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Orthogonal designs and weighing matrices have many applications in areas such as coding theory, cryptography, wireless
networking, and communication. In this paper, we first show that if positive integer 𝑘 cannot be written as the sum of three integer
squares, then there does not exist any skew-symmetric weighingmatrix of order 4𝑛 and weight 𝑘, where 𝑛 is an odd positive integer.
Then we show that, for any square 𝑘, there is an integer 𝑁(𝑘) such that, for each 𝑛 ≥ 𝑁(𝑘), there is a symmetric weighing matrix
of order 𝑛 and weight 𝑘. Moreover, we improve some of the asymptotic existence results for weighing matrices obtained by Eades,
Geramita, and Seberry.

1. Introduction

An orthogonal design (OD) [1, Chapter 1] of order 𝑛 and type
(𝑠
1
, . . . , 𝑠

ℓ
), denoted as OD(𝑛; 𝑠

1
, . . . , 𝑠

ℓ
), is a square matrix𝑋

of order 𝑛 with entries from {0, ±𝑥
1
, . . . , ±𝑥

ℓ
}, where 𝑥

𝑗
’s are

commuting variables, that satisfies

𝑋𝑋
𝑇
= (

ℓ

∑

𝑗=1

𝑠
𝑗
𝑥
2

𝑗
)𝐼
𝑛
, (1)

where 𝑋𝑇 is the transpose of 𝑋 and 𝐼
𝑛
is the identity matrix

of order 𝑛. An OD with no zero entry is called a full
OD. Equating all variables to 1 in any full OD results in a
Hadamard matrix. Equating all variables to 1 in any OD of
order 𝑛 results in a weighing matrix, denoted as 𝑊(𝑛, 𝑘),
where 𝑘 is the weight that is the number of nonzero entries
in each row (column) of the weighing matrix.

The Kronecker product of two matrices 𝐴 = [𝑎
𝑖𝑗
] and 𝐵 of

orders𝑚 × 𝑛 and 𝑟 × 𝑠, respectively, is denoted by 𝐴 ⊗ 𝐵, and
it is the matrix of order𝑚𝑟 × 𝑛𝑠 defined by

𝐴 ⊗ 𝐵 =

[
[
[
[
[

[

𝑎
11
𝐵 𝑎
12
𝐵 ⋅ ⋅ ⋅ 𝑎

1𝑛
𝐵

𝑎
21
𝐵 𝑎
22
𝐵 ⋅ ⋅ ⋅ 𝑎

2𝑛
𝐵

.

.

.
.
.
.

.

.

.

𝑎
𝑚1

𝐵 𝑎
𝑚2

𝐵 ⋅ ⋅ ⋅ 𝑎
𝑚𝑛

𝐵

]
]
]
]
]

]

. (2)

The direct sum of 𝐴 and 𝐵 is denoted by 𝐴 ⊕ 𝐵, and it is the
matrix of order (𝑚 + 𝑟) × (𝑛 + 𝑠) which is defined as follows:

𝐴 ⊕ 𝐵 = [
𝐴 0

0 𝐵
] , (3)

where 0 represents a zero matrix of appropriate dimension.
Let 𝐴 = (𝑎

1
, . . . , 𝑎

𝑛
) and 𝐷 = (𝑑

1
, . . . , 𝑑

𝑛
), where 𝑎

𝑖
’s and

𝑏
𝑖
’s belong to a commutative ring (e.g.,R). Square matrix𝐶 =

[𝑐
𝑖𝑗
] of order 𝑛 is called circulant if 𝑐

𝑖𝑗
= 𝑎
𝑗−𝑖+1

, where 𝑗 − 𝑖

is reduced modulo 𝑛. Square matrix 𝐵 = [𝑏
𝑖𝑗
] of order 𝑛 is

called back-circulant if 𝑏
𝑖𝑗
= 𝑑
𝑖+𝑗−1

, where 𝑖 + 𝑗 − 2 is reduced
modulo 𝑛. We have 𝐵𝐶

𝑇
= 𝐶𝐵

𝑇 and 𝐵 = 𝐵
𝑇; that is, any

back-circulant matrix is symmetric. Let 𝑅 = [𝑟
𝑖𝑗
] be a square

matrix of order 𝑛, where 𝑟
𝑖𝑗

= 1 if 𝑖 + 𝑗 = 1 modulo 𝑛 and
𝑟
𝑖𝑗

= 0 otherwise. Matrix 𝑅 is called back-diagonal matrix.
It is not hard to see that matrix 𝐶𝑅 is back-circulant and so
symmetric (cf. [1, Chapter 4]).

A rational family of order 𝑛 and type (𝑠
1
, . . . , 𝑠

𝑘
), where

𝑠
𝑖
’s are positive rational numbers, is a collection of 𝑘 rational

matrices of order 𝑛, 𝐴
1
, . . . , 𝐴

𝑘
, that satisfy 𝐴

𝑖
𝐴
𝑇

𝑖
= 𝑠
𝑖
𝐼
𝑛

(1 ≤ 𝑖 ≤ 𝑘) and 𝐴
𝑖
𝐴
𝑇

𝑗
= −𝐴

𝑗
𝐴
𝑇

𝑖
, (1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘). 𝐴 is

a skew-symmetric matrix if 𝐴𝑇 = −𝐴. Two matrices of the
same dimension are disjoint if their entrywise multiplication
is a zero matrix [1, Chapters 1, 2].
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Geramita and Seberry [1, Chapter 7] showed some exis-
tence results for weighing matrices. They showed that when
the orders ofODs andweighingmatrices aremuch larger than
the number of nonzero entries in each row, the necessary
conditions for existence of ODs and weighing matrices are
also sufficient. In this paper, we show some nonexistence
results on weighing matrices and some asymptotic results for
existence of weighing matrices.

2. Nonexistence Results for Weighing Matrices

In this section, we show some nonexistence results for
weighing matrices. The results are summarized in Theorems
4 and 5 (known) andTheorem 10.

Lemma 1 (e.g., [2, Chapter 2]). Theeigenvalues of a symmetric
matrix with real entries are real.

Lemma 2 (e.g., [2, Chapter 2]). The eigenvalues of a skew-
symmetric matrix with real entries are of the form ±𝑖𝑏, where
b is a real number.

Lemma 3 (e.g., [1]). The absolute values of the eigenvalues of
a weighing matrix𝑊(𝑛, 𝑘) are √𝑘.

Theorem 4 (e.g., [3]). There does not exist any symmetric
weighing matrix with zero diagonal of odd order.

Proof. Suppose that 𝑊 = 𝑊(𝑛, 𝑘), 𝑛 odd, is a symmetric
weighing matrix with zero diagonal. From Linear Algebra,
tr(𝑊) = ∑

𝑛

𝑡=1
𝜆
𝑡
, where 𝜆

𝑡
’s are eigenvalues of𝑊. By Lemmas

1 and 3, since 𝜆
𝑡
= ±√𝑘,

tr (𝑊) =

𝑛

∑

𝑡=1

𝜆
𝑡
= 𝑐√𝑘. (4)

Since 𝑛 is odd, 𝑐 must be odd and therefore nonzero, but, by
assumption, tr(𝑊) = 0, which is a contradiction.

Theorem 5 (e.g., [3]). There is no skew-symmetric weighing
matrix of odd order.

Proof. Assume that 𝑊 = 𝑊(𝑛, 𝑘) is a skew-symmetric
weighing matrix of odd order. From Lemmas 2 and 3,
eigenvalues of𝑊 are in form ±𝑖√𝑘.Therefore,

tr (𝑊) =

𝑛

∑

𝑡=1

𝜆
𝑡
= 𝑐𝑖√𝑘. (5)

Since 𝑛 is odd, 𝑐must be odd and so nonzero, but since𝑊 is a
skew-symmetric matrix, tr(𝑊) = 0 which is a contradiction.

Next, we show that if 𝑛 is any odd number and 𝑘 cannot
be written as the sum of three integer squares, then there is
no skew-symmetric weighing matrix 𝑊(4𝑛, 𝑘). To do so, we
first bring the following well known results.

Lemma 6 (e.g., [4]). A positive integer can be written as the
sum of three integer squares if and only if it is not of the form
4
ℓ
(8𝑘 + 7), where ℓ, 𝑘 ≥ 0.

The following lemma is a useful result that can be
concluded from Lemma 6, and, for the sake of completion,
we bring its proof.

Lemma 7 (e.g., [4]). A positive integer is the sum of three
rational squares if and only if it is the sum of three integer
squares.

Proof. Suppose that a positive integer 𝑛 is the sum of three
rational squares. Reducing the three rational numbers to the
same denominator, one may write

𝑚
2
𝑛 = 𝛼
2
+ 𝛽
2
+ 𝛾
2
, (6)

where 𝛼, 𝛽, and 𝛾 are integers. Suppose that 𝑛 cannot be
written as the sum of three integer squares. From Lemma 6,
there exist nonnegative integers 𝑘, ℓ such that 𝑛 = 4

ℓ
(8𝑘 + 7).

Onemay write𝑚 as 2𝑟(2𝑠+1), for some nonnegative integers
𝑟, 𝑠. Thus, 𝑚2 = 4

𝑟
(4(𝑠
2
+ 𝑠) + 1) = 4

𝑟
(8𝑏 + 1), where

𝑏 = (𝑠
2
+ 𝑠)/2 is a nonnegative integer, and so

𝑚
2
𝑛 = 4
𝑟+ℓ

(8𝑘 + 7) (8𝑏 + 1) = 4
𝑟+ℓ

(8𝑐 + 7) , (7)

where 𝑐 = 8𝑘𝑏 + 𝑘 + 7𝑏. This is a contradiction because, by
Lemma 6, 𝑚2𝑛 cannot be written as the sum of three integer
squares, whereas by assumption𝑚2𝑛 = 𝛼

2
+𝛽
2
+𝛾
2
.Therefore,

the result follows.

Lemma 8 (Shapiro [5]). There is a rational family in order 𝑛 =

2
𝑚
𝑡, 𝑡 odd, of type (𝑠

1
, . . . , 𝑠

𝑘
) if and only if there is a rational

family of the same type in order 2𝑚.

Lemma 9 (Geramita and Seberry [1]). A necessary and
sufficient condition that there is a rational family of type [1, 𝑘]
in order 4 is that 𝑘 is a sum of three rational squares.

Proof. Suppose that {𝐴, 𝐵} is a rational family of type [1, 𝑘] in
order 4.Then {𝐼 = 𝐴

𝑇
𝐴,𝐷 = 𝐴

𝑇
𝐵} is also a rational family of

the same type and order.Thus𝐷 = −𝐷
𝑇 and𝐷𝐷

𝑇
= 𝑘𝐼. Since

𝐷 is a skew-symmetric matrix, the diagonal of𝐷 is zero, so 𝑘

is a sum of three rational squares.
Now let 𝑘 = 𝑎

2
+ 𝑏
2
+ 𝑐
2, where 𝑎, 𝑏, and 𝑐 are rational

numbers. If we let

𝐷 =

[
[
[
[
[

[

0 𝑎 𝑏 𝑐

−𝑎 0 −𝑐 𝑏

−𝑏 𝑐 0 −𝑎

−𝑐 −𝑏 𝑎 0

]
]
]
]
]

]

, (8)

then {𝐼, 𝐷} is a rational family of type [1, 𝑘] and order 4.

We use Lemmas 7, 8, and 9 to prove the following
nonexistence result.

Theorem 10. Suppose that positive integer 𝑘 cannot be written
as the sum of three integer squares. Then there does not exist
skew-symmetric𝑊(4𝑛, 𝑘), for any odd number 𝑛.

Proof. If there is skew-symmetric 𝑊 = 𝑊(4𝑛, 𝑘) for some
odd number 𝑛, then {𝐼

4𝑛
,𝑊} is a rational family of type [1, 𝑘]
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and order 4𝑛. Thus, by Lemma 8, there is a rational family of
type [1, 𝑘] and order 4. Lemmas 7 and 9 imply that 𝑘must be
the sum of three integer squares.

3. Asymptotic Existence Results of
Weighing Matrices

In this section, we provide some asymptotic results for
existence of weighingmatrices.These results are summarized
in Theorem 21 and Theorems 22 and 25 (for ODs) that use
different methodologies to improve the known results shown
by Geramita and Seberry [1, Chapter 7].

Lemma 11 (e.g., [1]). A necessary and sufficient condition
that there exists OD(𝑛; 𝑢

1
, . . . , 𝑢

𝑘
) is that there exists a family

{𝐴
1
, . . . , 𝐴

𝑘
} of pairwise disjoint square matrices of order 𝑛

with entries from {0, ±1} satisfying

(i) 𝐴
𝑖
is a𝑊(𝑛, 𝑢

𝑖
), 1 ≤ 𝑖 ≤ 𝑘,

(ii) 𝐴
𝑖
𝐴
𝑇

𝑗
= −𝐴

𝑗
𝐴
𝑇

𝑖
, 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘.

The following lemma, due to Sylvester, is known, and we
bring its proof.

Lemma 12 (see [6]). Let 𝑥 and 𝑦 be two relatively prime
positive integers. Then every integer 𝑁 ≥ 𝑥𝑦 can be written
in the form 𝑎𝑥 + 𝑏𝑦, where 𝑎 and 𝑏 are nonnegative integers.

Proof. Let 𝑁 be an integer greater than or equal to 𝑥𝑦. Since
𝑥 and 𝑦 are relatively prime, there are integers 𝑐 and 𝑑 such
that 𝑐𝑥 + 𝑑𝑦 = 𝑁 (see [4]). So,

(𝑐 + 𝑗𝑦) 𝑥 + (𝑑 − 𝑗𝑥) 𝑦 = 𝑁, (9)

where 𝑗 ∈ Z. One can choose 𝑗 such that 0 ≤ 𝑐 + 𝑗𝑦 ≤ 𝑦 − 1.

For such 𝑗, we let 𝑎 = 𝑐 + 𝑗𝑦 and 𝑏 = 𝑑 − 𝑗𝑥. The condition
𝑁 ≥ 𝑥𝑦 implies that 𝑏must be positive.

The following lemma shows how to construct ODs of
higher orders by using two ODs of the same types but
different orders. The first part of the lemma is known (cf. [1,
Lemma 7.22]).

Lemma 13. Suppose that there are 𝐴 = OD(𝑛
1
; 𝑢
1
, . . . , 𝑢

𝑚
)

and 𝐵 = OD(𝑛
2
; 𝑢
1
, . . . , 𝑢

𝑚
). Let ℎ = gcd(𝑛

1
, 𝑛
2
). Then

there is an integer 𝑁 such that, for each 𝑡 ≥ 𝑁, there is
OD(ℎ𝑡; 𝑢

1
, . . . , 𝑢

𝑚
). Moreover, if 𝐴 and 𝐵 are symmetric, then

there is an integer 𝑁 such that, for each 𝑡 ≥ 𝑁, there is
symmetric OD(ℎ𝑡; 𝑢

1
, . . . , 𝑢

𝑚
).

Proof. Let 𝑥 = 𝑛
1
/ℎ and 𝑦 = 𝑛

2
/ℎ.Then 𝑥 and 𝑦 are relatively

prime. Let 𝑁 = 𝑥𝑦, and let 𝑡 be a positive integer ≥ 𝑁.

By Lemma 12, there are nonnegative integers 𝑎 and 𝑏 such
that 𝑡 = 𝑎𝑥 + 𝑏𝑦. Since there exist OD(𝑛

1
; 𝑢
1
, . . . , 𝑢

𝑚
) and

OD(𝑛
2
; 𝑢
1
, . . . , 𝑢

𝑚
), there are families {𝐴

1
, . . . , 𝐴

𝑚
} of order

𝑛
1
and {𝐵

1
, . . . , 𝐵

𝑚
} of order 𝑛

2
satisfying the conditions in

Lemma 11. We define the family

𝑆 = {(𝐼
𝑎
⊗ 𝐴
1
⊕ 𝐼
𝑏
⊗ 𝐵
1
) , . . . , (𝐼

𝑎
⊗ 𝐴
𝑚
⊕ 𝐼
𝑏
⊗ 𝐵
𝑚
)} (10)

of order 𝑎𝑛
1
+ 𝑏𝑛
2

= ℎ𝑡. It can be seen that this family
satisfies the conditions of Lemma 11; therefore it makes
OD(ℎ𝑡; 𝑢

1
, . . . , 𝑢

𝑚
).

Now if 𝐴 and 𝐵 are symmetric, then 𝐴
𝑖
’s and 𝐵

𝑖
’s, 1 ≤ 𝑖 ≤

𝑚, are all symmetric. Since

((𝐴 ⊗ 𝐵) ⊕ (𝐶 ⊗ 𝐷))
𝑇
= (𝐴
𝑇
⊗ 𝐵
𝑇
) ⊕ (𝐶

𝑇
⊗ 𝐷
𝑇
) , (11)

set 𝑆 consists of 𝑚 symmetric matrices of order ℎ𝑡 satisfying
the conditions of Lemma 11, and so they generate symmetric
OD(ℎ𝑡; 𝑢

1
, . . . , 𝑢

𝑚
).

Theorem 14 (Wallis and Whiteman [7]). Let 𝑞 be a prime
power. Then there is circulant𝑊(𝑞

2
+ 𝑞 + 1, 𝑞

2
).

Corollary 15 (see [1, 8]). Suppose that 𝑞 is a prime power and
𝑐 is any positive integer. Then there is circulant 𝑊(𝑐(𝑞

2
+ 𝑞 +

1), 𝑞
2
).

Proof. Let 𝑐 be a fixed positive integer. FromTheorem 14, we
know that there exists a circulant𝑊(𝑞

2
+ 𝑞 + 1, 𝑞

2
). Suppose

that the first row of this matrix is (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑞
2
+𝑞+1

). Let

𝜙 (𝑥) =

𝑞
2
+𝑞+1

∑

𝑖=1

𝑎
𝑖
𝑥
𝑖
. (12)

Thus, 𝜙(𝜉)𝜙(𝜉−1) = 𝑞
2, where 𝜉 is a primitive root of unity and

𝜉
𝑞
2
+𝑞+1

= 1. For 1 ≤ 𝑗 ≤ 𝑐(𝑞
2
+ 𝑞 + 1) define

𝑏
𝑗
fl

{

{

{

𝑎
⌈𝑗/𝑐⌉

𝑗 ≡ 1 (mod 𝑐)

0 otherwise,
(13)

where ⌈𝑥⌉ is the smallest integer greater than or equal to𝑥.We
show that if𝑊 = circ(𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑐(𝑞
2
+𝑞+1)

), then𝑊 is𝑊(𝑐(𝑞
2
+

𝑞 + 1), 𝑞
2
). To see this, let

𝜓 (𝑦) =

𝑐(𝑞
2
+𝑞+1)

∑

𝑗=1

𝑏
𝑗
𝑦
𝑗
. (14)

Thus we have

𝜓 (𝑦) =

𝑞
2
+𝑞+1

∑

𝑖=1

𝑎
𝑖
𝑦
𝑐(𝑖−1)+1

= 𝑦
1−𝑐

𝑞
2
+𝑞+1

∑

𝑖=1

𝑎
𝑖
𝑦
𝑐𝑖
. (15)

Since 𝜙(𝜉)𝜙(𝜉
−1
) = 𝑞

2, for all 𝜉 such that 𝜉
𝑞
2
+𝑞+1

=

1, 𝜓(𝜉)𝜓(𝜉
−1
) = 𝑞
2, for all 𝜉 such that 𝜉𝑞

2
+𝑞+1

= 1. Applying
the finite Parseval relation
𝑐(𝑞
2
+𝑞+1)

∑

𝑖=1

𝑏
𝑖
𝑏
𝑖+𝑟

=
1

𝑐 (𝑞2 + 𝑞 + 1)

𝑐(𝑞
2
+𝑞+1)

∑

𝑗=1


𝜓 (𝜉
𝑗
)


2

𝜉
𝑗𝑟
, (16)

where 𝑖 + 𝑟−1 is reduced modulo 𝑐(𝑞2 +𝑞+1), for 𝑟 = 0 gives

𝑐(𝑞
2
+𝑞+1)

∑

𝑖=1

𝑏
2

𝑖
=

1

𝑐 (𝑞2 + 𝑞 + 1)
(𝑐 (𝑞
2
+ 𝑞 + 1) 𝑞

2
) = 𝑞
2
. (17)

And, for 1 ≤ 𝑟 ≤ 𝑐(𝑞
2
+ 𝑞 + 1) − 1, ∑𝑐(𝑞

2
+𝑞+1)

𝑖=1
𝑏
𝑖
𝑏
𝑖+𝑟

= 0.
Therefore,𝑊 is circulant𝑊(𝑐(𝑞

2
+ 𝑞 + 1), 𝑞

2
).
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The next lemma shows how to make a symmetric OD to
be used for Theorem 21.

Lemma 16. Let 𝑘 be a positive integer. Then there exists
symmetric OD(2𝑘; 1

(𝑘)
).

Proof. Define 𝐴
1

= ⨂
𝑘

𝑚=1
𝑃 and, for 2 ≤ 𝑛 ≤ 𝑘, 𝐴

𝑛
=

⨂
𝑛−2

𝑚=1
𝐼 ⊗ 𝑄⨂

𝑘

𝑚=𝑛
𝑃, where

𝑃 = [
0 1

1 0
] ,

𝑄 = [
1 0

0 −1
] ,

𝐼 = [
1 0

0 1
] .

(18)

It can be directly verified that the family {𝐴
1
, . . . , 𝐴

𝑘
} of order

2
𝑘 satisfies the conditions of Lemma 11, and therefore itmakes
symmetric OD(2

𝑘
; 1
(𝑘)
). Note that 𝑃,𝑄, and 𝐼 are symmetric.

Theorem 17 (Robinson [9]). All OD(2𝑡; 1, 1, 𝑎, 𝑏, 𝑐) exist,
where 𝑡 ≥ 3 and 𝑎 + 𝑏 + 𝑐 = 2

𝑡
− 2.

We prove the following well known lemma by giving a
proof which is different from the proof in [1, Lemma 7.27].

Lemma 18. For any sequence (𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
) of positive inte-

gers, there is a positive integer 𝑑 such that there is skew-
symmetric OD(2𝑑; 𝑘

1
, 𝑘
2
, 𝑘
3
, 𝑘
4
).

Proof. Let 𝑡
1
and 𝑡
2
be the smallest positive integers such that

1 + 𝑘
1
+ 𝑘
2
≤ 2
𝑡
1 and 1 + 𝑘

3
+ 𝑘
4
≤ 2
𝑡
2 . By Theorem 17, there

are 𝐴 = OD(2
𝑡
1 ; 1, 𝑘
1
, 𝑘
2
) and 𝐵 = OD(2

𝑡
2 ; 1, 𝑘
3
, 𝑘
4
).Without

loss of generality, assume that {𝐼
2
𝑡1 , 𝐴1, 𝐴2} and {𝐼

2
𝑡2 , 𝐵1, 𝐵2}

are two families corresponding to 𝐴 and 𝐵 satisfying the
conditions of Lemma 11. Let 𝑃 and 𝑄 be the same matrices
as in the proof of Lemma 16. It can be directly verified that
the family

{𝐼
2
𝑡2 ⊗ 𝐴

1
⊗ 𝑃, 𝐼
2
𝑡2 ⊗ 𝐴

2
⊗ 𝑃, 𝐵

1
⊗ 𝐼
2
𝑡1 ⊗ 𝑄, 𝐵

2
⊗ 𝐼
2
𝑡1

⊗ 𝑄}

(19)

of four skew-symmetric matrices satisfies all conditions
of Lemma 11, and so it makes skew-symmetric
OD(2

𝑡
1
+𝑡
2
+1
; 𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
).

Corollary 19 (see [1]). Given any sequence (𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
) of

positive integers, there exists a positive integer 𝑑 such that there
is OD(2𝑑; 1, 𝑘

1
, 𝑘
2
, 𝑘
3
, 𝑘
4
).

The following theorem, due to Geramita and Seberry, is
known.

Theorem 20 (Geramita and Seberry [1, Theorem 7.14]).
Suppose that 𝑘 is a square. Then there is an integer 𝑁 = 𝑁(𝑘)

such that, for each 𝑛 ≥ 𝑁, there is𝑊(𝑛, 𝑘).

We use a slightly different method to the proof of
Theorem 20 to give a proof of the following improved result.

Theorem 21. Suppose that 𝑘 is a square. Then there is an
integer𝑁 = 𝑁(𝑘) such that, for each 𝑛 ≥ 𝑁, there is symmetric
𝑊(𝑛, 𝑘).

Proof. Assume that 𝑘 = ∏
𝑚

𝑖=1
𝑞
2

𝑖
, where 𝑞

𝑖
is either 1 or a prime

power. By Theorem 14, for each 𝑖 there exists circulant 𝑊
𝑖
=

𝑊(𝑞
2

𝑖
+ 𝑞
𝑖
+ 1, 𝑞
2

𝑖
). Let

𝑊 =

𝑚

⨂

𝑖=1

𝑊
𝑖
𝑅
𝑖
, (20)

where𝑅
𝑖
is the back-diagonal matrix of order 𝑞2

𝑖
+𝑞
𝑖
+1. It can

be seen that𝑊 is symmetric𝑊(∏
𝑚

𝑖=1
(𝑞
2

𝑖
+ 𝑞
𝑖
+ 1),∏

𝑚

𝑖=1
𝑞
2

𝑖
).

Thus, there is an oddnumber 𝑡 = ∏
𝑚

𝑖=1
(𝑞
2

𝑖
+𝑞
𝑖
+1) such that

there is symmetric𝑊(𝑡, 𝑘).Moreover, from Lemma 16, there
exists symmetric OD(2

𝑘
; 1
(𝑘)
), and so there is symmetric

𝑊(2
𝑘
, 𝑘). Now since 𝑡 is odd, gcd(2𝑘, 𝑡) = 1. Lemma 13

implies that there is a positive integer 𝑁 = 𝑁(𝑘) such that,
for each 𝑛 ≥ 𝑁, there exists symmetric𝑊(𝑛, 𝑘).

We prove the following theorem by a slightly different
method to the proof that first was given by Eades [1, 8,
Theorem 7.15].

Theorem 22. Suppose that 𝑘 = 𝑘
2

1
+ 𝑘
2

2
, where 𝑘

1
and 𝑘

2
are

two nonzero integers. Then there is an integer 𝑁 = 𝑁(𝑘) such
that, for each 𝑛 ≥ 𝑁, there is OD(2𝑛; 𝑘2

1
, 𝑘
2

2
).

Proof. For 𝑗 = 1, 2, let 𝑘2
𝑗
= ∏
𝑚

𝑖=1
𝑞
2

𝑖𝑗
, where 𝑞

𝑖𝑗
is either 1 or a

prime power. For each 𝑖, 1 ≤ 𝑖 ≤ 𝑚, let 𝑏
𝑖
= lcm{𝑞

2

𝑖1
+ 𝑞
𝑖1
+

1, 𝑞
2

𝑖2
+ 𝑞
𝑖2
+ 1}. From Corollary 15, for each 𝑗, 𝑗 = 1, 2, and

each 𝑖, 1 ≤ 𝑖 ≤ 𝑚, there exists circulant𝑊
𝑖𝑗
= 𝑊(𝑏

𝑖
, 𝑞
2

𝑖𝑗
). It can

be seen that the following 2𝑞 × 2𝑞matrix is OD(2𝑞; 𝑘
2

1
, 𝑘
2

2
),

[
[
[

[

𝑥

𝑚

⨂
𝑖=1

𝑊
𝑖1
𝑅
𝑖

𝑦

𝑚

⨂
𝑖=1

𝑊
𝑖2

𝑦

𝑚

⨂
𝑖=1

𝑊
𝑖2

−𝑥

𝑚

⨂
𝑖=1

𝑊
𝑖1
𝑅
𝑖

]
]
]

]

, (21)

where 𝑅
𝑖
is the back-diagonal matrix of order 𝑏

𝑖
and

𝑞 = ∏
𝑚

𝑖=1
𝑏
𝑖
is an odd number. From Theorem 17, one can

choose the smallest positive integer 𝑘 such that there is
OD(2

𝑘
; 𝑘
2

1
, 𝑘
2

2
). Since gcd(2𝑞, 2𝑘) = 2, Lemma 13 implies that

there is an integer𝑁 = 𝑁(𝑘) such that, for each 𝑛 ≥ 𝑁, there
is OD(2𝑛; 𝑘

2

1
, 𝑘
2

2
).

Using the methodology in the proof of Theorem 22, the
asymptotic bounds for the following two corollaries given by
Eades [8] are improved.

Corollary 23. Suppose that 𝑘 is the sum of two nonzero integer
squares. Then there is an integer𝑁 = 𝑁(𝑘) such that, for each
𝑛 ≥ 𝑁, there is𝑊(2𝑛, 𝑘).

Proof. Let 𝑘 = 𝑘
2

1
+ 𝑘
2

2
, where 𝑘

1
and 𝑘

2
are integers. From

Theorem 22, there is an integer 𝑁 = 𝑁(𝑘) such that, for any
𝑛 ≥ 𝑁, there is OD(2𝑛; 𝑘

2

1
, 𝑘
2

2
), and so there is𝑊(2𝑛, 𝑘).
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Corollary 24. Suppose that 𝑑 is an integer square. Then there
exists an integer𝑁 = 𝑁(𝑑) such that, for each 𝑛 ≥ 𝑁, there is
skew-symmetric𝑊(2𝑛, 𝑑).

Proof. Suppose that 𝑑 = 𝑎
2
. Let 𝑘

1
= 1 and 𝑘

2
= 𝑎. By

Theorem 22, there exists an integer 𝑁 = 𝑁(𝑑) such that,
for each 𝑛 ≥ 𝑁, there is OD(2𝑛; 1, 𝑑), and so there is skew-
symmetric𝑊(2𝑛, 𝑑).

We now use a different method to show Theorem 25
shown by Eades [1, 8, Theorem 7.17] to improve the bounds
(𝑁) for the asymptotic existence of ODs of order 4𝑛, and
consequently we prove Corollaries 26, 27, and 28.

Theorem 25. Suppose that 𝑘 = 𝑘
2

1
+ 𝑘
2

2
+ 𝑘
2

3
+ 𝑘
2

4
, where

𝑘
1
, 𝑘
2
, 𝑘
3
, and 𝑘

4
are nonzero integers. Then there is an

integer 𝑁 = 𝑁(𝑘) such that, for each 𝑛 ≥ 𝑁, there is
OD(4𝑛; 𝑘2

1
, 𝑘
2

2
, 𝑘
2

3
, 𝑘
2

4
).

Proof. Assume that 𝑘 = 𝑘
2

1
+𝑘
2

2
+𝑘
2

3
+𝑘
2

4
and 𝑘
1
, 𝑘
2
, 𝑘
3
, and 𝑘

4

are nonzero integers. Let 𝑘2
𝑗
= ∏
𝑚

𝑖=1
𝑞
2

𝑖𝑗
, where 𝑞

𝑖𝑗
is either 1 or a

prime power. For each 𝑖, 1 ≤ 𝑖 ≤ 𝑚, let 𝑏
𝑖
= lcm{𝑞

2

𝑖𝑗
+𝑞
𝑖𝑗
+1; 𝑗 =

1, 2, 3, 4}. From Corollary 15, for each 𝑗, 1 ≤ 𝑗 ≤ 4, and each
𝑖, 1 ≤ 𝑖 ≤ 𝑚, there exists circulant𝑊

𝑖𝑗
= 𝑊(𝑏

𝑖
, 𝑞
2

𝑖𝑗
). Putting

𝐴 =

𝑚

⨂

𝑖=1

𝑊
𝑖1
𝑅
𝑖
,

𝐵 =

𝑚

⨂

𝑖=1

𝑊
𝑖2
,

𝐶 =

𝑚

⨂

𝑖=1

𝑊
𝑖3
,

𝐷 =

𝑚

⨂

𝑖=1

𝑊
𝑖4
,

(22)

in the following array (Goethals and Seidel [10]) gives
OD(4𝑞; 𝑘

2

1
, 𝑘
2

2
, 𝑘
2

3
, 𝑘
2

4
):

[
[
[
[
[
[

[

𝑥𝐴 𝑦𝐵 𝑧𝐶 𝑢𝐷

−𝑦𝐵 𝑥𝐴 𝑢𝐷
𝑇

−𝑧𝐶
𝑇

−𝑧𝐶 −𝑢𝐷
𝑇

𝑥𝐴 𝑦𝐵
𝑇

−𝑢𝐷 𝑧𝐶
𝑇

−𝑦𝐵
𝑇

𝑥𝐴

]
]
]
]
]
]

]

, (23)

where 𝑞 = ∏
𝑚

𝑖=1
𝑏
𝑖
which is an odd number and 𝑅

𝑖
is the back-

diagonal matrix of order 𝑏
𝑖
.

By Lemma 18, there is OD(2
𝑑
; 𝑘
2

1
, 𝑘
2

2
, 𝑘
2

3
, 𝑘
2

4
) for some

suitable integer 𝑑 ≥ 2. Since, for 𝑑 ≥ 2, gcd(4𝑞, 2𝑑) = 4,
Lemma 13 implies that there is an integer𝑁 = 𝑁(𝑘) such that,
for each 𝑛 ≥ 𝑁, there is OD(4𝑛; 𝑘

2

1
, 𝑘
2

2
, 𝑘
2

3
, 𝑘
2

4
). Note that if

some of 𝑘
𝑖
’s are zero, then we consider the zero matrices.

Corollary 26. Suppose that 𝑑 is any positive integer. Then
there is an integer 𝑁 = 𝑁(𝑑) such that, for each 𝑛 ≥ 𝑁, there
is𝑊(4𝑛, 𝑑).

Proof. It is a well known theorem of Lagrange [11] that every
positive integer can be written in the sum of four integer
squares. Let 𝑑 = 𝑘

2

1
+ 𝑘
2

2
+ 𝑘
2

3
+ 𝑘
2

4
. From Theorem 25, there

is an integer 𝑁 = 𝑁(𝑘) such that, for each 𝑛 ≥ 𝑁, there is
OD(4𝑛; 𝑘

2

1
, 𝑘
2

2
, 𝑘
2

3
, 𝑘
2

4
), and therefore there is𝑊(4𝑛, 𝑑).

Corollary 27. Suppose that 𝑑 is the sum of three integer
squares. Then there exists an integer 𝑁 = 𝑁(𝑑) such that, for
each 𝑛 ≥ 𝑁, there is skew-symmetric𝑊(4𝑛, 𝑑).

Proof. Consider 𝑑 = 𝑎
2
+𝑏
2
+𝑐
2, for some integers 𝑎, 𝑏, and 𝑐.

Substituting 𝑘
1
= 𝑎, 𝑘

2
= 𝑏, 𝑘

3
= 𝑐, and 𝑘

4
= 1 inTheorem 25

gives the result. Note that the existence of OD(𝑛; 1, ℎ) is
equivalent to existence of skew-symmetric𝑊(𝑛, ℎ).

Corollary 28. Suppose that 𝑑 is any positive integer. Then
there exists an integer 𝑁 = 𝑁(𝑑) such that, for each 𝑛 ≥ 𝑁,
there is skew-symmetric𝑊(8𝑛, 𝑑).

Proof. By Lagrange’s theorem [12], one can write 𝑑 = 𝑘
2

1
+𝑘
2

2
+

𝑘
2

3
+ 𝑘
2

4
, where 𝑘

𝑖
’s are nonnegative integers. Let 𝐴, 𝐵, 𝐶, and

𝐷 be the same matrices as in Theorem 25. It can be seen that
the following matrix gives OD(8𝑞; 1, 𝑘

2

1
, 𝑘
2

2
, 𝑘
2

3
, 𝑘
2

4
), where 𝑞 is

obtained as inTheorem 25, and is an odd number:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥𝐴 𝑦𝐵 𝑧𝐶 𝑢𝐷 𝑤𝐼
𝑞

0 0 0

−𝑦𝐵 𝑥𝐴 𝑢𝐷
𝑇

−𝑧𝐶
𝑇

0 𝑤𝐼
𝑞

0 0

−𝑧𝐶 −𝑢𝐷
𝑇

𝑥𝐴 𝑦𝐵
𝑇

0 0 𝑤𝐼
𝑞

0

−𝑢𝐷 𝑧𝐶
𝑇

−𝑦𝐵
𝑇

𝑥𝐴 0 0 0 𝑤𝐼
𝑞

𝑤𝐼
𝑞

0 0 0 −𝑥𝐴 𝑦𝐵
𝑇

𝑧𝐶
𝑇

𝑢𝐷
𝑇

0 𝑤𝐼
𝑞

0 0 −𝑦𝐵
𝑇

−𝑥𝐴 𝑢𝐷 −𝑧𝐶

0 0 𝑤𝐼
𝑞

0 −𝑧𝐶
𝑇

−𝑢𝐷 −𝑥𝐴 𝑦𝐵

0 0 0 𝑤𝐼
𝑞

−𝑢𝐷
𝑇

𝑧𝐶 −𝑦𝐵 −𝑥𝐴

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (24)

From Corollary 19, there is OD(2
𝑑
; 1, 𝑘
2

1
, 𝑘
2

2
, 𝑘
2

3
, 𝑘
2

4
) for some

suitable integer 𝑑 ≥ 3. Since, for 𝑑 ≥ 3, gcd(8𝑞, 2𝑑) = 8,
Lemma 13 implies that there is an integer 𝑁 = 𝑁(𝑑) such
that, for any 𝑛 ≥ 𝑁, there is OD(8𝑛; 1, 𝑘

2

1
, 𝑘
2

2
, 𝑘
2

3
, 𝑘
2

4
), and so

there is skew-symmetric𝑊(8𝑛, 𝑑).

Example 29. Suppose that 𝑘 = 92.Let 𝑘
1
= 2, 𝑘

2
= 4, 𝑘

3
= 6,

and 𝑘
4
= 6 in Theorem 25. Also, let 𝑞

11
= 2, 𝑞

21
= 1, 𝑞

12
=

4, 𝑞
22

= 1, 𝑞
13

= 2, 𝑞
23

= 3, 𝑞
14

= 2, and 𝑞
24

= 3. Then
𝑏
1
= lcm{7, 21, 7, 7} = 21, and 𝑏

2
= lcm{3, 3, 13, 13} = 39. By

Theorem 25, there is

OD (4 ⋅ 21 ⋅ 39; 2
2
, 4
2
, 6
2
, 6
2
) . (25)

FromLemma 18, there isOD(2
13
; 2
2
, 4
2
, 6
2
, 6
2
). By Lemma 13,

since ℎ = gcd(4⋅21⋅39, 213) = 4, we have𝑁(92) ≤ 2
11
⋅3
2
⋅7⋅13,

and so, for each 𝑛 ≥ 𝑁(92), there are 𝑊(4𝑛, 92) and skew-
symmetric𝑊(8𝑛, 92).
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