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We create a matrix integral transforms method; it allows us to describe analytically the consistent mathematical models. An
explicit constructions for direct and inverse Fourier matrix transforms with discontinuous coeflicients are established. We introduce
special types of Fourier matrix transforms: matrix cosine transforms, matrix sine transforms, and matrix transforms with piecewise
trigonometric kernels. The integral transforms of such kinds are used for problems solving of mathematical physics in homogeneous
and piecewise homogeneous media. Analytical solution of iterated heat conduction equation is obtained. Stress produced in the
elastic semi-infinite solid by pressure is obtained in the integral form.

1. Introduction

Matrix integral Fourier transforms with sine, cosine, and
piecewise trigonometric kernels represent an important
branch of mathematical analysis. It is based on the expansion
of a function over a set of cosine or sine basis functions.
Integral Fourier transforms of such kinds have shown their
special applicability in description of consistent mathematical
models. To show the versatility of these transforms, we solve
the problems of mathematical physics in homogeneous and
piecewise homogeneous media. We find analytical solutions
of iterated heat conduction equation and solve a problem
about stress in the elastic semi-infinite solid.

Given a real function f(x), which is defined over the
positive real line x > 0, for A > 0, which is piecewise
continuous and absolutely integrable over [0, co), the Fourier
cosine transform of f(x) is defined as

FLfl)=F0) = LOO cos Axf (x) dx )

subject to the existence of the integral. The inverse Fourier
cosine transform is given by

FUM = f(x)= % LOO cosAxF(N)dA  (2)

again subject to the existence of the integral used in the
definition. The functions f(x) and j‘()&), if they exist, are said
to form a Fourier cosine transform pair.

Given a real function f(x), which is defined over the
positive real line x > 0, for x > 0, which is piecewise
continuous and absolutely integrable over [0, 00), the Fourier
sine transform of f(x) is defined as

FIFl)=FO) = Loo sin Axf (x) dx 3)

subject to the existence of the integral. The inverse Fourier
transform is given by

FHF ) = £ () = % LOO snAxF ()AL (4)

again subject to the existence of the integral used in the
definition. The functions f(x) and }’(A), if they exist, are said
to form a Fourier transform pair.

Given a real function f(x), which is defined over the
positive real line x > 0, for x > 0, which is piecewise
continuous and absolutely integrable over [0, 00), the Fourier
type transform of f(x) is defined as

FLFIN) =F) = LOO (hsinAx - AcosAx) f (x)dx (5)

subject to the existence of the integral.



Theorem 1. The unit normalization constant used here pro-
vides a definition for the inverse Fourier type transform, given

by

hsin /\x AcosAx

FAw=2]"Fw @

again subject to the existence of the integral used in the
definition.

Proof. Let function f(x) take the following form:

fx) = ZJ Fo hsm’;’;;’;;"s Moo @
Then,
N
hf (%) + £ (x) = —J FWsindxdl.  (8)
T Jo

Due to the inverse Fourier cosine transform, we get

f()t) = J sin Ax (hf (x) + f (x))

= sin Axf (x)[g°

o )
+J (hsin Ax — Acos Ax) f (x)dx
0

= JOO (hsin Ax — A cos Ax) f (x) dx.
0

The general theory of linear integral transform with some of
its applications gave an account of [1-12].

In order to define integral Fourier matrix transforms
with piecewise trigonometric kernels, we consider Sturm-
Liouville matrix problem:

d

d _ 12 +
“x <A(x)atp(x,)t)>—/\go(x,/\), xel, (10)
where
n+l
P )= (0(x=10) -0 (x =L))o, (M), ()
=1

bounded nontrivial unknown matrix function of size r x
r called matrix eigenfunction of Sturm-Liouville problem,
A(x) is the matrix-valued function of size r X r, and

I = {x xe"ffl () o

i =0, = oo} . (12)
In general, Sturm-Liouville matrix problem does not possess
an analytical solution. Therefore, we consider the Sturm-
Liouville piecewise approximation as follows.

A(x) is piecewise constant; that is,

a)=0(x-1)), @)

n+l

A(x) = ZA? (9 (x -

Jj=1
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where x =1;, j=1,...,n+ 1, are points of discontinuity in
I', and O(x) is the Heaviside step function.

The elements of matrix eigenfunctions ¢(x,A) of a
Sturm-Liouville matrix problem are piecewise trigonometric
functions. The explicit expression of spectral matrix-valued
function ¢(x,A) allows for defining direct integral Fourier
matrix transform with piecewise trigonometric kernels. The
explicit solution of dual Sturm-Liouville matrix problem
serves as a kernel for an inverse integral Fourier matrix
transform.

Integral transforms arise in a natural way through the
principle of linear superposition in constructing integral
representations of linear differential equations solutions [13-
15]. The theory of integral Fourier transforms with piecewise
trigonometric kernels in a scalar case was studied by Ufljand
[16], Najda [17], Procenko and Solov’jov [18], and Lenjuk
[19]. The matrix version is adapted for the problems solving
in piecewise homogeneous medium and has been developed
by Yaremko in [10, 20]. The necessary proofs by method
of contour integration were conducted in [11, 21]. It is clear
that this method is effective to obtain the exact solution
of boundary value problems for piecewise homogeneous
media. O

2. Matrix Fourier Transforms with Piecewise
Trigonometric Kernels

The Sturm-Liouville matrix problem [1] is to find the nontriv-
ial solution y bounded on the set I,

n+1

y(6A) = Y0 (x—5y) 6 (k

k=1

-x) ¥ (6 N),  (14)

to a system of an ordinary differential equations with constant
matrix coefficients

2
(A dd—+)\2 )ym:o, m=T1n+1 (15)
with the boundary conditions at the points [, and /,,_ ;,

((“11 + A7) ) (ﬁu Yf1)> »n =0, (16)

||yn+1|||x=oo < 00, (17)

and internal boundary conditions at the points x = [,

(( +A25k ) ; (/3]1 + /\zyﬂ))yk

d
= <((X;(2 + )LZ(S?Z) dx + (ﬂfz + /\ZY}(Z)) Yi+1>

(18)

where

k
(x]l’ﬂ]l”}/]l’(s]z’ (19)
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are matrices of size r X r:
ylm (x) A)

ym(x’A): : >

Yo (6 1) (20)

Iyl = Vi - + Y20

Let y be nontrivial solution to boundary value problems (52)-
(69) for some A. The number A is called an eigenvalue, and
the corresponding solution y(x, A) is called matrix-valued
eigenfunction.

We will required invertible conditions

detM,, #0, A€ [0,00) (21)

for matrices

M= (/3’;," + %YKok A% > )
S A L VoA £ o
The matrices Afﬂ are positive-defined [4]. We denote
D, (x) = e
¥, (x) = e P (23)

2 2 42
A1 = A An+1'

We define the other n pairs of matrix-value functions
(D, ¥,), k =1,nby the induction relations:

(e +2205) 22+ (4 )| (@)

p (24)
- [ 2288) L (8 2095) | @)
Introduce the following notations:
Dy, () = (o, +2°87,) @] (I, A)
+ (/3(1)1 + Az)’?l) @, (Ip, A),
Yo, (M) = (0‘(1)1 + /\28(1)1) \IJ{ (ZO’/\) (25)
+ (/3(1)1 + AZY&) ¥, (I, A)
Qk = .
!yl
O %
Lemma 2. The following identity
. , 0 E
(' @wn) = , %
-q. 0
qx (26)

(07" (1) = -0 A2A2

holds true fork = 1,...,n

Proof. Using formula [20]
() = -0 o0 (27)

and identity

, (O Y 0 E
(Qk) = (D” \I’” = _qz 0 Qk’ (28)
k k k

we can conclude
(@) =o)L (29)
¢ “\-q 0/\-q; 0

Lemma 3. If the following inequality
O A%l + A%
det(ﬂ“ . R . ")#0, Le[0,00)  (30)

holds true, then
det®y, (A) £ 0,
det¥,, (A) #0, (31)

A€ [0,00).

Proof. Matrices ®;, and ¥, are nonsingular due to the
following identity:

<(D0,1 \110,1>
! !
(DI \Pl

B Bl + A% oy + A%\ (@ Y
0 E o v )

Theorem 4. The spectrum of problems (15), (16), and (18) is
continuous and fills semiaxis (0, 00). Sturm-Liouville problem
isr time singular. Exactly r linearly independent matrix-valued
functions correspond to each eigenvalue M. It is possible to take
r columns of matrix-value functions:

(32)

O

n+l
v(x,A) kZ:;G (x=1i_) 0 (L — x) v (x, A), )
vi (6,4) = @; (x,1) Oy 1 (1) = ¥, (x,1) ¥ (A).
That is
Vi (6, A)
YV (6, A) = . (34)
Ve (%, 1)

Theorem 4 follows from Lemmas 2 and 3.



Now we consider the dual matrix Sturm-Liouville prob-
lem. We find the nontrivial solution y* of a system of ordinary
differential equations with constant matrix coefficients

d’ . -
<Aind2+k2 )ym:O, m=Ln+1, (35
with boundary conditions at the points x = [;and x = [,

d
d )’1 (ﬂu AZYU) =0, (36)
il <o @

yf ((x?l + Az‘s?l)

and internal boundary conditions at the points x = [,

o 2 Qk
( (J’k) )(/311 Vu 11+/\6 )

2 ok
/321 Y21 “21 +A%6;,

_ (_ i) v ) (ﬁlz +A )’12 0‘12 + )‘2811(2>
- k+1 k+1
" " ﬁ;(z +A sz “22 + AZ‘SI;Z

(38)

We write the solution of the boundary value problem in the
following form:

n+1
y &A= 29(5 “L)0(L -8y M),
k=1
YED = (0 EA) ey E), (39)
il = Vi) + -+ ()

f(x)=

S - - Y
+ Z (®0,1\P0,1) le () Mk11 ) - << 2
k=1 Yzz

holds true.

This theorem can be proved by method of contour
integration [17].

We define the direct and inverse matrix integral Fourier
transforms on the real semiline with piecewise trigonometric

kernels according to Theorem 6.
The direct transform is

L)) = jloo v EA) FEdE 12,1, ()

* 8(1)1f1, (I) + i (@o,1¥0,1)
k=1
. (<y a) (f (zk>> (43)
)/22 fk+1 (lk)

- aGe)

Q' (ho 1) My (V)

k k
1 621
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Theorem 5. The spectrum of problems (35), (36), and (38) is
continuous and fills semiaxis (0, 00). Sturm-Liouville problem
is r time singular. Exactly r linearly independent matrix-valued
functions correspond to each eigenvalue A. It is possible to take
r rows of matrix-value functions:

n+1

v (6 A) = ) 0(x-Ly) 0 (I - x) v (x,4),
k=1

\ » 0\
Vi (x, B) = (Do, %) Qj (x,B) <E) Aj .

That is,

yIEN= (Vi EN - v EN), j=Tr 4D

Theorem 5 follows from Lemmas 2 and 3.

The explicit expression of spectral matrix-valued function
u(x,A) and the dual spectral function u*(x,1) allow for
writing the decomposition theorem on the set I ).

Theorem 6. Let vector-valued function f(x) be defined over
I', continuous, absolutely integrable, and has a bounded

n
variation. Then, for any x € I, the decomposition formula

L jw v (%) (joo VEN) fEdE+yf (1) + % 11 (1)
7T Jo Iy

(42)
) <fk+1 (lk)> <Vﬁ 5’1‘1) (fk (lk)>>>
o G , AdA
fk+1 (lk) N2 05 fx (lk)
and the inverse transform is

F [f] () = —% L WA FAYdL= f(x), (44)

when

n+1

fx)= Ze(lk -
p

Now we will get the result of the basic identity of matrix
integral transforms with piecewise trigonometric kernels for
differential operator:

x)0(x = I_y) fr (x). (45)

n+l 2

d
szzie(x—lj_l)e(lj—x)Ai.@. (46)

Theorem 7. If vector-valued function

n+l

fx)=20(x =1 1) 0k~ x) fie () (47)
k=1
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is three times continuously differentiable over set 1,.,, has the
limit values of its third-order derivatives at the points x = I,
and satisfies boundary condition on infinity

lem <u (x, /\) f(x) - —u (x, A)f(x)) 0 (48)

and internal boundary conditions at the points x = I, then the
basic identity

E,. [B(f)]N) =-AF 1) = {(B],.f1 (o)
+ “(1)1f1’ (lo)) - (Y?1A21f1” (Iy) + 5(1)1A21f1m (lo))}

= 2 (@, ¥,) @' (o 2) My (A)
k=1

] <|<<ﬁzl “21) (fk+1 (lk)>
/322 “22 fk+1 (lk)
B (Vicl 5lzcl> <A§<+1fl£’+1 (lk)>>
Vécz 5}52 A?ﬁ—l 121:1 (k)
B ((ﬁ}fl 0‘]1(1> <fk (lk)>
1312 R3p) fk (lk)
B (Vfl 8,1(1) ( Aiflé (%) ))}
Vicz 5If2 Aifl:” (h)

holds true.

(49)

This theorem can be proved by method of integration by
parts.

3. Special Types of Matrix Integral Fourier
Transforms

Theorem 8. The matrix-valued Sturm-Liouville problem with
Dirichlet boundary condition

2
-A d—go(x A) = A2<p(x,/\), 0< x<o00,
¢ (0,1) =0, (50)
o e 1 < 00

provides the direct and inverse matrix integral sine transforms
on the real semiline:

FflM=F0) = jom sin (A™08) f (&) &,

-1

(51)
fx)=

ro sin (A™'Ax) F (1) d.
0

Proof. Performing calculations in formulas (33) and (41), we
get

® (x, 1) = exp (iA”'Ax),
¥ (x, 1) = exp (-iA " Ax),
@y, =E
¥, = E,

V(6 A) =D (x,A) =¥ (x,A) = 2isin (A_l)tx) ,

B (52
[OI 4 0
v (x,8) = (EE A2
wo- (o) (3)
A LiA M x e-iA”Ax _ e—iA’l)Lx
=-—(EE) . .
21 —l'A_IAerA Ax ezA Ax
0 - -1 -1
. A=A sin (A )Lx).
E
O

Theorem 9. The matrix-valued Sturm-Liouville problem with
Neumann boundary condition

2
-A d—go(x A) = /\zgo(x,/\), 0< x <00,
GDI ©,A) =0, (53)
lo Ge, V)] < o0

provides the direct and inverse matrix integral cosine trans-
forms on the real semiline:

E LMW =T0= [ cos(a™2) F@

1 (54)

Fx) = ro cos (A Ax) F (1) d.
0

Theorem 10. The matrix-valued Sturm-Liouville problem
with Robin boundary condition

2
—Asz(P = )Lz(p(x,)\), x>0,

dx2
de (55)
H - - =y,
gp+dx 0, x=0
lo G V)] < oo,
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where H is the square matrix with negative eigenvalues, P1 = P2
provides the direct and inverse matrix Fourier type transforms B B
on the real semiline: MO = Aa0:pp X =1,
F 1) =F0) Iz (e, M < co
© 59
= J (H sin A'AE — A" A cos A_IAE) Af (&) dE, 59)
’ provides the direct and inverse matrix sine type integral
f(x) (56) transforms on the composite real semiline:
2 (*® - _ .
:—J A(HsinA "NE- A" Acos A 1/\{) I
T Jo

F ) =F0) = j sing,E- A7 f, () dé

- A((HA? + 2E)” F (V) d). 0

Proof. Substitute * JI (cosqyl-sing, (§ ~1)
@ (x,1) = exp (iAile) J ) +sing,ly cos q, (€ — 1)) A5 f, (§) d&,
(60)
_ i1 00 _
¥ (x, ) = exp (—iA Ax) Fi () = %J singuxF (1) dA,
into (33) and (41); then, 7 Jo
Dy, = H+ilA™, fr(x) = 2 J (cosq, (x —1)sin g1
T Jo

¥, = H-ilA™, _ -
0.1 ! +sing, (x=1) x !cos qll) Qf (A)da,
v(x,A)
where
o ,-1\"1
=D (x,A) (H+1AA ) .
. . -1
1 Q= (sm qilx sing,l + cos g,y cos qll) ,
~ ¥ (x,A) (H-ilA™)
(x )( i ) 4= A0 (1)
= A(D(x,A) (HA —iAE) — ¥ (x,A) (HA + iAE
(@ (x, ) ( 2 ) =¥ (M) ( ) G= AT,y = AT A A
-((HAY + VE)
(( )+ A ) (58) Proof. Performing calculations in formulas (33) and (41), we
=2iA (sin (/\A_lx) H-A"Acos (A_l/\x)) A; get

. (O
v (x, B) = (EE) o
D, =cosq, (x—-I)+ising (x=1)-y, 0<x<],

= —E, (H+idA" H-iAA™) (62)
2i ¥, =cosq, (x—1)—ising; (x—-1)-x, 0<x<],

—iATA
(e R W) e @y, = cosq,l —ising,l- y,
eiA'l/\x E

¥, = cosq,l +isingl- .

10 D, =cosq, (x—1)+ising, (x-1), x>,
()%

E W, =cosq, (x—1)—ising, (x—1), x>,

. -1 -1 -1
= (_H sin (AA x) +A " Acos (A Ax )) A Then, matrix eigenfunctions of Sturm-Liouville problem have

] the following form:

Theorem 11. The matrix-valued Sturm-Liouville problem with vy, = @, (x,1) QDS,II W) =, ()Y, } \\)
Dirichlet boundary condition on the composite semiline I,, = )
0,1) U (I, 0) =2i(cosq, (x—1) sing, (x —1))

2 . -1

_Azl‘fi"’zl = Vg, (6, 1), xe(0D); ( cos g,/ squ-x) (0) i
* —-sing,l-y cosql E
d2
AP 32, (1), x€(l,00) i ~ B
22 A , -(cosq2 (x—I)sing,l +sing, (x - 1) x cosqll)

¢, =0, x=0, -Q,
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v = @ (6, 0) DL (1) - ¥, (6, 1) ¥ (V)

=2i(cosq, (x —1) sing, (x-1)x")

( cosq,l sinqll')()1 (0) .
—-sing;l-xy cosql E) l

- (cos g, (x — 1) singyl + sing, (x —I) cos q;1) Q
=2ising;x - Q.

(63)

And dual matrix eigenfunctions of Sturm-Liouville problem
have the following form:

0
() = (O ¥,) Q7 (3, ) ( )Af

= (q)O,l\IJO,l)

cosqy (x—1) sing; (x-1)x )1
q,sing, (x—=1)x g,cosq, (x—1)
(64)

E

cosq; (x = 1)

(
TR ——
(

sing (x —1) 'X)l
-q;singq; (x=1)-x gq,cosq, (x—=1)

) A_
g A1 =—Tsmq1

() = (001,) 05 () | ) 47

= ((DO,I\IIO,I)
cosq, (x —1) sing, (x—1) x >_1
,sing, (x —1) x g,cosq, (x—1)

g
()
i
k

cosq, (x —1)

sing, (x —1) >_1
—-q,sing, (x —1) g, cosq, (x—1)

) (cosq,lsing, (x —1I) + sing,l

-1

A
- xcosq, (x —1)) TZ

Now we can use the matrix sine type integral transforms
on the composite real semiline (43) and (44) to describe
analytically the consistent mathematical models. O

4. Analytical Solution of Iterated Heat
Conduction Equation

In this section, we can solve a mixed boundary value problem
for iterated heat conduction equation [22].
Let

n+l

u=y0(x-5,)60 (-

k=1

x) uy (t, x) (66)

be a solution of system of differential equations

(at - aiaxx)z =0,

(67)
X € (lk—l’lk)’ k= 1,...,n+ 1
with initial conditions
u (0,x) = fi. (x),
(68)
o,u (0,x) =0
with boundary conditions
hyu, +0,u, =0,
hzaxxul + axxxul =0, (69)
ifx=0
and internal boundary conditions at the points x = [,
U = Upyys
AkOxthy = Ay 1Oytpys
(70)

n"ikaxxuk = ."ikaxxuk+1’
vkaxxxuk = 1}k+laxxxuk+1 .

At the beginning, we will solve an auxiliary vector mixed
boundary value problem. Let
x)( ) (71)

()-e

be a solution to the system of the differential equations

u a2 —az u
at(f):((f 2">axx< "), 72)
3 a; Vi

with initial conditions

(uk)=<fk(x)), ifr=0 (73)
Vk S (%)

with boundary conditions at the point x = 0

h, 0\ /u, u; 0
()G 20 6) o
h,-hy h,) \», 2 0

(x=1Le) 0



and internal boundary conditions at the points x = [,

1 0 u 1 u
k k+1
M B <V ) = Mk B (V ): (75)
2 2 k 2 2 k
ak ak ak+1 ak+1 .
A 0 A, 0
Uy U1
E E ax v = vk+1 vk+1 ax v . (76)
2 2 2 2
G G ¢ Yerr T k

Lemma 12. The solution of problems (72)-(76) has the follow-
ing form:

(”) =F [e‘“} (/\)], 77)
v
where

e ®

f(A)-jO v (&A)( ; (s>)d5‘ (78)

Proof. This lemma can be proved by Fourier integral trans-
form method with piecewise trigonometric kernels (43)-(44).
Let the vector-function

i\ u\ (e, u (&)
() )-Lraa(iDe o

be the Fourier transform. Then, from Theorem 7, vector-
function (%) will be a solution of the Cauchy problem:

d (u e u
o))
(o) ()
v (0) fx)
The solution has the following form:

-l

To complete the proof, we apply inverse Fourier transform
El:

<

<!

(”) -F! [e"‘sz ). (82)
v
0

Theorem 13. Let (%) be a solution of vector problems (72)-
(76); then,

Uy

w, = (1 o)< ) k=1,...,n+1 (83)

Vk

is a solution to mixed boundary value problems (67)-(70) for
iterated heat conduction equation (67).

Chinese Journal of Mathematics

Proof. In accordance with (72), the function u is a solution of
iterated heat conduction equation (67):

(at - azaxx)z u=a’0,(9,—a’d,)v=0. (84)
Due to (76), we get the initial condition:
o,u(0,x) = azaxxu (0,x) — azaxxv (0, x)
=a’f" (x)-a’f" (x) = 0.

On the basis of (74), the Robin boundary conditions have the
following form: the first condition is as follows:

(hy—h)u+hyy+0,v=0, if x=0, (86)

(85)

and the second condition is as follows: if x = 0, then

O,u + 0,v v 3 o,u + 0,v

X
a2 2

hy0,,u + 0, = h,y
a

_ hy0u+0,u+ (hy0,v +0,,v)

2

¢ (87)
h,0,u + dyu + (hy — hy) dyu
= —
_ athlu +28xu o
a
It follows from (93)-(94) that
5 e (g + v -3 Hieer (i + Vk+1)_
t 2 - Yt 2 >
A et
9.0, Vi (“k2+ Vi) - 3.0, Vi1 (uk+2—1 + Vi) (88)
g Tt
u; + v
o, - = O, U;.

Then, the internal boundary conditions at the points x = I

Mkaxxuk = n"lk+laxxuk+l’
(89)
1}kaxxxuk = vk+laxxxuk+l
hold true. O

Corollary 14. The solution of problems (67)-(70) has the
following form:

w0 0(!) =0 0E! [FFo)
(9%0)
o 1
-1 0] v (E,A)(1>fk(€)d£.

5. Stress Produced in the Elastic Semi-Infinite
Solid by Pressure

Let us consider a problem about distribution of tension in an
n + 1-layer elastic semi-infinite solid:

I' xR={(x,y):x€l,,y€R}. (91)
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In the case of plane, the strain vector of displacement #;
has components u;, v;, 0. Introduce Airy stress function [10]

n+1
p= ZG (x = Leoy) 0 (I = x) pic (9 %) (92)

k=1
as a solution to system of differential equations
2
(3, +0us) k=0, x€(lph), k=1,...,n+1 (93)
with boundary conditions
1
O1x =P (y) >
T, =0, (94)
ifx=0
and internal boundary conditions at the points x = [,
Okx = Okt1x>
Tkxy = Tk+1xy’
(95)
U = Upys
Vi = Vit

where 0y, is the normal stress and #; ., is the shearing stresses.
Fourier transform of Airy stress function with respect to y

n+l

P= 200~ )0~ x) P (%) (96)
k=1
is the solution to system of differential equations

(_52 + dxx)2 ?k =0,

(97)
X € (lkfl’lk)’ k= 1,...,n+1
with boundary conditions
f— 2_
Glx = E P (5) >
T, =0, (98)
ifx=0
and internal boundary conditions at the points x = [,
Ekx = 3k+1x’
?kxy = ?k+1xy’
(99)
U = Upys
Vi = Vi1

At the beginning, we will solve an auxiliary vector mixed
boundary value problem. Let

(2) = ze (x =10 (I - x) @:) (100)

be a solution to the system of differential equations

g <f")+<1 _1)dxx<‘t_)">:0, 101
qx 0 1 Ik

with boundary conditions

51 = _? (5) >
- (102)
axpl =0
and internal boundary conditions at the points x = I,
1 0 _
, | [ Px
1+ O 1- Uk q
Ey Ey ¢
(103)
1 0 —_
5 Pr+1
1+ 034y _l_ak+1 le ?
+
Ek+1 Ek+1
1 0 5
k
1+ O 1- O’}% ax (a )
Ey Ej ¢
(104)
1

2
1+ 034y 1- Ok+1
Ek+1 Ek+1

Lemma 15. The solution of problems (101)-(104) in the Fourier
images takes the form

P\__ 1[;] P
(q) =Fi g e ( 0 (105)
and in the Fourier originals has the form
(p) __L j ! [e—kly—nl] (p (r])) dn. (106)
q 21 Jo 0

. -1 . .
Inverse Fourier transform F,, is constructed in accor-
dance with (44).

Theorem 16. Let (3) be a solution of vector problems (101)-
(104); then,

ESY

(107)

p.=(1 0)(_ ) k=1,...,n+1

qx
is the solution of scalar problems (75)-(76).

Proof. In accordance with (101), the function p is a solution
of iterated Laplace equation (93):

(-8 +du) pe=du (-8 +dy) g =0 (08)
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Calculating the components %, and v of strain vector of
displacement on the basis of [10], we get

_ l1+o0 — _
Vi = 271Ek ((1 — o) Py + ‘kaZPk)
l+o _ _ _
= 27-[Ek ((1 - 0y) (Ezpk - fz%c) + kazpk)
1+0 _ _
= ?Ek (&Pc-(1-8)a).
) (109)
_ + 0, — —
U = 2nEk ((1 ~0) P —(2-0) EZPIL)
1+o0 . _ .
= (-0 (£P-8q) - (2-a) E'P1)
l+o _ _
= zﬂEk (&P~ (1-8) )
As a result, the internal boundary conditions (103)-(104)
hold. -

Corollary 17. The solution of problems (93)-(95) has the form

o)
=—(1 0) % LOO E,} [e ] (p (()ﬂ)) dn.

6. Conclusion

(10)

Usage of the integral Fourier matrix transforms with piece-
wise trigonometric kernels method allows us to solve internal
boundary conditions problems. Internal boundary condi-
tions problems arise in mathematical modeling of heat con-
duction and stress produced in the piecewise homogeneous
media.
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