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A one-dimensional linear convection-diffusion problem with a perturbation parameter 𝜀 multiplying the highest derivative is
considered. The problem is solved numerically by using the standard upwind scheme on special layer-adapted meshes. It is proved
that the numerical solution is 𝜀-uniform accurate in themaximumnorm.This is done by a newproof technique inwhich the discrete
system is preconditioned in order to enable the use of the principle where “𝜀-uniform stability plus 𝜀-uniform consistency implies
𝜀-uniform convergence.” Without preconditioning, this principle cannot be applied to convection-diffusion problems because the
consistency error is not uniform in 𝜀. At the same time, the condition number of the discrete system becomes independent of 𝜀 due
to the same preconditioner; otherwise, the condition number of the discrete system before preconditioning increases when 𝜀 tends
to 0. We obtained such results in an earlier paper, but only for the standard Shishkin mesh. In a nontrivial generalization, we show
here that the same proof techniques can be applied to the whole class of Shishkin-type meshes.

1. Introduction

In this paper we consider a convection-diffusion boundary-
value problem in which the coefficient of the diffusion term
is a small positive parameter 𝜀. This makes the problem a
singularly perturbed one. Singularly perturbed boundary-
value problems are characterized by the presence of the per-
turbation parameter 𝜀whichmultiplies the highest derivative
in the differential equation considered. Therefore, when 𝜀

tends to 0, the degree of the differential equation is reduced
and the solution of the reduced equation typically does not
satisfy all the boundary conditions imposed. This is why the
solution of the original problem may have boundary and/or
interior layers; that is, the solution may change abruptly
over narrow regions whose size depends directly on 𝜀. It
is typical that the derivatives of the solution behave in the
layers like O(𝜀

−𝑘

), where 𝑘 is an appropriate positive number.

Because of this, the classical numerical methods for solving
boundary-value problems do not work well for singularly
perturbed problems and special numerical methods need to
be constructed [1–4]. Ideally, the goal of these methods is to
achieve 𝜀-uniform pointwise convergence.The layer-adapted
meshes of Shishkin or Bakhvalov types are frequently used to
meet this goal.

The interest in singular perturbation problems is moti-
vated by their numerous applications. For instance, the
introduction in [4] mentions Navier-Stokes equations with
large Reynolds number and other convection-diffusion equa-
tions modeling water-pollution problems, oil-extraction pro-
cesses, flows in chemical reactors, convective heat-transport
problems with large Péclet numbers, and semiconductor
devices. Let us also mention the application to a steady,
fully developed laminar flow of alumina-water nanofluid
[5].
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In this paper, we consider the simplest singularly per-
turbed convection-diffusion problem in one dimension:

L𝑢 fl −𝜀𝑢
󸀠󸀠

− 𝑏 (𝑥) 𝑢
󸀠

+ 𝑐 (𝑥) 𝑢 = 𝑓 (𝑥) ,

𝑥 ∈ (0, 1) , 𝑢 (0) = 𝑢 (1) = 0,

𝑏 (𝑥) ≥ 𝛽 > 0,

𝑐 (𝑥) ≥ 0

for 𝑥 ∈ 𝐼 fl [0, 1] ,

(1)

where 0 < 𝜀 ≪ 1 and 𝑏, 𝑐, and 𝑓 are 𝐶
1

(𝐼)-functions. The
problem has a unique solution 𝑢 in 𝐶

3

(𝐼) [6, 7]. In general,
this solution exhibits an exponential boundary layer near 𝑥 =

0.
Problem (1) serves as a model problem for discussing

some theoretical aspects related to the proof of 𝜀-uniform
pointwise convergence of numerical methods for singularly
perturbed convection-diffusion problems. This proof is not
as simple as for the singularly perturbed reaction-diffusion
problems, where the proof can be based on the follow-
ing classical principle, which originates from nonperturbed
problems (cf. [8–10]).

Principle 1. 𝜀-uniform stability and 𝜀-uniform consistency,
both in the maximum norm, imply 𝜀-uniform pointwise
convergence.

Principle 1 does not work in the proof of 𝜀-uniform
pointwise convergence for convection-diffusion problem (1).
When (1) is discretized by using the upwind finite-difference
scheme on the Shishkin mesh, a careful analysis shows that
the consistency error in the layer part is not 𝜀-uniformly
accurate in the maximum norm (cf. [11, Sec. 6.1.3]). Hence,
special techniques like barrier functions [1–4] or the use of
hybrid stability inequalities [2, 9, 12, 13] are required to prove
the 𝜀-uniform pointwise convergence.

We show in [14] that it is possible to apply Principle
1 to problems of type (1) after the linear system, which
results when (1) is discretized, is preconditioned.The upwind
discretization scheme on the standard Shishkin mesh is
considered in that paper. Although the scheme is 𝜀-uniformly
stable, the discrete linear system is ill-posed since its condi-
tion number grows unboundedly when 𝜀 → 0, as pointed
out by Roos in [15]. By using a relatively simple diagonal
preconditioner, Roos eliminates the 𝜀-dependence of the
condition number.

It is shown in [14] that a suitable modification of Roos’
preconditioner enables the proof, based on Principle 1,
that the pointwise errors of the numerical solution are 𝜀-
uniformly of almost first order. Since the standard Shishkin
mesh is the only one considered in [14], the question is now
how to use the same approach and achieve the same result
for the general class of Shishkin-type meshes in the sense of
[2, 16]. The present paper addresses this question.

Therefore, for convection-diffusion problem (1), we con-
sider the new proof technique of 𝜀-uniform pointwise con-
vergence, introduced in [14], and we generalize it to the
whole class of Shishkin-type meshes. The generalization is

not entirely straightforward since the general properties of
the meshes require many new technical details. Moreover, we
slightly modify the preconditioner used in [14].

In this final paragraph of the introduction, we give the
outline of the paper. In Section 2, we describe the Shishkin-
type meshes which are used when discretizing problem (1).
We analyze the conditioning of the upwind finite-difference
discretization in Section 3. Then, in Section 4, we define the
preconditioner and give a proof of 𝜀-uniform stability of the
preconditioned discrete system. We arrive at the main result,
the proof of 𝜀-uniformpointwise convergence using Principle
1, in Section 5.The last section, Section 6, contains some final
conclusions.

2. Shishkin-Type Meshes

Let 𝐼𝑁 be a general discretization mesh with points 𝑥
𝑖

, where

0 = 𝑥
0

< 𝑥
1

< ⋅ ⋅ ⋅ < 𝑥
𝑁−1

< 𝑥
𝑁

= 1. (2)

We consider the Shishkin-type (or S-type) meshes as intro-
duced in [16]; see [2] as well. Any such mesh is dense in the
boundary layer near𝑥 = 0 and transitions to a coarse uniform
mesh at a point constructed like in the standard Shishkin
mesh:

𝜎 fl 𝑎𝜀𝐿. (3)

Here, 𝑎 is a user-chosen positive parameter and we think of 𝐿
as of 𝐿 = ln𝑁, although a modification of this value can also
be used, like in [17]. We assume that 𝜎 < 1/2; otherwise, the
values of 𝑁 are unreasonably large.

The coarse part of the mesh is obtained by uniformly
dividing the interval [𝜎, 1] into 𝑁 − 𝐽 subintervals of length
𝐻 = (1 − 𝜎)/(𝑁 − 𝐽), where 𝐽 is a positive integer such that
𝑄 fl 𝐽/𝑁 satisfies 𝑄 < 1 and 𝑄

−1

≤ 𝐶, and where, from this
point on, 𝐶 denotes a generic positive constant independent
of both the perturbation parameter 𝜀 and themesh parameter
𝑁. Inside the layer, the mesh points are formed by a mesh-
generating function 𝜙, which is a monotonically increasing
function satisfying 𝜙(0) = 0 and 𝜙(𝑄) = 𝐿. In other words,
S-type meshes are defined by

𝑥
𝑖

=

{
{

{
{

{

𝑎𝜀𝜙 (𝑡
𝑖

) , 𝑖 = 0, 1, . . . , 𝐽,

𝜎 + (𝑡
𝑖

− 𝑄)

1 − 𝜎

1 − 𝑄

, 𝑖 = 𝐽 + 1, . . . , 𝑁,

(4)

where 𝑡
𝑖

fl 𝑖/𝑁.
The mesh steps are defined as ℎ

𝑖

= 𝑥
𝑖

− 𝑥
𝑖−1

, 𝑖 =

1, 2, . . . , 𝑁; the steps for 𝑖 = 1, 2, . . . , 𝐽 belong to the fine part
of the mesh and ℎ

𝑖

= 𝐻 for 𝑖 = 𝐽+1, 𝐽+2, . . . , 𝑁. Let also ℏ
𝑖

=

(ℎ
𝑖

+ℎ
𝑖+1

)/2, 𝑖 = 1, 2, . . . , 𝑁−1, and let mesh functions on 𝐼
𝑁

be denoted by𝑊
𝑁,𝑈𝑁, and so forth. For a function𝑔 defined

on 𝐼, 𝑔
𝑖

indicates 𝑔(𝑥
𝑖

) and 𝑔
𝑁 stands for the corresponding

mesh function.We identifymesh functions𝑊𝑁 with (𝑁+1)-
dimensional column vectors, 𝑊𝑁 = [𝑊

𝑁

0

,𝑊
𝑁

1

, . . . ,𝑊
𝑁

𝑁

]
𝑇.

We use the maximum norm of 𝑊𝑁:
󵄩
󵄩
󵄩
󵄩
󵄩
𝑊
𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
= max
0≤𝑖≤𝑁

󵄨
󵄨
󵄨
󵄨
󵄨
𝑊
𝑁

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
. (5)
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Table 1: Examples of mesh-generating and mesh-characterising functions of S-type meshes.

Mesh 𝜙 (𝑡) max𝜙
󸀠

𝜓 max 󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨

S 𝑡𝐿

𝑄

𝐿

𝑄

𝑁
−𝑡/𝑄

𝐿

𝑄

BS − ln(1 −

𝑡

𝑄

(1 −

1

𝑁

))

𝑁

𝑄

1 −

𝑡

𝑄

(1 −

1

𝑁

)

1

𝑄

VS 𝑡

𝑄 + 𝑄/𝐿 − 𝑡

2𝐿
2

𝑄

exp(−

𝑡

𝑄 + 𝑄/𝐿 − 𝑡

)

4

𝑄

The matrix norm induced by the above maximum vector
norm is also denoted by ‖ ⋅ ‖.

Following [2, 16], let us define the mesh-characterizing
function 𝜓 which is related to the mesh-generating function
𝜙 as follows:

𝜓 (𝑡) = 𝑒
−𝜙(𝑡)

. (6)

This function is monotonically decreasing on [0, 𝑄] with
𝜓(0) = 1 and 𝜓(𝑄) = 𝑁

−1.
We need to assume some further properties of the mesh.

Assumption 1. Let the mesh-generating function 𝜙(𝑡) be
piecewise differentiable such that

max
𝑡∈[0,𝑄]

𝜙
󸀠

(𝑡) ≤ 𝐶𝑁. (7)

Moreover, we also assume that 𝜙(𝑡) fulfills

Δ
𝜙

fl min
𝑖=1,2,...,𝐽

Δ
𝑖

≥ 𝐶𝑁
−1

, (8)

where Δ
𝑖

fl 𝜙(𝑡
𝑖

) − 𝜙(𝑡
𝑖−1

), 𝑖 = 1, 2, . . . , 𝑁.

Remark 2. Examples of mesh-generating functions 𝜙 satisfy-
ing the above assumptions are the standard Shishkinmesh (S-
mesh), Bakhvalov-Shishkinmesh (BS-mesh), andVulanović-
Shishkin mesh (VS-mesh). They are summarized in Table 1.

We proceed to provide some estimates for the step size of
the S-type meshes generated by 𝜙 in the layer region. Because
for 𝑖 = 1, . . . , 𝐽,

𝑥
𝑖

= 𝑎𝜀𝜙 (𝑡
𝑖

) = −𝑎𝜀 ln𝜓 (𝑡
𝑖

) ⇐⇒ 𝜓(𝑡
𝑖

) = 𝑒
−𝑥𝑖/(𝑎𝜀)

, (9)

we can bound the mesh step size inside the layer from above:

ℎ
𝑖

= 𝑎𝜀 (𝜙 (𝑡
𝑖

) − 𝜙 (𝑡
𝑖−1

)) ≤ 𝑎𝜀𝑁
−1 max
𝑡∈[𝑡𝑖−1,𝑡𝑖]

𝜙
󸀠

(𝑡)

≤ 𝑎𝜀𝑁
−1

(max
𝑡∈[𝑡𝑖−1 ,𝑡𝑖]

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
)

𝜓 (𝑡
𝑖

)

= 𝑎𝜀𝑁
−1

( max
𝑡∈[𝑡𝑖−1,𝑡𝑖]

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝑒
𝑥𝑖/(𝑎𝜀)

≤ 𝑎𝜀𝑁
−1max 󵄨

󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑥𝑖/(𝑎𝜀)

,

(10)

where we use max|𝜓󸀠| fl max
𝑡∈[0,𝑄]

|𝜓
󸀠

(𝑡)|. Thus, for 1 ≤ 𝑖 ≤

𝐽 − 1, we have that

ℏ
𝑖

≤

𝑎

2

𝜀𝑁
−1max 󵄨

󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑒
𝑥𝑖/(𝑎𝜀)

+ 𝑒
𝑥𝑖+1/(𝑎𝜀)

)

≤ 𝑎𝜀𝑁
−1max 󵄨

󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑥𝑖+1/(𝑎𝜀)

.

(11)

3. The Upwind Scheme and
Its Condition Number

We consider the following upwind finite-difference dis-
cretization on 𝐼

𝑁:

𝑈
𝑁

0

= 0,

L
𝑁

𝑈
𝑁

𝑖

fl −𝜀𝐷
󸀠󸀠

𝑈
𝑁

𝑖

− 𝑏
𝑖

𝐷
󸀠

𝑈
𝑁

𝑖

+ 𝑐
𝑖

𝑈
𝑁

𝑖

= 𝑓
𝑖

,

𝑖 = 1, . . . , 𝑁 − 1,

𝑈
𝑁

𝑁

= 0,

(12)

where

𝐷
󸀠󸀠

𝑊
𝑖

=

1

ℏ
𝑖

(

𝑊
𝑖+1

− 𝑊
𝑖

ℎ
𝑖+1

−

𝑊
𝑖

− 𝑊
𝑖−1

ℎ
𝑖

) ,

𝐷
󸀠

𝑊
𝑖

=

𝑊
𝑖+1

− 𝑊
𝑖

ℎ
𝑖+1

.

(13)

The matrix form of the linear system (12) is

𝐴
𝑁

𝑈
𝑁

=
̂
𝑓

𝑁 (14)

with a tridiagonal matrix 𝐴
𝑁

= [𝑎
𝑖𝑗

] and ̂
𝑓

𝑁

= [0, 𝑓
1

, 𝑓
2

, . . . ,

𝑓
𝑁−1

, 0]
𝑇. The nonzero elements of 𝐴

𝑁

are 𝑎
00

= 1, 𝑎
𝑁𝑁

= 1,

𝑙
𝑖

fl 𝑎
𝑖−1,𝑖

=

{
{
{

{
{
{

{

−

𝜀

ℏ
𝑖

ℎ
𝑖

, 1 ≤ 𝑖 ≤ 𝐽,

−

𝜀

𝐻
2

, 𝐽 + 1 ≤ 𝑖 ≤ 𝑁 − 1,

𝑟
𝑖

fl 𝑎
𝑖,𝑖+1

=

{
{

{
{

{

−

𝜀

ℏ
𝑖

ℎ
𝑖+1

−

𝑏
𝑖

ℎ
𝑖+1

, 1 ≤ 𝑖 ≤ 𝐽,

−

𝜀

𝐻
2

−

𝑏
𝑖

𝐻

, 𝐽 + 1 ≤ 𝑖 ≤ 𝑁 − 1,

𝑑
𝑖

fl 𝑎
𝑖𝑖

=

{
{
{
{

{
{
{
{

{

1, 𝑖 = 0

−𝑙
𝑖

− 𝑟
𝑖

+ 𝑐
𝑖

, 1 ≤ 𝑖 ≤ 𝑁 − 1,

1, 𝑖 = 𝑁.

(15)
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Table 2: The condition number of discrete system (12) on the BS-mesh for problem (19).

𝜀 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024

1𝑒 − 2 2.06𝑒 + 04 8.96𝑒 + 04 3.72𝑒 + 05 1.52𝑒 + 06 6.13𝑒 + 06 2.46𝑒 + 07

1𝑒 − 3 2.19𝑒 + 05 9.48𝑒 + 05 3.93𝑒 + 06 1.60𝑒 + 07 6.45𝑒 + 07 2.59𝑒 + 08

1𝑒 − 4 2.20𝑒 + 06 9.54𝑒 + 06 3.96𝑒 + 07 1.61𝑒 + 08 6.49𝑒 + 08 2.61𝑒 + 09

1𝑒 − 5 2.20𝑒 + 07 9.55𝑒 + 07 3.96𝑒 + 08 1.61𝑒 + 09 6.50𝑒 + 09 2.61𝑒 + 10

1𝑒 − 6 2.20𝑒 + 08 9.55𝑒 + 08 3.96𝑒 + 09 1.61𝑒 + 10 6.50𝑒 + 10 2.61𝑒 + 11

1𝑒 − 7 2.20𝑒 + 09 9.55𝑒 + 09 3.96𝑒 + 10 1.61𝑒 + 11 6.50𝑒 + 11 2.61𝑒 + 12

1𝑒 − 8 2.20𝑒 + 10 9.55𝑒 + 10 3.96𝑒 + 11 1.61𝑒 + 12 6.50𝑒 + 12 2.61𝑒 + 13

Table 3: The condition number of discrete system (12) on the VS-mesh for problem (19).

𝜀 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024

1𝑒 − 2 2.75𝑒 + 04 1.23𝑒 + 05 5.11𝑒 + 05 2.05𝑒 + 06 8.12𝑒 + 06 3.20𝑒 + 07

1𝑒 − 3 2.91𝑒 + 05 1.30𝑒 + 06 5.39𝑒 + 06 2.16𝑒 + 07 8.55𝑒 + 07 3.36𝑒 + 08

1𝑒 − 4 2.93𝑒 + 06 1.31𝑒 + 07 5.43𝑒 + 07 2.18𝑒 + 08 8.61𝑒 + 08 3.39𝑒 + 09

1𝑒 − 5 2.93𝑒 + 07 1.31𝑒 + 08 5.43𝑒 + 08 2.18𝑒 + 09 8.62𝑒 + 09 3.39𝑒 + 10

1𝑒 − 6 2.93𝑒 + 08 1.31𝑒 + 09 5.43𝑒 + 09 2.18𝑒 + 10 8.62𝑒 + 10 3.39𝑒 + 11

1𝑒 − 7 2.93𝑒 + 09 1.31𝑒 + 10 5.43𝑒 + 10 2.18𝑒 + 11 8.62𝑒 + 11 3.39𝑒 + 12

1𝑒 − 8 2.93𝑒 + 10 1.31𝑒 + 11 5.43𝑒 + 11 2.18𝑒 + 12 8.62𝑒 + 12 3.39𝑒 + 13

Matrix 𝐴
𝑁

is an 𝐿-matrix; that is, it has positive diagonal
entries and nonnegative off-diagonal entries. It is also a
nonsingular matrix satisfying𝐴

−1

𝑁

≥ 0 (inequalities involving
matrices and vectors should be understood componentwise)
and, therefore, inverse monotone. In other words, 𝐴

𝑁

is an
𝑀-matrix (an inverse monotone 𝐿-matrix). This fact is easy
to prove using the following𝑀-criterion; see [8], for instance.

Theorem 3 (𝑀-criterion). Let 𝐴 be an 𝐿-matrix and there
exists a vector 𝑤 such that 𝑤 > 0 and 𝐴𝑤 ≥ 𝛾 for some
positive constant 𝛾. 𝐴 is then an 𝑀-matrix and it holds that
‖𝐴
−1

‖ ≤ 𝛾
−1

‖𝑤‖.

In the above theorem, set 𝑤
𝑖

= 2 − 𝑥
𝑖

, 𝑖 = 0, 1, . . . , 𝑁,
to get that 𝐴

𝑁

𝑤 ≥ min{1, 𝛽}. This implies that 𝐴
𝑁

is an 𝑀-
matrix and that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
−1

𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
≤

2

min {1, 𝛽}

≤ 𝐶, (16)

which means that discrete problem (14) is stable uniformly in
𝜀. By examining directly the entries of matrix 𝐴

𝑁

and noting
that the lower bounds for ℎ

𝑖

and ℏ
𝑖

are achieved in the layer
region, where ℎ

𝑖

∼ ℏ
𝑖

≥ 𝐶𝜀Δ
𝜙

, we get that

󵄩
󵄩
󵄩
󵄩
𝐴
𝑁

󵄩
󵄩
󵄩
󵄩
≤ 𝐶

1

𝜀 (Δ
𝜙

)

2

. (17)

Combining this and the 𝜀-uniform stability (16), we arrive at
the following result related to the condition number 𝜅(𝐴

𝑁

)

of matrix 𝐴
𝑁

, 𝜅(𝐴
𝑁

) fl ‖𝐴
𝑁

‖‖𝐴
−1

𝑁

‖.

Theorem 4. The condition number of matrix 𝐴
𝑁

satisfies the
estimate

𝜅 (𝐴
𝑁

) ≤ 𝐶

1

𝜀 (Δ
𝜙

)

2

. (18)

Let us illustrate Theorem 4 using a simple example taken
from [2, page 1]

−𝜀𝑢
󸀠󸀠

(𝑥) − 𝑢
󸀠

(𝑥) = 1, 0 < 𝑥 < 1,

𝑢 (0) = 𝑢 (1) = 0.

(19)

It is easy to observe the 𝜀-dependence of the condition
numbers in Tables 2 and 3. They clearly show that the bound
in Theorem 4 is sharp. For the standard Shishkin mesh, we
refer the readers to the numerical experiments in [15].

4. Preconditioning and Stability

In this section, we propose an appropriately designed
diagonal preconditioner which not only eliminates the 𝜀-
dependence of the condition number of the discrete systems,
but also retains its 𝜀-uniform stability in the sense of (16).The
preconditioner is not of interest per se but as ameans to prove
𝜀-uniform pointwise convergence via Principle 1.

Let 𝑀 = diag(𝑚
0

, 𝑚
1

, . . . , 𝑚
𝑁

) be a diagonal matrix with
the entries

𝑚
0

= 1,

𝑚
𝑖

=

ℏ
𝑖

𝐻

, 𝑖 = 1, 2, . . . , 𝑁 − 1,

𝑚
𝑁

= 1.

(20)

On noting that ℏ
𝑖

= 𝐻 for 𝑖 = 𝐽 + 1, . . . , 𝑁 − 1, we see
that when the discrete system (12) is multiplied by 𝑀, this is
equivalent to multiplying the equations 1, 2, . . . , 𝐽 of system
(14) by ℏ

𝑖

/𝐻, 𝑖 = 1, 2, . . . , 𝐽. The modified system is

𝐴̃
𝑁

𝑈
𝑁

= 𝑀
̂
𝑓

𝑁

, (21)
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where 𝐴̃
𝑁

= 𝑀𝐴
𝑁

. Let the entries of 𝐴̃
𝑁

be denoted by 𝑎̃
𝑖𝑗

,
the nonzero ones being

̃
𝑙
𝑖

fl 𝑎̃
𝑖−1,𝑖

=

{
{
{

{
{
{

{

−

𝜀

ℎ
𝑖

𝐻

, 1 ≤ 𝑖 ≤ 𝐽,

−

𝜀

𝐻
2

, 𝐽 + 1 ≤ 𝑖 ≤ 𝑁 − 1,

𝑟̃
𝑖

fl 𝑎̃
𝑖,𝑖+1

=

{
{
{
{
{
{

{
{
{
{
{
{

{

−

𝜀

ℎ
𝑖+1

𝐻

−

𝑏
𝑖

ℏ
𝑖

ℎ
𝑖+1

𝐻

, 1 ≤ 𝑖 ≤ 𝐽 − 1,

−

𝜀

𝐻
2

−

𝑏
𝑖

ℏ
𝑖

𝐻
2

, 𝑖 = 𝐽,

−

𝜀

𝐻
2

−

𝑏
𝑖

𝐻

, 𝐽 + 1 ≤ 𝑖 ≤ 𝑁 − 1,

̃
𝑑
𝑖

fl 𝑎̃
𝑖𝑖

=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

1, 𝑖 = 0

−
̃
𝑙
𝑖

− 𝑟̃
𝑖

+ 𝑐
𝑖

ℏ
𝑖

𝐻

, 1 ≤ 𝑖 ≤ 𝐽,

−
̃
𝑙
𝑖

− 𝑟̃
𝑖

+ 𝑐
𝑖

, 𝐽 + 1 ≤ 𝑖 ≤ 𝑁 − 1,

1, 𝑖 = 𝑁.

(22)

Matrix 𝐴̃
𝑁

remains an 𝐿-matrix since the precondi-
tioning does not change this property of 𝐴

𝑁

. We show
in Lemma 7 below that 𝐴̃

𝑁

is an 𝑀-matrix and that the
modified discretization (21) is stable uniformly in 𝜀. But first,
we give a technical result related to the mesh.

Lemma 5. Let 𝑎𝛽 > 2 and let, in addition to Assumption 1, the
mesh-generating function 𝜙 satisfy the following conditions on
[0, 𝑄]:

(i) 𝜙
(𝑗)

≥ 0, 𝑗 = 1, 2, 3;
(ii) 𝜙
󸀠

(0) ≥ 𝑚 > 0, where 𝑚 is a constant independent of 𝜀
and 𝑁;

(iii) 𝜙
󸀠󸀠

≤ 2(𝜙
󸀠

)
2;

(iv) 𝜙
󸀠

≤ 𝐶𝐿
𝑘 for some 𝑘 > 0.

Then, for a sufficiently large𝑁, independent of 𝜀, there exists a
positive constant 𝛿, independent of both 𝜀 and 𝑁, such that

𝑆
𝑖

fl
𝛽

2

(1 +

Δ
𝑖

Δ
𝑖+1

) −

1

𝑎

(

1

Δ
𝑖

−

1

Δ
𝑖+1

) ≥ 𝛿 > 0,

𝑖 = 1, . . . , 𝐽 − 1.

(23)

Proof. Since 𝑎𝛽 > 2, we have that 𝛽/2 ≥ 1/𝑎 + 𝜂 for some
𝜂 > 0. Then,

𝑆
𝑖

≥

1

𝑎

𝑃
𝑖

+ 𝜂, (24)

where

𝑃
𝑖

=

Δ
𝑖

Δ
𝑖+1

+ Δ
2

𝑖

+ Δ
𝑖

− Δ
𝑖+1

Δ
𝑖

Δ
𝑖+1

. (25)

Then, because of (i) and (iii),

𝑃
𝑖

≥ 2𝑃
∗𝑖

, where 𝑃
∗𝑖

fl
𝜙
󸀠

(𝑡
𝑖−1

)
2

− 𝜙
󸀠

(𝑡
𝑖+1

)
2

𝑁
2

Δ
𝑖

Δ
𝑖+1

. (26)

If we show that

𝑃
∗𝑖

󳨀→ 0 uniformly in 𝜀 when 𝑁 󳨀→ ∞, (27)

then we will have (23) provided 𝑁 is sufficiently large
independently of 𝜀. We now show that (27) holds true. First,

󵄨
󵄨
󵄨
󵄨
𝑃
∗𝑖

󵄨
󵄨
󵄨
󵄨
≤ 𝐶

󵄨
󵄨
󵄨
󵄨
󵄨
𝜙
󸀠

(𝑡
𝑖−1

)
2

− 𝜙
󸀠

(𝑡
𝑖+1

)
2

󵄨
󵄨
󵄨
󵄨
󵄨

(28)

because of (i) and (ii), and then

󵄨
󵄨
󵄨
󵄨
𝑃
∗𝑖

󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑁

−1

𝐿
𝑘

𝜙
󸀠󸀠

(𝑡
𝑖+1

) ≤ 𝐶𝑁
−1

𝐿
3𝑘 (29)

because of (i), (iii), and (iv).

Themeshes defined inTable 1 satisfy conditions (i)–(iv) of
Lemma 5, with the exception of the BS-mesh which does not
fulfill condition (iv). However, estimate (23) still holds true
for the BS-mesh if we assume that √2 − 1 ≤ 𝑄 < 1. This is
not a serious restriction since𝑄 = 1/2 is a typical choice.The
proof of this result, stated below in Lemma 6, is given in the
appendix.

Lemma 6. Let 𝑎𝛽 > 2 and let √2 − 1 ≤ 𝑄 < 1. Then the
BS-mesh satisfies estimate (23).

Lemma 7. Under the assumptions of Lemma 5 (Lemma 6 if
the BS-mesh is used), matrix 𝐴̃

𝑁

of system (21) satisfies

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐴̃

−1

𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶. (30)

Proof. We construct a vector V = [V
0

, V
1

, . . . , V
𝑁

]
𝑇 such that

(a) V
𝑖

> 0, 𝑖 = 0, 1, . . . , 𝑁,
(b) V
𝑖

≤ 𝐶, 𝑖 = 0, 1, . . . , 𝑁,

(c) ̃𝑙
𝑖

V
𝑖−1

+
̃
𝑑
𝑖

V
𝑖

+ 𝑟̃
𝑖

V
𝑖+1

≥ 𝜃, 𝑖 = 1, 2, . . . , 𝑁 − 1, where 𝜃

is a positive constant independent of both 𝜀 and 𝑁.

Then, according to the 𝑀-criterion,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐴̃

−1

𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝜃
−1

‖V‖ ≤ 𝐶. (31)

We define the vector V as follows (cf. [14, 15]):

V
𝑖

= 𝛼 − 𝐻𝑖 + 𝜆min {(1 + 𝜌)
𝐽−𝑖

, 1} , (32)

where 𝛼 and 𝜆 are appropriately chosen positive constants
and 𝜌 = 𝛽𝐻/𝜀.

Since 𝐻𝑁 ≤ 𝐶, there exists a constant 𝛼 such that V
𝑖

≥

𝛼−𝐻𝑖 > 0 and condition (a) is satisfied. It also holds true that
V
𝑖

≤ 𝛼+𝜆.Therefore, condition (b) is satisfied if we prove that
𝜆 ≤ 𝐶. We do this in next steps while we verify condition (c).
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When 1 ≤ 𝑖 ≤ 𝐽 − 1, using Lemma 5, we have

̃
𝑙
𝑖

V
𝑖−1

+
̃
𝑑
𝑖

V
𝑖

+ 𝑟̃
𝑖

V
𝑖+1

= (
̃
𝑙
𝑖

+
̃
𝑑
𝑖

+ 𝑟̃
𝑖

) V
𝑖

+
̃
𝑙
𝑖

𝐻 − 𝑟̃
𝑖

𝐻

=

ℏ
𝑖

𝐻

𝑐
𝑖

V
𝑖

−

𝜀

ℎ
𝑖

+

𝜀

ℎ
𝑖+1

+

𝑏
𝑖

ℏ
𝑖

ℎ
𝑖+1

≥ −(

𝜀

ℎ
𝑖

−

𝜀

ℎ
𝑖+1

) +

𝑏
𝑖

2

+

𝑏
𝑖

ℎ
𝑖

2ℎ
𝑖+1

≥ 𝑆
𝑖

≥ 𝛿 > 0.

(33)

For 𝑖 = 𝐽, condition (c) is verified as follows:

̃
𝑙
𝐽

V
𝐽−1

+
̃
𝑑
𝐽

V
𝐽

+ 𝑟̃
𝐽

V
𝐽+1

=

ℏ
𝐽

𝐻

𝑐
𝐽

V
𝐽

+
̃
𝑙
𝐽

𝐻 − 𝑟̃
𝐽

(𝐻 +

𝜆𝜌

1 + 𝜌

)

≥ −𝑟̃
𝐽

𝜆𝜌

1 + 𝜌

+ (
̃
𝑙
𝐽

− 𝑟̃
𝐽

)𝐻

= (

𝜀

𝐻
2

+

𝑏
𝐽

ℏ
𝐽

𝐻
2

)

𝜆𝜌

1 + 𝜌

−

𝜀

ℎ
𝐽

+

𝜀

𝐻

+

𝑏
𝐽

ℏ
𝐽

𝐻

= (

2𝜀 + 𝑏
𝐽

(ℎ
𝐽

+ 𝐻)

2𝐻
2

)

𝜆𝛽𝐻

𝜀 + 𝛽𝐻

−

𝜀

ℎ
𝐽

+

𝑏
𝐽

2

≥

𝜆𝛽

2𝐻

−

𝜀

ℎ
𝐽

+

𝛽

2

≥

𝛽

2

,

(34)

where in the last step, invoking (8), we choose a constant 𝜆 so
that

𝜆𝛽

2𝐻

−

𝜀

ℎ
𝐽

≥

𝜆𝛽

2𝐻

−

𝜀

𝑎𝜀 (𝜙 (𝑡
𝐽

) − 𝜙 (𝑡
𝐽−1

))

≥

𝜆𝛽

2𝐻

−

1

𝑎Δ
𝐽

≥

𝜆𝛽

4𝑁
−1

−

1

𝑎𝐶𝑁
−1

= 𝑁(

𝜆𝛽

4

−

1

𝑎𝐶

) ≥ 0.

(35)

To guarantee this, 𝜆 is chosen so that

𝜆𝛽

4

≥

1

𝑎𝐶

. (36)

Finally, when 𝐽 + 1 ≤ 𝑖 ≤ 𝑁 − 1, we have

̃
𝑙
𝑖

V
𝑖−1

+
̃
𝑑
𝑖

V
𝑖

+ 𝑟̃
𝑖

V
𝑖+1

= 𝑐
𝑖

V
𝑖

+
̃
𝑙
𝑖

𝐻 − 𝑟̃
𝑖

𝐻

+

̃
𝑙
𝑖

1 + 𝜌
𝐽

[

𝜆

(1 + 𝜌)
𝑖−1−𝐽

−

𝜆

(1 + 𝜌)
𝑖−𝐽

]

+

𝑟̃
𝑖

1 + 𝜌
𝐽

[

𝜆

(1 + 𝜌)
𝑖+1−𝐽

−

𝜆

(1 + 𝜌)
𝑖−𝐽

]

≥ 𝑏
𝑖

+

𝜌 (1 + 𝜌)
̃
𝑙
𝑖

− 𝜌𝑟̃
𝑖

(1 + 𝜌
𝐽

) (1 + 𝜌)
𝑖+1−𝐽

𝜆

≥ 𝛽 +

(
̃
𝑙
𝑖

− 𝑟̃
𝑖

+
̃
𝑙
𝑖

𝜌) 𝜌

(1 + 𝜌
𝐽

) (1 + 𝜌)
𝑖+1−𝐽

𝜆

= 𝛽 + (

𝑏
𝑖

𝐻

−

𝛽

𝐻

)

𝜆𝜌 (1 + 𝜌)
𝐽−𝑖−1

1 + 𝜌
𝐽

≥ 𝛽.

(37)

By examining the entries of 𝐴̃
𝑁

, we easily see that the
maximum absolute row sum of 𝐴̃

𝑁

is achieved in the layer
region. Therefore,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴̃
𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝐶

𝑁

Δ
𝜙

. (38)

A combination of Lemma 7 and (38) results in the
following.

Theorem 8. The condition number of matrix 𝐴̃
𝑁

satisfies the
following 𝜀-uniform estimate:

𝜅 (𝐴̃
𝑁

) ≤ 𝐶

𝑁

Δ
𝜙

. (39)

Corollary 9. For the meshes given in Table 1, one has the
following estimates:

𝜅 (𝐴̃
𝑁

) ≤

{
{

{
{

{

𝐶

𝑁
2

𝐿

, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑆-𝑚𝑒𝑠ℎ,

𝐶𝑁
2

, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐵𝑆- 𝑎𝑛𝑑 𝑉𝑆-𝑚𝑒𝑠ℎ𝑒𝑠.

(40)

In Tables 4 and 5, we present the condition numbers of
the preconditioned linear systems (21) for various values of
𝜀 and 𝑁 for the BS- and VS-meshes. We can observe that
the condition numbers of the preconditioned systems are
independent of 𝜀 and that the bound in Corollary 9 is sharp.

5. 𝜀-Uniform Convergence

For the proof of 𝜀-uniform convergence, we need to decom-
pose the solution 𝑢 into the smooth and boundary-layer
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Table 4: The condition number of matrix 𝐴̃
𝑁

on the BS-mesh for problem (19).

𝜀 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024

1𝑒 − 2 6.58𝑒 + 02 2.68𝑒 + 03 1.08𝑒 + 04 4.34𝑒 + 04 1.74𝑒 + 05 6.95𝑒 + 05

1𝑒 − 3 6.89𝑒 + 02 2.78𝑒 + 03 1.11𝑒 + 04 4.40𝑒 + 04 1.75𝑒 + 05 7.00𝑒 + 05

1𝑒 − 4 6.94𝑒 + 02 2.80𝑒 + 03 1.12𝑒 + 04 4.43𝑒 + 04 1.76𝑒 + 05 7.02𝑒 + 05

1𝑒 − 5 6.94𝑒 + 02 2.80𝑒 + 03 1.12𝑒 + 04 4.43𝑒 + 04 1.76𝑒 + 05 7.03𝑒 + 05

1𝑒 − 6 6.94𝑒 + 02 2.80𝑒 + 03 1.12𝑒 + 04 4.43𝑒 + 04 1.76𝑒 + 05 7.03𝑒 + 05

1𝑒 − 7 6.94𝑒 + 02 2.80𝑒 + 03 1.12𝑒 + 04 4.43𝑒 + 04 1.76𝑒 + 05 7.03𝑒 + 05

1𝑒 − 8 6.94𝑒 + 02 2.80𝑒 + 03 1.12𝑒 + 04 4.43𝑒 + 04 1.76𝑒 + 05 7.03𝑒 + 05

Table 5: The condition number of matrix 𝐴̃
𝑁

on the VS-mesh for problem (19).

𝜀 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024

1𝑒 − 2 7.48𝑒 + 02 3.13𝑒 + 03 1.27𝑒 + 04 5.10𝑒 + 04 2.04𝑒 + 05 8.11𝑒 + 05

1𝑒 − 3 7.80𝑒 + 02 3.23𝑒 + 03 1.30𝑒 + 04 5.20𝑒 + 04 2.07𝑒 + 05 8.20𝑒 + 05

1𝑒 − 4 7.85𝑒 + 02 3.25𝑒 + 03 1.31𝑒 + 04 5.22𝑒 + 04 2.08𝑒 + 05 8.24𝑒 + 05

1𝑒 − 5 7.85𝑒 + 02 3.25𝑒 + 03 1.31𝑒 + 04 5.23𝑒 + 04 2.08𝑒 + 05 8.25𝑒 + 05

1𝑒 − 6 7.85𝑒 + 02 3.25𝑒 + 03 1.31𝑒 + 04 5.23𝑒 + 04 2.08𝑒 + 05 8.25𝑒 + 05

1𝑒 − 7 7.85𝑒 + 02 3.25𝑒 + 03 1.31𝑒 + 04 5.23𝑒 + 04 2.08𝑒 + 05 8.25𝑒 + 05

1𝑒 − 8 7.85𝑒 + 02 3.25𝑒 + 03 1.31𝑒 + 04 5.23𝑒 + 04 2.08𝑒 + 05 8.25𝑒 + 05

parts. There exist several decompositions of this kind, but we
use the version presented in [2, Theorem 3.48]

𝑢 (𝑥) = 𝑠 (𝑥) + 𝑦 (𝑥) , 𝑥 ∈ 𝐼, (41)
󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
(𝑘)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶 (1 + 𝜀

2−𝑘

) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
(𝑘)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝜀
−𝑘

𝑒
−𝛽𝑥/𝜀

,

𝑥 ∈ 𝐼, 𝑘 = 0, 1, 2, 3.

(42)

The details related to the construction of the function 𝑠 are
not important here; they can be found in [2]. As for 𝑦, we
note that it solves the problem

L𝑦 (𝑥) = 0, 𝑥 ∈ (0, 1) ,

𝑦 (0) = −𝑠 (0) ,

𝑦 (1) = 0.

(43)

We define the consistency error of the finite-difference
operatorL𝑁 as

𝜏
𝑖

= 𝜏
𝑖

[𝑢] fl L
𝑁

𝑢
𝑖

− 𝑓
𝑖

, 𝑖 = 1, 2, . . . , 𝑁 − 1. (44)

It holds true that

𝜏
𝑖

= L
𝑁

𝑢
𝑖

− (L𝑢)
𝑖

= [𝐴
𝑁

(𝑢
𝑁

− 𝑈
𝑁

)]
𝑖

. (45)

Taylor’s expansion gives

󵄨
󵄨
󵄨
󵄨
𝜏
𝑖

[𝑢]
󵄨
󵄨
󵄨
󵄨
≤ 𝐶ℎ
𝑖+1

(𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󸀠󸀠

󵄩
󵄩
󵄩
󵄩
󵄩𝑖

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󸀠

󵄩
󵄩
󵄩
󵄩
󵄩𝑖
) , (46)

where ‖𝑔‖
𝑖

fl max
𝑥𝑖−1≤𝑥≤𝑥𝑖+1

|𝑔(𝑥)| for any 𝐶(𝐼)-function 𝑔.
When the diagonal matrix 𝑀 is multiplied to linear system
(14), the consistency error of the multiplied system is

𝜏̃
𝑖

[𝑢] =

{

{

{

ℏ
𝑖

𝐻

𝜏
𝑖

[𝑢] , 1 ≤ 𝑖 ≤ 𝐽,

𝜏
𝑖

[𝑢] , 𝐽 + 1 ≤ 𝑖 ≤ 𝑁 − 1.

(47)

Lemma 10. Let 𝑎𝛽 ≥ 2.Then the following estimate holds true:

󵄨
󵄨
󵄨
󵄨
𝜏̃
𝑖

[𝑢]
󵄨
󵄨
󵄨
󵄨
≤

{

{

{

𝐶𝑁
−1

(max 󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

, 𝑖 = 1, . . . , 𝐽 − 1,

𝐶𝑁
−1

, 𝑖 = 𝐽, . . . , 𝑁 − 1.

(48)

Proof. We use decomposition (41) to get

𝜏̃
𝑖

[𝑢] = 𝜏̃
𝑖

[𝑠] + 𝜏̃
𝑖

[𝑦] . (49)

Then (46) and the derivative-estimates of 𝑠, given in (42),
yield immediately that

󵄨
󵄨
󵄨
󵄨
𝜏̃
𝑖

[𝑠]
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑁

−1 (50)

and therefore the following remains to be proved:

󵄨
󵄨
󵄨
󵄨
𝜏̃
𝑖

[𝑦]
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑁

−1

(max 󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

, 𝑖 = 1, . . . , 𝐽 − 1,

󵄨
󵄨
󵄨
󵄨
𝜏̃
𝑖

[𝑦]
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑁

−1

, 𝑖 = 𝐽, . . . , 𝑁 − 1.

(51)

Note that from condition (7), we easily get

ℎ
𝑖

≤ 𝐶𝜀, 𝑖 = 1, . . . , 𝐽,

ℏ
𝑖

≤ 𝐶𝜀, 𝑖 = 1, . . . , 𝐽 − 1.

(52)

This is the key property of S-type meshes, as well as the main
ingredient of the following proof.
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Table 6: The maximum norm of the consistency error [𝐴
𝑁

𝑢
𝑁

−
̂
𝑓

𝑁

] on the BS-mesh.

𝜀 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024

1𝑒 − 2 5.50𝑒 + 00 2.93𝑒 + 00 1.51𝑒 + 00 7.69𝑒 − 01 3.88𝑒 − 01 1.95𝑒 − 01

1𝑒 − 3 5.50𝑒 + 01 2.93𝑒 + 01 1.51𝑒 + 01 7.69𝑒 + 00 3.88𝑒 + 00 1.95𝑒 + 00

1𝑒 − 4 5.50𝑒 + 02 2.93𝑒 + 02 1.51𝑒 + 02 7.69𝑒 + 01 3.88𝑒 + 01 1.95𝑒 + 01

1𝑒 − 5 5.50𝑒 + 03 2.93𝑒 + 03 1.51𝑒 + 03 7.69𝑒 + 02 3.88𝑒 + 02 1.95𝑒 + 02

1𝑒 − 6 5.50𝑒 + 04 2.93𝑒 + 04 1.51𝑒 + 04 7.69𝑒 + 03 3.88𝑒 + 03 1.95𝑒 + 03

1𝑒 − 7 5.50𝑒 + 05 2.93𝑒 + 05 1.51𝑒 + 05 7.69𝑒 + 04 3.88𝑒 + 04 1.95𝑒 + 04

1𝑒 − 8 5.50𝑒 + 06 2.93𝑒 + 06 1.51𝑒 + 06 7.69𝑒 + 05 3.88𝑒 + 05 1.95𝑒 + 05

For 1 ≤ 𝑖 ≤ 𝐽 − 1 (46), estimates (10) and (11), as well as
the derivative-estimates of 𝑦 in (42), imply

󵄨
󵄨
󵄨
󵄨
𝜏̃
𝑖

(𝑦)
󵄨
󵄨
󵄨
󵄨
≤ 𝐶

ℏ
𝑖

𝐻

ℎ
𝑖+1

(𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
󸀠󸀠󸀠

󵄩
󵄩
󵄩
󵄩
󵄩𝑖

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
󸀠󸀠

󵄩
󵄩
󵄩
󵄩
󵄩𝑖
)

≤ 𝐶𝑁
−1

(max 󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

𝑒
2𝑥𝑖+1/(𝑎𝜀)

𝑒
−𝛽𝑥𝑖−1/𝜀

≤ 𝐶𝑁
−1

(max 󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

𝑒
(2𝑥𝑖+1−𝑎𝛽𝑥𝑖−1)/𝑎𝜀

= 𝐶𝑁
−1

(max 󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

𝑒
2(𝑥𝑖+1−𝑥𝑖−1)/𝑎𝜀

𝑒
−(𝑎𝛽−2)𝑥𝑖−1/𝑎𝜀

≤ 𝐶𝑁
−1

(max 󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

𝑒
ℏ𝑖/𝑎𝜀

≤ 𝐶𝑁
−1

(max 󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

,

(53)

where we have used (52) and 𝑎𝛽 ≥ 2 to get

𝑒
ℏ𝑖/(𝑎𝜀)

≤ 𝐶,

𝑒
−(𝑎𝛽−2)𝑥𝑖−1/(𝑎𝜀)

≤ 𝐶.

(54)

When 𝐽 + 2 ≤ 𝑖 ≤ 𝑁 − 1, (42) and (46) give

󵄨
󵄨
󵄨
󵄨
𝜏̃
𝑖

[𝑦]
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝐻(𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
󸀠󸀠󸀠

󵄩
󵄩
󵄩
󵄩
󵄩𝑖

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
󸀠󸀠

󵄩
󵄩
󵄩
󵄩
󵄩𝑖
) ≤ 𝐶

𝐻

𝜀
2

𝑒
−𝛽𝑥𝑖−1/𝜀

≤ 𝐶

𝐻

𝜀
2

𝑒
−𝛽(𝜎+𝐻)/𝜀

≤ 𝐶𝑁

𝐻
2

𝜀
2

𝑒
−𝛽𝐻/𝜀

𝑒
−𝛽𝜎/𝜀

.

(55)

Estimate (51) follows from the fact that (𝐻𝜀
−1

)
2

𝑒
−𝛽𝐻/𝜀

≤ 𝐶

and because the definition of 𝜎 implies that

𝑒
−𝛽𝜎/𝜀

= 𝑒
−𝛽𝑎𝐿

= 𝑁
−𝛽𝑎

≤ 𝑁
−2

. (56)

We finally prove (51) when 𝑖 = 𝐽, 𝐽 + 1, in which case

󵄨
󵄨
󵄨
󵄨
𝜏̃
𝐽

[𝑦]
󵄨
󵄨
󵄨
󵄨
=

ℏ
𝐽

𝐻

󵄨
󵄨
󵄨
󵄨
𝜏
𝐽

[𝑦]
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
𝜏
𝐽

[𝑦]
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝜏̃
𝐽+1

[𝑦]
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
𝜏
𝐽+1

[𝑦]
󵄨
󵄨
󵄨
󵄨
.

(57)

We now use the fact that L𝑦 = 0 and work with a different
form of the consistency error (this is a well-known technique,
cf. [18, Lemma 5]):

󵄨
󵄨
󵄨
󵄨
𝜏̃
𝑖

[𝑦]
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
𝜏
𝑖

[𝑦]
󵄨
󵄨
󵄨
󵄨
≤ 𝑅
𝑖

+ 𝑄
𝑖

+ 𝑐
𝑖

󵄨
󵄨
󵄨
󵄨
𝑦
𝑖

󵄨
󵄨
󵄨
󵄨
, (58)

where

𝑅
𝑖

= 𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
󸀠󸀠

𝑦
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑄
𝑖

= 𝑏
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
󸀠

𝑦
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
.

(59)

We immediately have that

𝑐
𝑖

󵄨
󵄨
󵄨
󵄨
𝑦
𝑖

󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑒
−𝛽𝑥𝑖/𝜀

≤ 𝐶𝑒
−𝛽𝜎/𝜀

= 𝐶𝑒
−𝛽𝑎𝐿

= 𝐶𝑁
−𝑎𝛽

≤ 𝐶𝑁
−2

.

(60)

As for 𝑅
𝑖

, it holds true that

𝑅
𝑖

≤ ℏ
−1

𝑖

𝜀 ⋅ 2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
󸀠

󵄩
󵄩
󵄩
󵄩
󵄩𝑖

≤ 𝐶𝑁𝑒
−𝛽(𝜎−ℎ𝐽)/𝜀

≤ 𝐶𝑁𝑒
−𝛽𝜎/𝜀

𝑒
𝛽ℎ𝐽/𝜀

≤ 𝐶𝑁
−1

,

(61)

by (52). Analogously,

𝑄
𝑖

≤ 𝐶𝐻
−1

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝑖

≤ 𝐶𝑁𝑒
−𝛽(𝜎−ℎ𝐽)/𝜀

≤ 𝐶𝑁
−1

. (62)

This completes the proof.

In general, the consistency error 𝜏
𝑖

of the layer component
of the solution is not bounded pointwise uniformly in 𝜀.
When the above proof technique is applied to 𝜏

𝑖

[𝑦], one can
only get

󵄨
󵄨
󵄨
󵄨
𝜏
𝑖

[𝑦]
󵄨
󵄨
󵄨
󵄨

≤

{

{

{

𝐶𝜀
−1

𝑁
−1

𝐿, for the S-mesh,

𝐶𝜀
−1

𝑁
−1

, for the BS- and VS-meshes.

(63)

The proposed preconditioner simplifies the analysis of the
consistency error by introducing an extra 𝜀 factor needed for
the layer component. Hence, the approach used in the proof
of Lemma 10 is natural and straightforward because it only
uses the classical Taylor expansion estimate for the truncation
error.

To illustrate (63), in Tables 6 and 7 we present the results
of some numerical experiments on the BS- and VS-meshes,
respectively.We refer the reader to [14] for the corresponding
numerical results on the S-mesh.

By contrast, with preconditioner (20), the preconditioned
consistency error converges uniformly in 𝜀 as shown in Tables
8 and 9.

In conclusion, the preconditioning allows us to use
Principle 1 and combine Lemmas 7 and 10 to obtain the
following main convergence result.
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Table 7: The maximum norm of the consistency error [𝐴
𝑁

𝑢
𝑁

−
̂
𝑓

𝑁

] on the VS-mesh.

𝜀 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024

1𝑒 − 2 4.67𝑒 + 00 2.47𝑒 + 00 1.28𝑒 + 00 6.59𝑒 − 01 3.36𝑒 − 01 1.70𝑒 − 01

1𝑒 − 3 4.67𝑒 + 01 2.47𝑒 + 01 1.28𝑒 + 01 6.59𝑒 + 00 3.36𝑒 + 00 1.70𝑒 + 00

1𝑒 − 4 4.67𝑒 + 02 2.47𝑒 + 02 1.28𝑒 + 02 6.59𝑒 + 01 3.36𝑒 + 01 1.70𝑒 + 01

1𝑒 − 5 4.67𝑒 + 03 2.47𝑒 + 03 1.28𝑒 + 03 6.59𝑒 + 02 3.36𝑒 + 02 1.70𝑒 + 02

1𝑒 − 6 4.67𝑒 + 04 2.47𝑒 + 04 1.28𝑒 + 04 6.59𝑒 + 03 3.36𝑒 + 03 1.70𝑒 + 03

1𝑒 − 7 4.67𝑒 + 05 2.47𝑒 + 05 1.28𝑒 + 05 6.59𝑒 + 04 3.36𝑒 + 04 1.70𝑒 + 04

1𝑒 − 8 4.67𝑒 + 06 2.47𝑒 + 06 1.28𝑒 + 06 6.59𝑒 + 05 3.36𝑒 + 05 1.70𝑒 + 05

Table 8: The maximum norm of the preconditioned consistency error [𝐴̃
𝑁

𝑢
𝑁

− 𝑀
̂
𝑓

𝑁

] on the BS-mesh.

𝜀 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024

1𝑒 − 2 1.22𝑒 − 01 6.50𝑒 − 02 3.38𝑒 − 02 1.74𝑒 − 02 8.87𝑒 − 03 4.52𝑒 − 03

1𝑒 − 3 1.14𝑒 − 01 6.01𝑒 − 02 3.08𝑒 − 02 1.56𝑒 − 02 7.86𝑒 − 03 3.95𝑒 − 03

1𝑒 − 4 1.14𝑒 − 01 5.97𝑒 − 02 3.06𝑒 − 02 1.55𝑒 − 02 7.78𝑒 − 03 3.90𝑒 − 03

1𝑒 − 5 1.14𝑒 − 01 5.96𝑒 − 02 3.05𝑒 − 02 1.54𝑒 − 02 7.77𝑒 − 03 3.90𝑒 − 03

1𝑒 − 6 1.14𝑒 − 01 5.96𝑒 − 02 3.05𝑒 − 02 1.54𝑒 − 02 7.77𝑒 − 03 3.89𝑒 − 03

1𝑒 − 7 1.14𝑒 − 01 5.96𝑒 − 02 3.05𝑒 − 02 1.54𝑒 − 02 7.77𝑒 − 03 3.89𝑒 − 03

1𝑒 − 8 1.14𝑒 − 01 5.96𝑒 − 02 3.05𝑒 − 02 1.54𝑒 − 02 7.77𝑒 − 03 3.89𝑒 − 03

Table 9: The maximum norm of the preconditioned consistency error [𝐴̃
𝑁

𝑢
𝑁

− 𝑀
̂
𝑓

𝑁

] on the VS-mesh.

𝜀 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024

1𝑒 − 2 1.60𝑒 − 01 9.12𝑒 − 02 5.02𝑒 − 02 2.70𝑒 − 02 1.43𝑒 − 02 7.47𝑒 − 03

1𝑒 − 3 1.50𝑒 − 01 8.44𝑒 − 02 4.58𝑒 − 02 2.42𝑒 − 02 1.26𝑒 − 02 6.53𝑒 − 03

1𝑒 − 4 1.49𝑒 − 01 8.37𝑒 − 02 4.54𝑒 − 02 2.40𝑒 − 02 1.25𝑒 − 02 6.45𝑒 − 03

1𝑒 − 5 1.49𝑒 − 01 8.37𝑒 − 02 4.53𝑒 − 02 2.40𝑒 − 02 1.25𝑒 − 02 6.44𝑒 − 03

1𝑒 − 6 1.49𝑒 − 01 8.37𝑒 − 02 4.53𝑒 − 02 2.40𝑒 − 02 1.25𝑒 − 02 6.44𝑒 − 03

1𝑒 − 7 1.49𝑒 − 01 8.37𝑒 − 02 4.53𝑒 − 02 2.40𝑒 − 02 1.25𝑒 − 02 6.44𝑒 − 03

1𝑒 − 8 1.49𝑒 − 01 8.37𝑒 − 02 4.53𝑒 − 02 2.40𝑒 − 02 1.25𝑒 − 02 6.44𝑒 − 03

Theorem 11. The error of the upwind finite-difference dis-
cretization on S-type meshes satisfies

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑁

𝑖

− 𝑈
𝑁

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

≤

{

{

{

𝐶𝑁
−1

(max 󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

, 𝑖 = 1, . . . , 𝐽 − 1,

𝐶𝑁
−1

, 𝑖 = 𝐽, . . . , 𝑁 − 1.

(64)

Corollary 12. For the meshes given in Table 1, one has the
following estimates:

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑁

− 𝑈
𝑁

󵄩
󵄩
󵄩
󵄩
󵄩

≤

{

{

{

𝐶𝑁
−1

𝐿
2

, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑆-𝑚𝑒𝑠ℎ,

𝐶𝑁
−1

, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐵𝑆- 𝑎𝑛𝑑 𝑉𝑆-𝑚𝑒𝑠ℎ𝑒𝑠.

(65)

Remark 13. The barrier-function technique can be used to
obtain similar results for S-type meshes (see [16]), but it
requires another assumption on the mesh-generating func-
tion 𝜙 (cf. [16, Theorem 1]). However, whether the barrier-
function approach can be extended to any Bakhvalov-type

mesh is still an open question [2, Remark 4.21]. By contrast,
as proved in [19], the preconditioner defined in (20) works
fine for Vulanović’s modification of the Bakhvalov mesh [10].
The paper [10] is where the original Bakhvalov mesh [20]
is generalized (the main difference between Bakhvalov-type
meshes and S-type meshes is that the former have a smooth
transition from the fine part inside the layer to the coarse
uniform part outside the layer; the mesh-generating function
𝜙 belongs to 𝐶

1

(𝐼)).

6. Conclusion

In this paper we present a proof of pointwise uniform
convergence for singularly perturbed convection-diffusion
problem (1) discretized on a general class of Shishkin-type
meshes.The proof is based on preconditioning of the discrete
system, which allows us to use the standard “consistency
+ stability” principle of convergence. This is a conceptually
simple approach which does not require the use of hybrid
stability inequalities and discrete Green’s functions. In gen-
eral, new proof techniques are of interest because although
a lot has been achieved in the field of singularly perturbed
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problems over the last few decades, there are still important
questions remaining open [21]. One of them, Question
6, is related to the work presented here. The question is
about two-dimensional convection-diffusion problems and it
points out that whereas 𝜀-uniform pointwise convergence for
the upwind finite-difference discretization on S-type meshes
is well-established, no similar result for B-type meshes is
known.Asmentioned inRemark 13, we already know that the
preconditioning approach works well for B-mesh and one-
dimensional convection-diffusion problems. The next step is
to consider two-dimensional problems.

Appendix

Proof of Lemma 6. The proof is different from the proof of
Lemma 5because theBS-meshdoes not satisfy condition (iv).
Because of (ii), it is sufficient to show that the numerator in
(25) is nonnegative for √2 − 1 ≤ 𝑄 < 1, independently of 𝜀
and 𝑁. Let 𝑝 fl 1 − 𝑁

−1. By direct computations, we get that

Δ
𝑖

= − ln(1 −

𝑡
𝑖

𝑝

𝑄

) + ln(1 −

𝑡
𝑖−1

𝑝

𝑄

)

= ln(1 +

1

𝐽/𝑝 − 𝑖

) = ln (1 + 𝑞) ,

(A.1)

where we denote 𝑞 fl (𝐽/𝑝−𝑖)
−1. Note that 0 ≤ 𝑞 < 1/(𝑄+1).

Analogously,

Δ
𝑖+1

= ln(

1

1 − 𝑞

) . (A.2)

Then,

Δ
𝑖

Δ
𝑖+1

+ Δ
2

𝑖

+ Δ
𝑖

− Δ
𝑖+1

= Δ
𝑖

(Δ
𝑖+1

+ Δ
𝑖

+ 1) − Δ
𝑖+1

= ln (1 + 𝑞) (ln
1 + 𝑞

1 − 𝑞

+ 1) + ln (1 − 𝑞) .

(A.3)

We set

𝑔 (𝑞) fl ln (1 + 𝑞) (ln
1 + 𝑞

1 − 𝑞

+ 1) + ln (1 − 𝑞) . (A.4)

Since√2−1 ≤ 𝑄 < 1, we have 0 ≤ 𝑞 < 1/√2. Rearrange 𝑔(𝑞)

as

𝑔 (𝑞) = [1 + ln(1 +

2𝑞

1 − 𝑞

)] ln (1 + 𝑞)

+ ln (1 − 𝑞) .

(A.5)

For 𝑞 ∈ [0, 1), it follows that
𝑞

1 + 𝑞/2

≤ ln (1 + 𝑞) ≤ 𝑞. (A.6)

Hence,

ln(1 +

2𝑞

1 − 𝑞

) ≥ 2𝑞. (A.7)

So, we are done if we can show that

𝑔 (𝑞) ≥ [1 + 2𝑞] ln (1 + 𝑞) + ln (1 − 𝑞) ≥ 0,

0 ≤ 𝑞 <

1

√2

,

(A.8)

or

(1 − 𝑞) (1 + 𝑞)
2𝑞+1

= (1 − 𝑞
2

) (1 + 𝑞)
2𝑞

≥ 1. (A.9)

First, if 𝑞 ∈ [1/2, 1/√2], we have, by (1 + 𝑞)
𝛾

≥ 1 + 𝛾𝑞 for
𝛾 ≥ 1,

(1 − 𝑞
2

) (1 + 𝑞)
2𝑞

≥ (1 − 𝑞
2

) (1 + 2𝑞
2

) ≥ 1. (A.10)

Second, we have that ln(1+𝑞) is a concave-down function on
[0, 1/2]; hence, on [0, 1/2],

ln (1 + 𝑞) ≥ 2 ln(

3

2

) 𝑞 ≥

4𝑞

5

. (A.11)

Then, multiplying both sides by 𝑞 and exponentiating, we get
that

(1 + 𝑞)
𝑞

≥ exp(

4𝑞
2

5

) ≥ 1 +

4𝑞
2

5

. (A.12)

Therefore,

(1 − 𝑞
2

) (1 + 𝑞)
2𝑞

≥ (1 − 𝑞
2

)(1 +

4𝑞
2

5

)

2

≥ 1, (A.13)

which holds true for 𝑞 ∈ [0, 1/2].
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