑖𝑛𝑒 transform, we get

�̃� (𝜆) = ∫
∞

0

sin 𝜆𝑥 (ℎ𝑓 (𝑥) + 𝑓 (𝑥)) 𝑑𝜆

= sin 𝜆𝑥𝑓 (𝑥)|
∞

0

+ ∫
∞

0

(ℎ sin 𝜆𝑥 − 𝜆 cos 𝜆𝑥) 𝑓 (𝑥) 𝑑𝑥

= ∫
∞

0

(ℎ sin 𝜆𝑥 − 𝜆 cos 𝜆𝑥) 𝑓 (𝑥) 𝑑𝑥.

(9)

The general theory of linear integral transform with some of
its applications gave an account of [1–12].

In order to define integral Fourier matrix transforms
with piecewise trigonometric kernels, we consider Sturm-
Liouville matrix problem:

−
𝑑

𝑑𝑥
(𝐴 (𝑥)

𝑑

𝑑𝑥
𝜑 (𝑥, 𝜆)) = 𝜆2𝜑 (𝑥, 𝜆) , 𝑥 ∈ 𝐼+

𝑛
, (10)

where

𝜑 (𝑥, 𝜆) =
𝑛+1

∑
𝑗=1

(𝜃 (𝑥 − 𝑙
𝑗−1

) − 𝜃 (𝑥 − 𝑙
𝑗
)) 𝜑
𝑗
(𝑥, 𝜆) , (11)

bounded nontrivial unknown matrix function of size 𝑟 ×
𝑟 called matrix eigenfunction of Sturm-Liouville problem,
𝐴(𝑥) is the matrix-valued function of size 𝑟 × 𝑟, and

𝐼+
𝑛
= {𝑥 : 𝑥 ∈

𝑛+1

𝑈
𝑗=1

(𝑙
𝑗−1

, 𝑙
𝑗
) , 𝑙
0
= 0, 𝑙

𝑛+1
= ∞} . (12)

In general, Sturm-Liouville matrix problem does not possess
an analytical solution. Therefore, we consider the Sturm-
Liouville piecewise approximation as follows.

𝐴(𝑥) is piecewise constant; that is,

𝐴 (𝑥) =
𝑛+1

∑
𝑗=1

𝐴2
𝑖
(𝜃 (𝑥 − 𝑙

𝑗−1
) − 𝜃 (𝑥 − 𝑙

𝑗
)) , (13)

where 𝑥 = 𝑙
𝑗
, 𝑗 = 1, . . . , 𝑛 + 1, are points of discontinuity in

𝐼+
𝑛
, and 𝜃(𝑥) is the Heaviside step function.
The elements of matrix eigenfunctions 𝜑(𝑥, 𝜆) of a

Sturm-Liouville matrix problem are piecewise trigonometric
functions. The explicit expression of spectral matrix-valued
function 𝜑(𝑥, 𝜆) allows for defining direct integral Fourier
matrix transform with piecewise trigonometric kernels. The
explicit solution of dual Sturm-Liouville matrix problem
serves as a kernel for an inverse integral Fourier matrix
transform.

Integral transforms arise in a natural way through the
principle of linear superposition in constructing integral
representations of linear differential equations solutions [13–
15]. The theory of integral Fourier transforms with piecewise
trigonometric kernels in a scalar case was studied by Ufljand
[16], Najda [17], Procenko and Solov’jov [18], and Lenjuk
[19]. The matrix version is adapted for the problems solving
in piecewise homogeneous medium and has been developed
by Yaremko in [10, 20]. The necessary proofs by method
of contour integration were conducted in [11, 21]. It is clear
that this method is effective to obtain the exact solution
of boundary value problems for piecewise homogeneous
media.

2. Matrix Fourier Transforms with Piecewise
Trigonometric Kernels

TheSturm-Liouvillematrix problem [1] is to find the nontriv-
ial solution 𝑦 bounded on the set 𝐼+

𝑛

𝑦 (𝑥, 𝜆) =
𝑛+1

∑
𝑘=1

𝜃 (𝑥 − 𝑙
𝑘−1

) 𝜃 (𝑙
𝑘
− 𝑥) 𝑦

𝑘
(𝑥, 𝜆) , (14)

to a systemof an ordinary differential equationswith constant
matrix coefficients

(𝐴2
𝑚

𝑑2

𝑑𝑥2
+ 𝜆2𝐸)𝑦

𝑚
= 0, 𝑚 = 1, 𝑛 + 1 (15)

with the boundary conditions at the points 𝑙
0
and 𝑙
𝑛+1

,

((𝛼0
11
+ 𝜆2𝛿0

11
)

𝑑

𝑑𝑥
+ (𝛽0
11
+ 𝜆2𝛾0
11
)) 𝑦
1
= 0, (16)

𝑦𝑛+1

𝑥=∞ < ∞, (17)

and internal boundary conditions at the points 𝑥 = 𝑙
𝑘

((𝛼𝑘
𝑗1
+ 𝜆2𝛿𝑘

𝑗1
)

𝑑

𝑑𝑥
+ (𝛽𝑘
𝑗1
+ 𝜆2𝛾𝑘
𝑗1
)) 𝑦
𝑘

= ((𝛼𝑘
𝑗2
+ 𝜆2𝛿𝑘

𝑗2
)

𝑑

𝑑𝑥
+ (𝛽𝑘
𝑗2
+ 𝜆2𝛾𝑘
𝑗2
)) 𝑦
𝑘+1

,

(18)

where

𝛼𝑘
𝑗𝑖
, 𝛽𝑘
𝑗𝑖
, 𝛾𝑘
𝑗𝑖
, 𝛿𝑘
𝑗𝑖
, 𝐴
𝑗

(19)
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are matrices of size 𝑟 × 𝑟:

𝑦
𝑚
(𝑥, 𝜆) = (

𝑦
1𝑚

(𝑥, 𝜆)

...

𝑦
𝑟𝑚

(𝑥, 𝜆)

) ,

𝑦𝑚
 = √𝑦2

1𝑚
+ ⋅ ⋅ ⋅ + 𝑦2

𝑟𝑚
.

(20)

Let𝑦 be nontrivial solution to boundary value problems (52)–
(69) for some 𝜆. The number 𝜆 is called an eigenvalue, and
the corresponding solution 𝑦(𝑥, 𝜆) is called matrix-valued
eigenfunction.

We will required invertible conditions

det𝑀
𝑚𝑘

̸= 0, 𝜆 ∈ [0,∞) (21)

for matrices

𝑀
𝑚𝑘

≡ (
𝛽𝑘
1𝑚

+ 𝜆2𝛾𝑘
1𝑚

𝛼𝑘
1𝑚

+ 𝜆2𝛿𝑘
1𝑚

𝛽𝑘
2𝑚

+ 𝜆2𝛾𝑘
2𝑚

𝛼𝑘
2𝑚

+ 𝜆2𝛿𝑘
2𝑚

) . (22)

The matrices 𝐴2
𝑚
are positive-defined [4]. We denote

Φ
𝑛+1

(𝑥) = 𝑒𝑞𝑛+1𝑥𝑖;

Ψ
𝑛+1

(𝑥) = 𝑒−𝑞𝑛+1𝑥𝑖,

𝑞2
𝑛+1

= 𝜆2𝐴−2
𝑛+1

.

(23)

We define the other 𝑛 pairs of matrix-value functions
(Φ
𝑘
, Ψ
𝑘
), 𝑘 = 1, 𝑛 by the induction relations:

[(𝛼𝑘
𝑗1
+ 𝜆2𝛿𝑘

𝑗1
)

𝑑

𝑑𝑥
+ (𝛽𝑘
𝑗1
+ 𝜆2𝛾𝑘
𝑗1
)] (Φ

𝑘
Ψ
𝑘
)

= [(𝛼𝑘
𝑗2
+ 𝜆2𝛿𝑘

𝑗2
)

𝑑

𝑑𝑥
+ (𝛽𝑘
𝑗2
+ 𝜆2𝛾𝑘
𝑗2
)] (Φ

𝑘+1
Ψ
𝑘+1

) .

(24)

Introduce the following notations:

Φ
0,1

(𝜆) = (𝛼0
11
+ 𝜆2𝛿0

11
)Φ
1
(𝑙
0
, 𝜆)

+ (𝛽0
11
+ 𝜆2𝛾0
11
)Φ
1
(𝑙
0
, 𝜆) ,

Ψ
0,1

(𝜆) = (𝛼0
11
+ 𝜆2𝛿0

11
)Ψ
1
(𝑙
0
, 𝜆)

+ (𝛽0
11
+ 𝜆2𝛾0
11
)Ψ
1
(𝑙
0
, 𝜆) ,

Ω
𝑘
= (

Φ
𝑘

Ψ
𝑘

Φ/
𝑘

Ψ/
𝑘

) .

(25)

Lemma 2. The following identity

(Ω−1
𝑘
(𝑥, 𝜆))



= (
0 𝐸

−𝑞2
𝑘

0
)Ω
𝑘
,

(Ω−1
𝑘
(𝑥, 𝜆))



= −Ω−1
𝑘
𝜆2𝐴−2
𝑘

(26)

holds true for 𝑘 = 1, . . . , 𝑛.

Proof. Using formula [20]

(Ω−1
𝑘
)


= −Ω−1
𝑘
Ω
𝑘
Ω−1
𝑘

(27)

and identity

(Ω
𝑘
)


= (
Φ
𝑘

Ψ
𝑘

Φ
𝑘

Ψ
𝑘

) = (
0 𝐸

−𝑞2
𝑘

0
)Ω
𝑘
, (28)

we can conclude

(Ω−1
𝑘
)


= −Ω−1
𝑘
(

0 E

−𝑞2
𝑘

0
) ,

(Ω−1
𝑘
)


= Ω−1
𝑘
(

0 E

−𝑞2
𝑘

0
)(

0 E

−𝑞2
𝑘

0
)

= Ω−1
𝑘
(
−𝑞2
𝑘

0

0 −𝑞2
𝑘

) .

(29)

Lemma 3. If the following inequality

det(
𝛽0
11
+ 𝜆2𝛾0
11

𝛼0
11
+ 𝜆2𝛿0

11

0 𝐸
) ̸= 0, 𝜆 ∈ [0,∞) (30)

holds true, then
detΦ
0,1

(𝜆) ̸= 0,

detΨ
0,1

(𝜆) ̸= 0,

𝜆 ∈ [0,∞) .

(31)

Proof. Matrices Φ
0,1

and Ψ
0,1

are nonsingular due to the
following identity:

(
Φ
0,1

Ψ
0,1

Φ
1

Ψ
1

)

= (
𝛽0
11
+ 𝜆2𝛾0
11

𝛼0
11
+ 𝜆2𝛿0

11

0 𝐸
)(

Φ
1
Ψ
1

Φ
1
Ψ
1

) .

(32)

Theorem 4. The spectrum of problems (15), (16), and (18) is
continuous and fills semiaxis (0,∞). Sturm-Liouville problem
is 𝑟 time singular. Exactly 𝑟 linearly independentmatrix-valued
functions correspond to each eigenvalue 𝜆. It is possible to take
𝑟 columns of matrix-value functions:

V (𝑥, 𝜆) =
𝑛+1

∑
𝑘=1

𝜃 (𝑥 − 𝑙
𝑘−1

) 𝜃 (𝑙
𝑘
− 𝑥) V

𝑘
(𝑥, 𝜆) ,

V
𝑗
(𝑥, 𝜆) = Φ

𝑗
(𝑥, 𝜆)Φ

−1

0,1
(𝜆) − Ψ

𝑗
(𝑥, 𝜆)Ψ

−1

0,1
(𝜆) .

(33)

That is

𝑦
𝑚
(𝑥, 𝜆) = (

V
1𝑚

(𝑥, 𝜆)
...

V
𝑟𝑚

(𝑥, 𝜆)

) . (34)

Theorem 4 follows from Lemmas 2 and 3.
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Now we consider the dual matrix Sturm-Liouville prob-
lem.Wefind the nontrivial solution𝑦∗ of a systemof ordinary
differential equations with constant matrix coefficients

(𝐴2
𝑚

𝑑2

𝑑𝑥2
+ 𝜆2E)𝑦∗

𝑚
= 0, 𝑚 = 1, 𝑛 + 1, (35)

with boundary conditions at the points 𝑥 = 𝑙
0
and 𝑥 = 𝑙

𝑛+1

𝑦∗
1
(𝛼0
11
+ 𝜆2𝛿0

11
)
−1

+
𝑑

𝑑𝑥
𝑦∗
1
(𝛽0
11
+ 𝜆2𝛾0
11
)
−1

= 0, (36)
𝑦
∗

𝑛+1

 < ∞, (37)

and internal boundary conditions at the points 𝑥 = 𝑙
𝑘
,

(− (𝑦∗
𝑘
)


𝑦∗
𝑘
)(

𝛽𝑘
11
+ 𝜆2𝛾𝑘
11

𝛼𝑘
11
+ 𝜆2𝛿𝑘

11

𝛽𝑘
21
+ 𝜆2𝛾𝑘
21

𝛼𝑘
21
+ 𝜆2𝛿𝑘

21

)

−1

= (− (𝑦∗
𝑘+1

)


𝑦∗
𝑘+1

)(
𝛽𝑘
12
+ 𝜆2𝛾𝑘
12

𝛼𝑘
12
+ 𝜆2𝛿𝑘

12

𝛽𝑘
22
+ 𝜆2𝛾𝑘
22

𝛼𝑘
22
+ 𝜆2𝛿𝑘

22

)

−1

.

(38)

We write the solution of the boundary value problem in the
following form:

𝑦∗ (𝜉, 𝜆) =
𝑛+1

∑
𝑘=1

𝜃 (𝜉 − 𝑙
𝑘−1

) 𝜃 (𝑙
𝑘
− 𝜉) 𝑦∗

𝑘
(𝜉, 𝜆) ,

𝑦∗
𝑚
(𝜉, 𝜆) = (𝑦∗

𝑚1
(𝜉, 𝜆) ⋅ ⋅ ⋅ 𝑦∗

𝑚𝑟
(𝜉, 𝜆)) ,

𝑦
∗

𝑚

 =
√(𝑦∗
1𝑚
)
2

+ ⋅ ⋅ ⋅ + (𝑦∗
𝑟𝑚
)
2

.

(39)

Theorem 5. The spectrum of problems (35), (36), and (38) is
continuous and fills semiaxis (0,∞). Sturm-Liouville problem
is 𝑟 time singular. Exactly 𝑟 linearly independentmatrix-valued
functions correspond to each eigenvalue 𝜆. It is possible to take
𝑟 rows of matrix-value functions:

V∗ (𝑥, 𝜆) =
𝑛+1

∑
𝑘=1

𝜃 (𝑥 − 𝑙
𝑘−1

) 𝜃 (𝑙
𝑘
− 𝑥) V∗

𝑘
(𝑥, 𝜆) ,

V∗
𝑗
(𝑥, 𝛽) = (Φ

0,1
Ψ
0,1
)Ω−1
𝑗
(𝑥, 𝛽) (

0

𝐸
)𝐴−2
𝑗
.

(40)

That is,

𝑦∗𝑗 (𝜉, 𝜆) = (V∗
𝑗1
(𝜉, 𝜆) ⋅ ⋅ ⋅ V∗

𝑗𝑟
(𝜉, 𝜆)) , 𝑗 = 1, 𝑟. (41)

Theorem 5 follows from Lemmas 2 and 3.
The explicit expression of spectralmatrix-valued function

𝑢(𝑥, 𝜆) and the dual spectral function 𝑢∗(𝑥, 𝜆) allow for
writing the decomposition theorem on the set 𝐼+

𝑛
.

Theorem 6. Let vector-valued function 𝑓(𝑥) be defined over
𝐼+
𝑛
, continuous, absolutely integrable, and has a bounded

variation. Then, for any 𝑥 ∈ 𝐼+
𝑛
, the decomposition formula

𝑓 (𝑥) = −
1

𝜋𝑖
∫
∞

0

V (𝑥, 𝜆)(∫
∞

𝑙
0

V∗ (𝜉, 𝜆) 𝑓 (𝜉) 𝑑𝜉 + 𝛾0
11
𝑓
1
(𝑙
0
) + 𝛿0
11
𝑓
1
(𝑙
0
)

+
𝑛

∑
𝑘=1

(Φ
0,1
Ψ
0,1
)Ω−1
𝑘
(𝑙
𝑘
, 𝜆)𝑀−1

𝑘1
(𝜆) ⋅ ((

𝛾𝑘
21

𝛿𝑘
21

𝛾𝑘
22

𝛿𝑘
22

)(
𝑓
𝑘+1

(𝑙
𝑘
)

𝑓
𝑘+1

(𝑙
𝑘
)
) − (

𝛾𝑘
11

𝛿𝑘
11

𝛾𝑘
12

𝛿𝑘
12

)(
𝑓
𝑘
(𝑙
𝑘
)

𝑓
𝑘
(𝑙
𝑘
)
)))𝜆𝑑𝜆

(42)

holds true.

This theorem can be proved by method of contour
integration [17].

We define the direct and inverse matrix integral Fourier
transforms on the real semiline with piecewise trigonometric
kernels according toTheorem 6.

The direct transform is

𝐹
𝑛+

[𝑓] (𝜆) = ∫
∞

𝑙
0

V∗ (𝜉, 𝜆) 𝑓 (𝜉) 𝑑𝜉 + 𝛾0
11
𝑓
1
(𝑙
0
)

+ 𝛿0
11
𝑓
1
(𝑙
0
) +
𝑛

∑
𝑘=1

(Φ
0,1
Ψ
0,1
)Ω−1
𝑘
(𝑙
𝑘
, 𝜆)𝑀−1

𝑘1
(𝜆)

⋅ ((
𝛾𝑘
21

𝛿𝑘
21

𝛾𝑘
22

𝛿𝑘
22

)(
𝑓
𝑘+1

(𝑙
𝑘
)

𝑓
𝑘+1

(𝑙
𝑘
)
)

− (
𝛾𝑘
11

𝛿𝑘
11

𝛾𝑘
12

𝛿𝑘
12

)(
𝑓
𝑘
(𝑙
𝑘
)

𝑓
𝑘
(𝑙
𝑘
)
))

(43)

and the inverse transform is

𝐹−1
𝑛+

[�̃�] (𝑥) = −
1

𝜋𝑖
∫
∞

0

𝜆V (𝑥, 𝜆) �̃� (𝜆) 𝑑𝜆 ≡ 𝑓 (𝑥) , (44)

when

𝑓 (𝑥) =
𝑛+1

∑
𝑘=1

𝜃 (𝑙
𝑘
− 𝑥) 𝜃 (𝑥 − 𝑙

𝑘−1
) 𝑓
𝑘
(𝑥) . (45)

Now we will get the result of the basic identity of matrix
integral transforms with piecewise trigonometric kernels for
differential operator:

𝐵 =
𝑛+1

∑
𝑗=1

𝜃 (𝑥 − 𝑙
𝑗−1

) 𝜃 (𝑙
𝑗
− 𝑥)𝐴2

𝑗

𝑑2

𝑑𝑥2
. (46)

Theorem 7. If vector-valued function

𝑓 (𝑥) =
𝑛+1

∑
𝑘=1

𝜃 (𝑥 − 𝑙
𝑘−1

) 𝜃 (𝑙
𝑘
− 𝑥)𝑓

𝑘
(𝑥) (47)
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is three times continuously differentiable over set 𝐼
𝑛+
, has the

limit values of its third-order derivatives at the points 𝑥 = 𝑙
𝑘
,

and satisfies boundary condition on infinity

lim
𝑥→∞

(𝑢∗ (𝑥, 𝜆)
𝑑

𝑑𝑥
𝑓 (𝑥) −

𝑑

𝑑𝑥
𝑢∗ (𝑥, 𝜆) 𝑓 (𝑥)) = 0 (48)

and internal boundary conditions at the points 𝑥 = 𝑙
𝑘
, then the

basic identity

𝐹
𝑛+

[𝐵 (𝑓)] (𝜆) = −𝜆2�̃� (𝜆) − {(𝛽0
11
𝑓
1
(𝑙
0
)

+ 𝛼0
11
𝑓
1
(𝑙
0
)) − (𝛾0

11
𝐴2
1
𝑓
1
(𝑙
0
) + 𝛿0
11
𝐴2
1
𝑓
1

(𝑙
0
))}

−
𝑛

∑
𝑘=1

(Φ
0,1
Ψ
0,1
)Ω−1
𝑘
(𝑙
𝑘
, 𝜆)𝑀−1

𝑘1
(𝜆)

⋅ {((
𝛽𝑘
21

𝛼𝑘
21

𝛽𝑘
22

𝛼𝑘
22

)(
𝑓
𝑘+1

(𝑙
𝑘
)

𝑓
𝑘+1

(𝑙
𝑘
)
)

− (
𝛾𝑘
21

𝛿𝑘
21

𝛾𝑘
22

𝛿𝑘
22

)(
𝐴2
𝑘+1

𝑓
𝑘+1

(𝑙
𝑘
)

𝐴2
𝑘+1

𝑓
𝑘+1

(𝑙
𝑘
)
))

− ((
𝛽𝑘
11

𝛼𝑘
11

𝛽𝑘
12

𝛼𝑘
12

)(
𝑓
𝑘
(𝑙
𝑘
)

𝑓
𝑘
(𝑙
𝑘
)
)

− (
𝛾𝑘
11

𝛿𝑘
11

𝛾𝑘
12

𝛿𝑘
12

)(
𝐴2
𝑘
𝑓
𝑘
(𝑙
𝑘
)

𝐴2
𝑘
𝑓
𝑘

(𝑙
𝑘
)
))}

(49)

holds true.

This theorem can be proved by method of integration by
parts.

3. Special Types of Matrix Integral Fourier
Transforms

Theorem 8. Thematrix-valued Sturm-Liouville problem with
Dirichlet boundary condition

−𝐴2
𝑑2

𝑑𝑥2
𝜑 (𝑥, 𝜆) = 𝜆2𝜑 (𝑥, 𝜆) , 0 < 𝑥 < ∞,

𝜑 (0, 𝜆) = 0,

𝜑 (𝑥, 𝜆)
 < ∞

(50)

provides the direct and inverse matrix integral 𝑠𝑖𝑛𝑒 transforms
on the real semiline:

𝐹
+
[𝑓] (𝜆) ≡ �̃� (𝜆) = ∫

∞

0

sin (𝐴−1𝜆𝜉) 𝑓 (𝜉) 𝑑𝜉,

𝑓 (𝑥) =
2𝐴−1

𝜋
∫
∞

0

sin (𝐴−1𝜆𝑥) �̃� (𝜆) 𝑑𝜆.

(51)

Proof. Performing calculations in formulas (33) and (41), we
get

Φ (𝑥, 𝜆) = exp (𝑖𝐴−1𝜆𝑥) ,

Ψ (𝑥, 𝜆) = exp (−𝑖𝐴−1𝜆𝑥) ,

Φ
0,1

= E,

Ψ
0,1

= E,

V (𝑥, 𝜆) = Φ (𝑥, 𝜆) − Ψ (𝑥, 𝜆) = 2𝑖 sin (𝐴−1𝜆𝑥) ,

V∗ (𝑥, 𝛽) = (EE) (
Φ Ψ

Φ Ψ
)

−1

(
0

E
)𝐴−2

= −
𝐴

2𝑖
(EE)(

−𝑖𝐴−1𝜆𝑥𝑒−𝑖𝐴
−1

𝜆𝑥 −𝑒−𝑖𝐴
−1

𝜆𝑥

−𝑖𝐴−1𝜆𝑥𝑒𝑖𝐴
−1

𝜆𝑥 𝑒𝑖𝐴
−1

𝜆𝑥

)

⋅ (
0

E
)𝐴−2 = 𝐴−1 sin (𝐴−1𝜆𝑥) .

(52)

Theorem 9. Thematrix-valued Sturm-Liouville problem with
Neumann boundary condition

−𝐴2
𝑑2

𝑑𝑥2
𝜑 (𝑥, 𝜆) = 𝜆2𝜑 (𝑥, 𝜆) , 0 < 𝑥 < ∞,

𝜑 (0, 𝜆) = 0,

𝜑 (𝑥, 𝜆)
 < ∞

(53)

provides the direct and inverse matrix integral 𝑐𝑜𝑠𝑖𝑛𝑒 trans-
forms on the real semiline:

𝐹
+
[𝑓] (𝜆) ≡ �̃� (𝜆) = ∫

∞

0

cos (𝐴−1𝜆𝜉)𝑓 (𝜉) 𝑑𝜉,

𝑓 (𝑥) =
2𝐴−1

𝜋
∫
∞

0

cos (𝐴−1𝜆𝑥) �̃� (𝜆) 𝑑𝜆.

(54)

Theorem 10. The matrix-valued Sturm-Liouville problem
with Robin boundary condition

−𝐴2
𝑑2𝜑

𝑑𝑥2
= 𝜆2𝜑 (𝑥, 𝜆) , 𝑥 > 0,

𝐻𝜑 +
𝑑𝜑

𝑑𝑥
= 0, 𝑥 = 0,

𝜑 (𝑥, 𝜆)
 < ∞,

(55)
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where 𝐻 is the square matrix with negative eigenvalues,
provides the direct and inverse matrix Fourier type transforms
on the real semiline:
𝐹
+
[𝑓] (𝜆) ≡ �̃� (𝜆)

= ∫
∞

0

(𝐻 sin𝐴−1𝜆𝜉 − 𝐴−1𝜆 cos𝐴−1𝜆𝜉)𝐴𝑓 (𝜉) 𝑑𝜉,

𝑓 (𝑥)

=
2

𝜋
∫
∞

0

𝐴(𝐻 sin𝐴−1𝜆𝜉 − 𝐴−1𝜆 cos𝐴−1𝜆𝜉)

⋅ 𝐴 ((𝐻𝐴)
2 + 𝜆2E)

−1

�̃� (𝜆) 𝑑𝜆.

(56)

Proof. Substitute

Φ (𝑥, 𝜆) = exp (𝑖𝐴−1𝜆𝑥) ,

Ψ (𝑥, 𝜆) = exp (−𝑖𝐴−1𝜆𝑥)
(57)

into (33) and (41); then,

Φ
0,1

= 𝐻 + 𝑖𝜆𝐴−1,

Ψ
0,1

= 𝐻 − 𝑖𝜆𝐴−1,

V (𝑥, 𝜆)

= Φ (𝑥, 𝜆) (𝐻 + 𝑖𝜆𝐴−1)
−1

− Ψ (𝑥, 𝜆) (𝐻 − 𝑖𝜆𝐴−1)
−1

= 𝐴 (Φ (𝑥, 𝜆) (𝐻𝐴 − 𝑖𝜆E) − Ψ (𝑥, 𝜆) (𝐻𝐴 + 𝑖𝜆E))

⋅ ((𝐻𝐴)
2 + 𝜆2E)

−2

= 2𝑖𝐴 (sin (𝜆𝐴−1𝑥)𝐻 − 𝐴−1𝜆 cos (𝐴−1𝜆𝑥))𝐴;

V∗ (𝑥, 𝛽) = (EE) (
Φ Ψ

Φ Ψ
)

−1

(
0

E
)𝐴−2

= −
E
2𝑖

(𝐻 + 𝑖𝜆𝐴−1𝐻 − 𝑖𝜆𝐴−1)

⋅ (
−𝑒−𝑖𝐴

−1

𝜆𝑥

𝑒𝑖𝐴
−1

𝜆𝑥

)(
0

E
)𝐴−1

= (−𝐻 sin (𝜆𝐴−1𝑥) + 𝐴−1𝜆 cos (𝐴−1𝜆𝑥))𝐴.

(58)

Theorem 11. Thematrix-valued Sturm-Liouville problemwith
Dirichlet boundary condition on the composite semiline 𝐼

1+
=

(0, 𝑙) ∪ (𝑙,∞)

−𝐴2
1

𝑑2𝜑
1

𝑑𝑥2
= 𝜆2𝜑

1
(𝑥, 𝜆) , 𝑥 ∈ (0, 𝑙) ;

𝐴2
2

𝑑2𝜑
2

𝑑𝑥2
= 𝜆2𝜑

2
(𝑥, 𝜆) , 𝑥 ∈ (𝑙,∞)

𝜑
1
= 0, 𝑥 = 0,

𝜑
1
= 𝜑
2
,

𝜆
1
𝜕
𝑥
𝜑
1
= 𝜆
2
𝜕
𝑥
𝜑
2
, 𝑥 = 𝑙,

𝜑2 (𝑥, 𝜆)
 < ∞

(59)

provides the direct and inverse matrix sine type integral
transforms on the composite real semiline:

𝐹
+
[𝑓] (𝜆) ≡ �̃� (𝜆) = ∫

𝑙

0

sin 𝑞
1
𝜉 ⋅ 𝐴−1
1
𝑓
1
(𝜉) 𝑑𝜉

+ ∫
∞

𝑙

(cos 𝑞
1
𝑙 ⋅ sin 𝑞

2
(𝜉 − 𝑙)

+ sin 𝑞
1
𝑙𝜒 cos 𝑞

2
(𝜉 − 𝑙)) 𝐴

−1

2
𝑓
2
(𝜉) 𝑑𝜉,

𝑓
1
(𝑥) =

2

𝜋
∫
∞

0

sin 𝑞
1
𝑥�̃� (𝜆) 𝑑𝜆,

𝑓
2
(𝑥) =

2

𝜋
∫
∞

0

(cos 𝑞
2
(𝑥 − 𝑙) sin 𝑞

1
𝑙

+ sin 𝑞
2
(𝑥 − 𝑙) 𝜒

−1 cos 𝑞
1
𝑙)Ω�̃� (𝜆) 𝑑𝜆,

(60)

where

Ω = (sin 𝑞
1
𝑙𝜒 sin 𝑞

1
𝑙 + cos 𝑞

1
𝑙𝜒−1 cos 𝑞

1
𝑙)
−1

,

𝑞
1
= 𝐴−1
1
𝜆
1
,

𝑞
2
= 𝐴−1
2
𝜆
1
⋅ 𝜒 = 𝜆

2
𝐴−1
2
𝐴
1
𝜆−1
1
.

(61)

Proof. Performing calculations in formulas (33) and (41), we
get

Φ
2
= cos 𝑞

2
(𝑥 − 𝑙) + 𝑖 sin 𝑞

2
(𝑥 − 𝑙) , 𝑥 > 𝑙,

Ψ
2
= cos 𝑞

2
(𝑥 − 𝑙) − 𝑖 sin 𝑞

2
(𝑥 − 𝑙) , 𝑥 > 𝑙,

Φ
1
= cos 𝑞

1
(𝑥 − 𝑙) + 𝑖 sin 𝑞

1
(𝑥 − 𝑙) ⋅ 𝜒, 0 < 𝑥 < 𝑙,

Ψ
1
= cos 𝑞

1
(𝑥 − 𝑙) − 𝑖 sin 𝑞

1
(𝑥 − 𝑙) ⋅ 𝜒, 0 < 𝑥 < 𝑙,

Φ
0,1

= cos 𝑞
1
𝑙 − 𝑖 sin 𝑞

1
𝑙 ⋅ 𝜒,

Ψ
0,1

= cos 𝑞
1
𝑙 + 𝑖 sin 𝑞

1
𝑙 ⋅ 𝜒.

(62)

Then,matrix eigenfunctions of Sturm-Liouville problemhave
the following form:

V
2
= Φ
2
(𝑥, 𝜆)Φ

−1

0,1
(𝜆) − Ψ

2
(𝑥, 𝜆)Ψ

−1

0,1
(𝜆)

= 2𝑖 (cos 𝑞
2
(𝑥 − 𝑙) sin 𝑞

2
(𝑥 − 𝑙))

⋅ (
cos 𝑞
1
𝑙 sin 𝑞

1
𝑙 ⋅ 𝜒

− sin 𝑞
1
𝑙 ⋅ 𝜒 cos 𝑞

1
𝑙
)

−1

(
0

E
) = 2𝑖

⋅ (cos 𝑞
2
(𝑥 − 𝑙) sin 𝑞

1
𝑙 + sin 𝑞

2
(𝑥 − 𝑙) 𝜒

−1 cos 𝑞
1
𝑙)

⋅ Ω,
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V
1
= Φ
1
(𝑥, 𝜆)Φ

−1

0,1
(𝜆) − Ψ

1
(𝑥, 𝜆)Ψ

−1

0,1
(𝜆)

= 2𝑖 (cos 𝑞
1
(𝑥 − 𝑙) sin 𝑞

1
(𝑥 − 𝑙) 𝜒−1)

⋅ (
cos 𝑞
1
𝑙 sin 𝑞

1
𝑙 ⋅ 𝜒

− sin 𝑞
1
𝑙 ⋅ 𝜒 cos 𝑞

1
𝑙
)

−1

(
0

E
) = 2𝑖

⋅ (cos 𝑞
2
(𝑥 − 𝑙) sin 𝑞

1
𝑙 + sin 𝑞

2
(𝑥 − 𝑙) cos 𝑞

1
𝑙) Ω

= 2𝑖 sin 𝑞
1
𝑥 ⋅ Ω.

(63)

And dual matrix eigenfunctions of Sturm-Liouville problem
have the following form:

V∗
1
(𝑥, 𝛽) = (Φ

0,1
Ψ
0,1
)Ω−1
1
(𝑥, 𝛽) (

0

E
)𝐴−2
1

= (Φ
0,1
Ψ
0,1
)

⋅ (
cos 𝑞
1
(𝑥 − 𝑙) sin 𝑞

1
(𝑥 − 𝑙) 𝜒

−𝑞
1
sin 𝑞
1
(𝑥 − 𝑙) 𝜒 𝑞

1
cos 𝑞
1
(𝑥 − 𝑙)

)

−1

⋅ (
0

E
)𝐴−2
1

= (cos 𝑞
1
𝑙 sin 𝑞

1
𝑙)

⋅ (
cos 𝑞
1
(𝑥 − 𝑙) sin 𝑞

1
(𝑥 − 𝑙) ⋅ 𝜒

−𝑞
1
sin 𝑞
1
(𝑥 − 𝑙) ⋅ 𝜒 𝑞

1
cos 𝑞
1
(𝑥 − 𝑙)

)

−1

⋅ (
0

E
)𝐴−2
1

= −
𝐴−1
1

𝜆
sin 𝑞
1
𝑥,

(64)

V∗
2
(𝑥, 𝛽) = (Φ

0,1
Ψ
0,1
)Ω−1
2
(𝑥, 𝛽) (

0

E
)𝐴−2
2

= (Φ
0,1
Ψ
0,1
)

⋅ (
cos 𝑞
2
(𝑥 − 𝑙) sin 𝑞

2
(𝑥 − 𝑙) 𝜒

−𝑞
2
sin 𝑞
2
(𝑥 − 𝑙) 𝜒 𝑞

2
cos 𝑞
2
(𝑥 − 𝑙)

)

−1

⋅ (
0

E
)𝐴−2
2

= (cos 𝑞
1
𝑙 sin 𝑞

1
𝑙) (

1 0

0 −𝜒
)

⋅ (
cos 𝑞
2
(𝑥 − 𝑙) sin 𝑞

2
(𝑥 − 𝑙)

−𝑞
1
sin 𝑞
2
(𝑥 − 𝑙) 𝑞

1
cos 𝑞
2
(𝑥 − 𝑙)

)

−1

⋅ (
0

E
)𝐴−2
2

= − (cos 𝑞
1
𝑙 sin 𝑞

2
(𝑥 − 𝑙) + sin 𝑞

1
𝑙

⋅ 𝜒 cos 𝑞
2
(𝑥 − 𝑙))

𝐴−1
2

𝜆
.

(65)

Now we can use the matrix sine type integral transforms
on the composite real semiline (43) and (44) to describe
analytically the consistent mathematical models.

4. Analytical Solution of Iterated Heat
Conduction Equation

In this section, we can solve amixed boundary value problem
for iterated heat conduction equation [22].

Let

𝑢 =
𝑛+1

∑
𝑘=1

𝜃 (𝑥 − 𝑙
𝑘−1

) 𝜃 (𝑙
𝑘
− 𝑥) 𝑢

𝑘
(𝑡, 𝑥) (66)

be a solution of system of differential equations

(𝜕
𝑡
− 𝑎2
𝑘
𝜕
𝑥𝑥
)
2

𝑢
𝑘
= 0,

𝑥 ∈ (𝑙
𝑘−1

, 𝑙
𝑘
) , 𝑘 = 1, . . . , 𝑛 + 1

(67)

with initial conditions

𝑢
𝑘
(0, 𝑥) = 𝑓

𝑘
(𝑥) ,

𝜕
𝑡
𝑢
𝑘
(0, 𝑥) = 0

(68)

with boundary conditions

ℎ
1
𝑢
1
+ 𝜕
𝑥
𝑢
1
= 0,

ℎ
2
𝜕
𝑥𝑥
𝑢
1
+ 𝜕
𝑥𝑥𝑥

𝑢
1
= 0,

if 𝑥 = 0

(69)

and internal boundary conditions at the points 𝑥 = 𝑙
𝑘

𝑢
𝑘
= 𝑢
𝑘+1

,

𝜆
𝑘
𝜕
𝑥
𝑢
𝑘
= 𝜆
𝑘+1

𝜕
𝑥
𝑢
𝑘+1

,

𝜇
𝑘
𝜕
𝑥𝑥
𝑢
𝑘
= 𝜇
𝑘
𝜕
𝑥𝑥
𝑢
𝑘+1

,

]
𝑘
𝜕
𝑥𝑥𝑥

𝑢
𝑘
= ]
𝑘+1

𝜕
𝑥𝑥𝑥

𝑢
𝑘+1

.

(70)

At the beginning, we will solve an auxiliary vector mixed
boundary value problem. Let

(
𝑢

V
) =
𝑛+1

∑
𝑘=1

𝜃 (𝑥 − 𝑙
𝑘−1

) 𝜃 (𝑙
𝑘
− 𝑥)(

𝑢
𝑘

V
𝑘

) (71)

be a solution to the system of the differential equations

𝜕
𝑡
(
𝑢
𝑘

V
𝑘

) = (
𝑎2
𝑘

−𝑎2
𝑘

0 𝑎2
𝑘

)𝜕
𝑥𝑥

(
𝑢
𝑘

V
𝑘

) , (72)

with initial conditions

(
𝑢
𝑘

V
𝑘

) = (
𝑓
𝑘
(𝑥)

𝑓
𝑘
(𝑥)

) , if 𝑡 = 0 (73)

with boundary conditions at the point 𝑥 = 0

(
ℎ
1

0

ℎ
2
− ℎ
1
ℎ
2

)(
𝑢
1

V
1

) + 𝜕
𝑥
(
𝑢
1

V
1

) = (
0

0
) (74)
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and internal boundary conditions at the points 𝑥 = 𝑙
𝑘

(

1 0

𝜇
𝑘

𝑎2
𝑘

𝜇
𝑘

𝑎2
𝑘

)(
𝑢
𝑘

V
𝑘

) = (

1 0

𝜇
𝑘+1

𝑎2
𝑘+1

𝜇
𝑘+1

𝑎2
𝑘+1

)(
𝑢
𝑘+1

V
𝑘+1

) , (75)

(

𝜆
1

0

]
𝑘

𝑎2
𝑘

]
𝑘

𝑎2
𝑘

)𝜕
𝑥
(
𝑢
𝑘

V
𝑘

) = (

𝜆
2

0

]
𝑘+1

𝑎2
𝑘+1

]
𝑘+1

𝑎2
𝑘+1

)𝜕
𝑥
(
𝑢
𝑘+1

V
𝑘+1

) . (76)

Lemma 12. The solution of problems (72)–(76) has the follow-
ing form:

(
𝑢

V
) = 𝐹−1

𝑛+
[𝑒−𝜆

2

𝑡�̃� (𝜆)] , (77)

where

�̃� (𝜆) = ∫
∞

0

V∗ (𝜉, 𝜆) (
𝑓 (𝜉)

𝑓 (𝜉)
) 𝑑𝜉. (78)

Proof. This lemma can be proved by Fourier integral trans-
formmethodwith piecewise trigonometric kernels (43)-(44).
Let the vector-function

(
�̃�

Ṽ
) ≡ 𝐹

𝑛+
(
𝑢

V
) = ∫

∞

0

V∗ (𝜉, 𝜆) (
𝑢 (𝜉)

V (𝜉)
) 𝑑𝜉 (79)

be the Fourier transform. Then, from Theorem 7, vector-
function ( �̃�Ṽ ) will be a solution of the Cauchy problem:

𝑑

𝑑𝑡
(
�̃�

Ṽ
) = −𝜆2 (

�̃�

Ṽ
) ,

(
�̃� (0)

Ṽ (0)
) = 𝐹

𝑛+
[(

𝑓 (𝑥)

𝑓 (𝑥)
)] .

(80)

The solution has the following form:

(
�̃�

Ṽ
) = 𝑒−𝜆

2

𝑡𝐹
𝑛+

[(
𝑓 (𝑥)

𝑓 (𝑥)
)] . (81)

To complete the proof, we apply inverse Fourier transform
𝐹−1
𝑛+
:

(
𝑢

V
) = 𝐹−1

𝑛+
[𝑒−𝜆

2

𝑡�̃� (𝜆)] . (82)

Theorem 13. Let ( 𝑢V ) be a solution of vector problems (72)–
(76); then,

𝑢
𝑘
= (1 0) (

𝑢
𝑘

V
𝑘

) , 𝑘 = 1, . . . , 𝑛 + 1 (83)

is a solution to mixed boundary value problems (67)–(70) for
iterated heat conduction equation (67).

Proof. In accordance with (72), the function 𝑢 is a solution of
iterated heat conduction equation (67):

(𝜕
𝑡
− 𝑎2𝜕
𝑥𝑥
)
2

𝑢 = 𝑎2𝜕
𝑡
(𝜕
𝑡
− 𝑎2𝜕
𝑥𝑥
) V = 0. (84)

Due to (76), we get the initial condition:

𝜕
𝑡
𝑢 (0, 𝑥) = 𝑎2𝜕

𝑥𝑥
𝑢 (0, 𝑥) − 𝑎2𝜕

𝑥𝑥
V (0, 𝑥)

= 𝑎2𝑓 (𝑥) − 𝑎2𝑓 (𝑥) = 0.
(85)

On the basis of (74), the Robin boundary conditions have the
following form: the first condition is as follows:

(ℎ
2
− ℎ
1
) 𝑢 + ℎ

2
V + 𝜕
𝑥
V = 0, if 𝑥 = 0, (86)

and the second condition is as follows: if 𝑥 = 0, then

ℎ
2
𝜕
𝑥𝑥
𝑢 + 𝜕
𝑥𝑥𝑥

𝑢 = ℎ
2

𝜕
𝑡
𝑢 + 𝜕
𝑡
V

𝑎2
+ 𝜕
𝑥

𝜕
𝑡
𝑢 + 𝜕
𝑡
V

𝑎2

=
ℎ
2
𝜕
𝑡
𝑢 + 𝜕
𝑡𝑥
𝑢 + (ℎ

2
𝜕
𝑡
V + 𝜕
𝑡𝑥
V)

𝑎2

=
ℎ
2
𝜕
𝑡
𝑢 + 𝜕
𝑡𝑥
𝑢 + (ℎ

1
− ℎ
2
) 𝜕
𝑡
𝑢

𝑎2

= 𝜕
𝑡

ℎ
1
𝑢 + 𝜕
𝑥
𝑢

𝑎2
= 0.

(87)

It follows from (93)-(94) that

𝜕
𝑡

𝜇
𝑘
(𝑢
𝑘
+ V
𝑘
)

𝑎2
𝑘

= 𝜕
𝑡

𝜇
𝑘+1

(𝑢
𝑘+1

+ V
𝑘+1

)

𝑎2
𝑘+1

;

𝜕
𝑥
𝜕
𝑡

]
𝑘
(𝑢
𝑘
+ V
𝑘
)

𝑎2
𝑘

= 𝜕
𝑥
𝜕
𝑡

]
𝑘+1

(𝑢
𝑘+1

+ V
𝑘+1

)

𝑎2
𝑘+1

𝜕
𝑡

𝑢
𝑖
+ V
𝑖

𝑎2
𝑖

= 𝜕
𝑥𝑥
𝑢
𝑖
.

(88)

Then, the internal boundary conditions at the points 𝑥 = 𝑙
𝑘

𝜇
𝑘
𝜕
𝑥𝑥
𝑢
𝑘
= 𝜇
𝑘+1

𝜕
𝑥𝑥
𝑢
𝑘+1

,

]
𝑘
𝜕
𝑥𝑥𝑥

𝑢
𝑘
= ]
𝑘+1

𝜕
𝑥𝑥𝑥

𝑢
𝑘+1

(89)

hold true.

Corollary 14. The solution of problems (67)–(70) has the
following form:

𝑢 = (1 0) (
𝑢

V
) = (1 0) 𝐹−1

𝑛+
[𝑒−𝜆

2

𝑡�̃� (𝜆)]

= (1 0) ∫
∞

0

V∗
𝑘
(𝜉, 𝜆) (

1

1
)𝑓
𝑘
(𝜉) 𝑑𝜉.

(90)

5. Stress Produced in the Elastic Semi-Infinite
Solid by Pressure

Let us consider a problem about distribution of tension in an
𝑛 + 1-layer elastic semi-infinite solid:

𝐼+
𝑛
× 𝑅 = {(𝑥, 𝑦) : 𝑥 ∈ 𝐼+

𝑛
, 𝑦 ∈ 𝑅} . (91)
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In the case of plane, the strain vector of displacement 𝑢
𝑖

has components 𝑢
𝑖
, V
𝑖
, 0. Introduce Airy stress function [10]

𝑝 =
𝑛+1

∑
𝑘=1

𝜃 (𝑥 − 𝑙
𝑘−1

) 𝜃 (𝑙
𝑘
− 𝑥) 𝑝

𝑘
(𝑦, 𝑥) (92)

as a solution to system of differential equations

(𝜕
𝑦𝑦

+ 𝜕
𝑥𝑥
)
2

𝑝
𝑘
= 0, 𝑥 ∈ (𝑙

𝑘−1
, 𝑙
𝑘
) , 𝑘 = 1, . . . , 𝑛 + 1 (93)

with boundary conditions

𝜎
1𝑥

= −𝑝 (𝑦) ,

𝜏
1𝑥

= 0,

if 𝑥 = 0

(94)

and internal boundary conditions at the points 𝑥 = 𝑙
𝑘

𝜎
𝑘𝑥

= 𝜎
𝑘+1𝑥

,

𝜏
𝑘𝑥𝑦

= 𝜏
𝑘+1𝑥𝑦

,

𝑢
𝑘
= 𝑢
𝑘+1

,

V
𝑘
= V
𝑘+1

,

(95)

where𝜎
𝑘𝑥
is the normal stress and 𝑡

𝑘𝑥𝑦
is the shearing stresses.

Fourier transform of Airy stress function with respect to 𝑦

𝑝 =
𝑛+1

∑
𝑘=1

𝜃 (𝑥 − 𝑙
𝑘−1

) 𝜃 (𝑙
𝑘
− 𝑥) 𝑝

𝑘
(𝑦, 𝑥) (96)

is the solution to system of differential equations

(−𝜉2 + 𝑑
𝑥𝑥
)
2

𝑝
𝑘
= 0,

𝑥 ∈ (𝑙
𝑘−1

, 𝑙
𝑘
) , 𝑘 = 1, . . . , 𝑛 + 1

(97)

with boundary conditions

𝜎
1𝑥

= 𝜉2𝑝 (𝜉) ,

𝜏
1𝑥

= 0,

if 𝑥 = 0

(98)

and internal boundary conditions at the points 𝑥 = 𝑙
𝑘

𝜎
𝑘𝑥

= 𝜎
𝑘+1𝑥

,

𝜏
𝑘𝑥𝑦

= 𝜏
𝑘+1𝑥𝑦

,

𝑢
𝑘
= 𝑢
𝑘+1

,

V
𝑘
= V
𝑘+1

.

(99)

At the beginning, we will solve an auxiliary vector mixed
boundary value problem. Let

(
𝑝

𝑞
) =
𝑛+1

∑
𝑘=1

𝜃 (𝑥 − 𝑙
𝑘−1

) 𝜃 (𝑙
𝑘
− 𝑥)(

𝑝
𝑘

𝑞
𝑘

) (100)

be a solution to the system of differential equations

−𝜉2 (
𝑝
𝑘

𝑞
𝑘

) + (
1 −1

0 1
)𝑑
𝑥𝑥

(
𝑝
𝑘

𝑞
𝑘

) = 0, (101)

with boundary conditions

𝑝
1
= −𝑝 (𝜉) ,

𝜕
𝑥
𝑝
1
= 0

(102)

and internal boundary conditions at the points 𝑥 = 𝑙
𝑘

(

1 0

1 + 𝜎
𝑘

𝐸
𝑘

−
1 − 𝜎2
𝑘

𝐸
𝑘

)(
𝑝
𝑘

𝑞
𝑘

)

= (

1 0

1 + 𝜎
𝑘+1

𝐸
𝑘+1

−
1 − 𝜎2
𝑘+1

𝐸
𝑘+1

)(
𝑝
𝑘+1

𝑞
𝑘+1

) ,

(103)

(

1 0

1 + 𝜎
𝑘

𝐸
𝑘

1 − 𝜎2
𝑘

𝐸
𝑘

)𝜕
𝑥
(
𝑝
𝑘

𝑞
𝑘

)

= (

1 0

1 + 𝜎
𝑘+1

𝐸
𝑘+1

1 − 𝜎2
𝑘+1

𝐸
𝑘+1

)𝜕
𝑥
(
𝑝
𝑘+1

𝑞
𝑘+1

) .

(104)

Lemma 15. The solution of problems (101)–(104) in the Fourier
images takes the form

(
𝑝

𝑞
) = −𝐹−1

𝑛+
[

1

𝜉2 + 𝜆2
](

𝑝 (𝜉)

0
) (105)

and in the Fourier originals has the form

(
𝑝

𝑞
) = −

1

2𝜋
∫
∞

0

𝐹−1
𝑛+

[𝑒−𝜆|𝑦−𝜂|] (
𝑝 (𝜂)

0
)𝑑𝜂. (106)

Inverse Fourier transform 𝐹−1
𝑛+

is constructed in accor-
dance with (44).

Theorem 16. Let ( 𝑝
𝑞
) be a solution of vector problems (101)–

(104); then,

𝑝
𝑘
= (1 0) (

𝑝
𝑘

𝑞
𝑘

) , 𝑘 = 1, . . . , 𝑛 + 1 (107)

is the solution of scalar problems (75)-(76).

Proof. In accordance with (101), the function p is a solution
of iterated Laplace equation (93):

(−𝜉2 + 𝑑
𝑥𝑥
)
2

𝑝
𝑘
= 𝑑
𝑥𝑥

(−𝜉2 + 𝑑
𝑥𝑥
) 𝑞
𝑘
= 0. (108)
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Calculating the components 𝑢
𝑘
and V

𝑘
of strain vector of

displacement on the basis of [10], we get

V
𝑘
=
1 + 𝜎
𝑘

2𝜋𝐸
((1 − 𝜎

𝑘
) 𝑝


𝑘
+ 𝜎
𝑘
𝜉2𝑝
𝑘
)

=
1 + 𝜎
𝑘

2𝜋𝐸
((1 − 𝜎

𝑘
) (𝜉2𝑝

𝑘
− 𝜉2𝑞
𝑘
) + 𝜎
𝑘
𝜉2𝑝
𝑘
)

=
1 + 𝜎
𝑘

2𝜋𝐸
(𝜉2𝑝
𝑘
− (1 − 𝜉2) 𝑞

𝑘
) ,

𝑢
𝑘
=
1 + 𝜎
𝑘

2𝜋𝐸
((1 − 𝜎

𝑘
) 𝑝


𝑘
− (2 − 𝜎

𝑘
) 𝜉2𝑝


𝑘
)

=
1 + 𝜎
𝑘

2𝜋𝐸
((1 − 𝜎

𝑘
) (𝜉2𝑝



𝑘
− 𝜉2𝑞
𝑘
) − (2 − 𝜎

𝑘
) 𝜉2𝑝


𝑘
)

=
1 + 𝜎
𝑘

2𝜋𝐸
(−𝜉2𝑝

𝑘
− (1 − 𝜉2) 𝑞

𝑘
) .

(109)

As a result, the internal boundary conditions (103)-(104)
hold.

Corollary 17. The solution of problems (93)–(95) has the form

𝑝 = (1 0) (
𝑝

𝑞
)

= − (1 0)
1

2𝜋
∫
∞

0

𝐹−1
𝑛+

[𝑒−𝜆|𝑦−𝜂|] (
𝑝 (𝜂)

0
)𝑑𝜂.

(110)

6. Conclusion

Usage of the integral Fourier matrix transforms with piece-
wise trigonometric kernels method allows us to solve internal
boundary conditions problems. Internal boundary condi-
tions problems arise in mathematical modeling of heat con-
duction and stress produced in the piecewise homogeneous
media.
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