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Artificial neural networks (ANNs) are powerful empirical approaches used to model databases with a high degree of accuracy.
Despite their recognition as universal approximators, many practitioners are skeptical about adopting their routine usage due to
lack of model transparency. To improve the clarity of model prediction and correct the apparent lack of comprehension, researchers
have utilized a variety of methodologies to extract the underlying variable relationships within ANNs, such as sensitivity analysis
(SA). The theoretical basis of local SA (that predictors are independent and inputs other than variable of interest remain “fixed” at
predefined values) is challenged in global SA, where, in addition to altering the attribute of interest, the remaining predictors are
varied concurrently across their respective ranges. Here, a regression-based global methodology, state-based sensitivity analysis
(SBSA), is proposed for measuring the importance of predictor variables upon a modeled response within ANNs. SBSA was
applied to network models of a synthetic database having a defined structure and exhibiting multicollinearity. SBSA achieved
the most accurate portrayal of predictor-response relationships (compared to local SA and Connected Weights Analysis), closely
approximating the actual variability of the modeled system. From this, it is anticipated that skepticisms concerning the delineation
of predictor influences and their uncertainty domains upon a modeled output within ANNs will be curtailed.

1. Introduction

Variable nonlinearity, correlation, and noise are character-
istic, yet inseparable components of real-world databases.
Clearly, the managing of such data conditions (both sin-
gularly and synergistically) by users, while simultaneously
taking into account the large degree of complexity of nat-
ural systems, remains a considerable shortcoming of many
empirical modeling efforts. A powerful approach for the
modeling of nonlinear functions within a defined degree of
accuracy is artificial intelligence, of which artificial neural
networks (ANNs) are a core technology [1]. ANNs require
little (if any) expert knowledge for their application and

do not necessitate known probability distributions for vari-
ables. Multilayer feed-forward perceptrons (MLPs), the most
commonly utilized ANN topology, can approximate any
measurable function of an output (response) variable within a
database, regardless of the nonlinear function utilized and/or
the data dimensionality and variance [2].

Nonetheless, MLPs exhibit a holistic deficiency in declar-
ative knowledge structure. Predictor-response associations
are encoded incomprehensibly as weight and bias values
within a multilayered topology, providing little (or no)
apparent realization to users regarding network functionality
of and/or knowledge extraction for the modeled process
(Figure 1).This “black-box” trait remains the main constraint
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Figure 1: Representations of artificial neural networks. (a) A multilayer perceptron depicting interaction/influences among input variables
(𝑥
1,...,𝑖

), hidden/output layers with processing elements (PE
1,...,𝑗

and PE
𝑜
), synaptic weights (𝑤), and modeled output (𝑦). (b) A representative

network interpretation diagram for a representative simulation within Case Study. Line thickness portrays the relative magnitude of the
weight.

to the routine utilization of ANNswithin predictive analytics.
Overcoming this lack of model transparency (i.e., defining
input influences and their uncertainty domains upon the
modeled output) has become a focus of recent machine
learning research (e.g., [3–6]).

Numerous (symbolic and algorithmic) approaches have
been used to identify the confidence of network prediction
as well as distinguish uncertainties associated with the “cause
and effect” relationships between input and output variables
(e.g., [7–11]). One such approach is sensitivity analysis (SA),
with methodological perspectives categorized as either qual-
itative or quantitative. Qualitative SA relies upon domain
“expert” opinions, where individual users define, based on
(his/her) opinion, the importance of predictor variables.
Notably, the relative importance of singular variables cannot
be quantified due to a generalized lack of expertise or when
a system’s behavior is not understood a priori. Conversely,
quantitative SAs are classified as either local or global
approaches [12]. In local SA, the predictive uncertainty upon
themodeled output is quantified by altering a single predictor
across a predefined range, while remaining predictors are
“fixed” at predefined values. In global SA, the singular

effects of predictors upon the output are evaluated during
instances when remaining inputs are varied concurrently
across predefined ranges (for reviews, see [13–15]).

However, local SA ignores conditions of model nonlin-
earity and the lack of independence and multicollinearity
among database variables. Model linearity and independence
between/among multiple input variables often are not valid
assumptions; as a consequence, altering the value of one
predictor variable will affect (the values of) other inputs and,
in turn, impact the predictive power (and uncertainty) of
a response variable. For example, assume that the meteoro-
logical and hydrological variables, ambient (air) and water
temperatures, respectively, are used as predictors within an
ANN attempting to model a water-quality response (e.g.,
water clarity arising from biotic abundance [16, 17]). Because
ambient and water temperatures typically would be highly
correlated (yet not perfectly related due to distinct phys-
ical properties of water and air), analyzing the network’s
predictive uncertainty in regard to ambient temperature
alone, while keeping the value of water temperature static,
is neither appropriate nor logical. In this simplistic example,
the assumption of independence and nonassociation between
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these two inputs imposes an unrealistic portrayal of model
capability/uncertainty, a situation that becomes more per-
plexing when, in addition to correlative processes, database
input/output relationships are nonlinear.

Here, a global state-based sensitivity analysis (SBSA) is
proposed. For SBSA, input vectors associatedwith a predictor
variable initially were assigned to a bin (or “state”) along
a distribution range where every “state” was equivalent to
a predetermined variance of that distribution. Quantitative
uncertainties for individual predictors upon the modeled
response then were estimated as a function of dithered
alterations across its data range. Importantly, the values
of remaining predictors were allowed to vary concurrently
across respective data ranges and in correspondence to those
of the predictor of interest.

2. Local Sensitivity Analysis

In local SA, the effect of altering the value of a singular
predictor upon the response variable(s) is evaluated, while
values of other inputs remain unchanging (often fixed at
values of the 1st quartile, median, or mean [18]). Typically,
inputs not of interest are held at their respective mean values;
as such, this methodology often is termed “sensitivity about-
the-mean analysis” [14]. Local SA commonly is used within
statistical/mechanistic modeling practices due to the ease in
its computation and the simplicity of its comprehension [14,
19]. Yet, despite the straightforwardness of its calculation and
interpretation, local SA is appropriate only during instances
when inputs are independent. In actuality, predictor variables
typically display dependability upon and correspondence
with each other (fully or in part). As such, “fixing” values
of multiple predictors while examining the effect of a single
“changing” variable is neither logical nor representative of
real-world systems.

To illustrate the functionality of this approach, consider
a feed-forward backpropagation MLP comprised of inputs
(𝑥
𝑖,...,𝐼

), multiple processing elements (PE
𝑗,...,𝐽

) in one hidden
layer (HL), and one output (𝑦). The sensitivity, Sen

𝑖
, of

output 𝑦 with respect to input 𝑥
𝑖
is defined as ([20]; refer to

Figure 1(a) for notation)
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where PE󸀠 and 𝑦
󸀠

𝑗
are the derivative values of the HL and

output activation function and 𝑤
𝑥𝑖PE𝑗 and 𝑤PE𝑗 ,PE𝑜 are the

weights between the input-hidden and hidden-output layers,
respectively.

3. Global Sensitivity Analysis

In global SA, the variation of a singular input variable is con-
sidered while the values of other predictors also are allowed
to vary [12]. In this manner, the comprehensive effects of
predictor variables upon the modeled output(s) are assessed
[21], lending to immediate advantages of global approaches
(over local SA), most notably, the inclusion of predictor
influences in terms of range and shape for input probability
density functions and the multidimensional “averaging” of
dependencies (or correlations) among multiple inputs [14].
By assessing output uncertainties over multidimensional
variable space, global SA is not limited by the conditions
of variable linearity or additivity within model estimations,
thereby ensuring that such attributes are accounted for within
derivation of predictive uncertainty functions [21, 22]. Global
SA affords validity to the delineation of importance formulti-
ple predictors to a modeled output and, by yielding a range of
model outcomes attributable to concurrent perturbation by a
variable “suite,” provides knowledge about the direct (first-
order) effect of an individual predictor upon the response
variable(s) as well as interaction (higher order) effects [23,
24].

Diverse global SA methodologies exist (dependent upon
the objective of the analysis) but can be categorized
into screening and regression-based and variance-based
approaches [21, 23, 25, 26]. Screening assesses the holistic
importance of (select) groups of input variables upon model
prediction uncertainty, often via cluster analysis in multidi-
mensional scatter plots, but more advanced techniques have
been proposed [27]. Because screening provides minimal, if
any, quantitative information pertaining to predictor impor-
tance, it typically is utilized as an initial step by users to first
sort and then remove variables having little importance to
model prediction [28]. Regression approaches traditionally
involve fitting predictor (independent) variables to a response
(dependent) variable via parametric multiple regression in a
complete or stepwise manner [21]. By utilizing standardized
regression coefficients within the regressionmodel (note that
standardizing the regression coefficients parameterizes the
variance of independent variables to values of one, i.e., a
correlation coefficient), users can assess the number and
direction of standard deviations that a dependent variable
will be altered, per standard deviation changes of predictor
variables. Population resampling via Monte Carlo simulation
followed by regressionmodeling affords delineation of incon-
sistencies in predictor effects, while circumventing difficulties
with conditions of model nonlinearity and nonadditivity
[29]. Variance-based approaches evaluate predictor uncer-
tainty upon the response variable as probability distributions,
from which users partition (and ultimately quantify) the
response variance attributable to an individual (or groups of)
predictor(s). Variance decomposition-based methodologies
commonly utilized in science and engineering applications
include the analysis of variance for linear models, the
Fourier amplitude sensitivity test, and Sobol [30] indices for
nonlinear models [31–33]. Nevertheless, the computational
“burden” typically associatedwith population resampling and
variance-based algorithms limits their routine usage.
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4. Complementary Analyses to
Sensitivity Analysis

Techniques complimenting SA in identifying the interac-
tions and/or predictive uncertainties within (trained) ANNs
include Neural Interpretation Diagrams (NIDs) and Con-
nected Weights Analysis (CWA). NIDs provide a quali-
tative depiction of contrasting weight strength and direc-
tion among neurons/nodes within a network’s topology
whereas CWA incorporates a quantitative contribution of
synaptic weights among input-HL-output layers, with pre-
dictors having greater values considered more influential
in describing the behavior of the modeled system. Yet,
excitatory/inhibitory influences of predictor variables are not
denoted within calculations, and the extent of predictive
uncertainties for input-output data ranges cannot be inferred
from final values. Accordingly, explanatory interpretation of
calculations by users is limited to the holistic magnitude of
the impact of predictors upon the modeled response.

4.1. Neural Interpretation Diagram (NID). Originally intro-
duced by S. L. Özesmi and U. Özesmi [34], a NID portrays
themagnitude anddirection of connection (synaptic)weights
between/among network neurons and nodes. Neurons/nodes
are arranged in cascading layers (input-hidden-output) with
synaptic weight direction/values represented as lines within
network depictions (Figure 1(b)). Interaction between input
neurons is identified during instances when more than
one “significant” connection enters a node. Justifiably, user
interpretation of a NID illustrating a complex network (i.e.,
having numerous inputs exhibiting multicollinearity and/or
multiple predictive significance with numerous PEs andHLs)
can be difficult, if not impossible (e.g., [16, 35–37]).

4.2. Connected Weights Analysis (CWA). CWA quantifies
NID portrayals by utilizing the final synaptic weight values to
identify the relative share of prediction associated withmodel
inputs [38]. For this, interacting weight quotients among
neurons/nodes are summed, with the predictors having the
greatest relative value (in terms of connecting weights to
output) deemed themost influential in describing the holistic
behavior of the modeled outcome. As an example, users
can consider the aforementioned MLP (Figure 1(a), a single
modeled output (𝑦) arising from five predictor variables
(𝑥
𝑖,...,𝐼

) via a single HL having five PEs (PE
𝑗,...,𝐽

)).The absolute
contribution of any one input variable (𝐶

𝑥𝑖,...,𝐼
) is calculated

from the final trainedweight values (𝑤) as (refer to Figure 1(a)
for notation)
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input-HL and HL-output connections, respectively. The rel-
ative contribution for a single input (e.g., 𝑅𝐶

𝑥𝑖,...,𝐼
) then is

determined from the summation of all input-HL-output
contributions (𝑆𝐶

𝑥
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5. Derivation of State-Based
Sensitivity Analysis

In natural systems, a variable’s numerical value lies within a
predetermined interval, hereafter a variable “state,” expressed
from the mean (𝜇) and standard deviation (𝜎) of its sample
population (Figure 2). Because variable “states” are a function
of distinct variances within individual (distinct) sample
populations, the number of states and associated numerical
ranges among multiple distributions will differ. Given this,
the correspondences among variables within distinct states of
their sample ranges also will differ. Local SA, where the value
of predictors (besides that of the variable of interest) is fixed
at their mean value, disregards this principle. For SBSA, the
sensitivity of an output (𝑦) corresponds to an input variable
(𝑥
𝑖
) within its 𝑠th state. For 𝑥

𝑖
, sensitivity (Sen𝑠

𝑖
) becomes
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with values for other inputs remaining fixed (to mean values)
within respective states corresponding to 𝑥

𝑖
. By partitioning

the (changing) range of values for inputs into 𝑠 intervals, 𝑥𝑠
𝑖

becomes the value of 𝑥
𝑖
belonging to the 𝑠th interval.

As an example, users can consider a hypothetical database
(Table 1) having five input variables (𝑥

1,...,5
) and one output

variable (𝑦). The data range for 𝑥
1
, with mean (𝜇

𝑥1
) and

standard deviation (𝜎
𝑥1
) values for variable 𝑥

1
of −0.2281 and

0.9144, respectively, partitioned into twelve “states” (but any
number could be utilized), becomes

State 1: [𝜇
𝑥1
−3𝜎
𝑥1
, 𝜇
𝑥1
−2.5𝜎

𝑥1
] = [−2.9713, −2.5141],

State 2: [𝜇
𝑥1
−2.5𝜎

𝑥1
, 𝜇
𝑥1
−2𝜎
𝑥1
] = [−2.5141, −2.0569],

State 3: [𝜇
𝑥1
−2𝜎
𝑥1
, 𝜇
𝑥1
−1.5𝜎

𝑥1
] = [−2.0569, −1.5997],

State 4: [𝜇
𝑥1
− 1.5𝜎

𝑥1
, 𝜇
𝑥1
−𝜎
𝑥1
] = [−1.5997, −1.1425],

State 5: [𝜇
𝑥1
−𝜎
𝑥1
, 𝜇
𝑥1
− 0.5𝜎

𝑥1
] = [−1.1425, −0.6853],

State 6: [𝜇
𝑥1
− 0.5𝜎

𝑥1
, 𝜇
𝑥1
] = [−0.6853, −0.2281],

State 7: [𝜇
𝑥1
, 𝜇
𝑥1
+ 0.5𝜎

𝑥1
] = [−0.2281, 0.2291],

State 8: [𝜇
𝑥1
+ 0.5𝜎

𝑥1
, 𝜇
𝑥1
+ 𝜎
𝑥1
] = [0.2291, 0.6863],

State 9: [𝜇
𝑥1
+ 𝜎
𝑥1
, 𝜇
𝑥1
+ 1.5𝜎

𝑥1
] = [0.6863, 1.1435],

State 10: [𝜇
𝑥1
+ 1.5𝜎

𝑥1
, 𝜇
𝑥1
+ 2𝜎
𝑥1
] = [1.1435, 1.6007],

State 11: [𝜇
𝑥1
+ 2𝜎
𝑥1
, 𝜇
𝑥1
+ 2.5𝜎

𝑥1
] = [1.6007, 2.0579],

State 12: [𝜇
𝑥1
+ 2.5𝜎, 𝜇

𝑥1
+ 3𝜎
𝑥1
] = [2.0579, 2.5151],
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Table 1: Hypothetical database for an artificial neural network. Note that data are not normalized, with vectors sorted based on descending
values of 𝑥

1
.

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑦

−1.80 −0.41 −0.71 1.01 0.36 −2.03
−1.77 −0.78 0.76 −1.79 0.02 −1.14
−1.53 −0.64 0.67 −0.24 0.69 −1.43
−1.50 0.62 1.36 −0.02 1.35 −0.99
−0.71 −1.90 −2.05 −1.23 −0.22 −1.66
−0.70 −2.37 −1.19 −1.08 −0.58 −1.78
−0.50 −0.81 0.56 −0.64 −1.42 −0.10
−0.38 −0.04 −0.24 −0.40 −1.54 −0.18
−0.31 0.46 −0.36 1.14 0.84 −0.51
−0.16 0.84 −0.58 −0.06 0.60 −0.56
−0.13 −0.36 −0.21 −0.35 1.19 −0.36

St. 1 St. 2 St. 3 St. 4 St. 5 St. 6 St. 7 St. 8 St. 9 St. 10 St. 11 St. 12

Re
sp

on
se

/p
ro

ba
bi

lit
y

Distribution

<−3𝜎 −2.5𝜎 −2𝜎 −1.5𝜎 −1𝜎 −0.5𝜎 𝜇 +0.5𝜎 +𝜎 +2𝜎 +2.5𝜎+1.5𝜎 >+3𝜎

Figure 2: Subjective data bins (or “states”) arising from standard deviation intervals for a variable (𝑥) displaying a normal (Gaussian)
distribution.

with similar calculations completed for other variables. The
relationships among multiple “states” for variable 𝑥

1
with

corresponding states of other variables then were tabulated
(Table 2). Calculations for the sensitivity of an output in
relation to alterations of 𝑥

1
initiated from the center of the

most negative state for 𝑥
1
(i.e., state three), with the value of

𝑥
1
increasing and values for other variables adjusted to their

corresponding “state” mean value (Table 3).
Briefly, when values of 𝑥

1
occur within a particular state

(e.g., state eight; Table 2), values for other input variables
may occur within multiple, distinct states of their respective
distribution (e.g., values of 𝑥

2
occur within state six and

single occurrences in each of states seven, nine, and eleven,
with other variables following suit). The value for 𝑥

2
would

be computed as the weighted mean value for the differing
states (i.e., states six, seven, nine, and eleven, with the value
for state six tallied three times). Because 𝑥

1
was considered

to be distributed normally and the associated variable states
were based on the sample population mean and standard
deviation, no values for 𝑥

1
occurred within states one, two,

ten, and twelve (see Tables 2 and 3). In this manner, values
for input variables, 𝑥

2
to 𝑥
5
, other than the variable of

interest (𝑥
1
) within SBSA calculations will vary considerably

from those utilized in local SA, thereby resulting in distinct
modeled output values (Table 4).

6. Case Study

An artificial database having a defined structure, consisting
of 10,000 data vectors (or “exemplars”) with five predictor
variables (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
) and one dependent variable (𝑦),

was obtained from Olden et al. (University of Washington,
Seattle, WA, USA; refer to [8]). The correlation structure for
dependent and independent variables was fixed (𝑟

𝑦⋅𝑥1
= 0.8,

𝑟
𝑦⋅𝑥2

= 0.6, 𝑟
𝑦⋅𝑥3

= 0.4, 𝑟
𝑦⋅𝑥4

= 0.2, and 𝑟
𝑦⋅𝑥5

= 0.0), with
a correspondence of 0.2 between any two predictors. In this
manner, the predictive significance of independent variables
within subsequent models progressively decreased from 𝑥

1
,

the most important predictor, to 𝑥
5
, the least important.

Monte Carlo simulation then was conducted to provide 50
distinct data subsets (of 150 exemplars each) from the original
database.

6.1. Network Training and Testing. MLPs, consisting of pre-
dictor variables (𝑥

1,...,𝑖
), multiple PEs

(1,...,𝑗)
in one HL layer,
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Table 2: Corresponding “states” for input variables, 𝑥
2
to 𝑥
5
, in the hypothetical database when values of the input variable, 𝑥

1
, lie within a

distinct “state” along its distribution range.

𝑥
1
state 𝑥

2
𝑥
3

𝑥
4

𝑥
5

1 — — — —
2 — — — —
3 5, 6 5, 8 3, 9 3, 5
4 5, 8 7, 9 6, 7 8, 9
5 2, 3 3, 4 4, 5 5, 6
6 5, 6, 7 6, 6, 7 6, 9, 9 3, 4, 8
7 7, 7, 7 6, 8, 8 3, 6, 7 8, 8, 9
8 6, 6, 6, 7, 9, 11 5, 7, 9, 9, 9, 10 5, 5, 7, 8, 9, 10 3, 4, 5, 8, 9, 9
9 9 5 6 5
10 — — — —
11 6 4 8 6
12 — — — —

Table 3: Resultant mean values for input variables, 𝑥
2
to 𝑥
5
, in the hypothetical database when the mean value of 𝑥

1
lies within a distinct

“state” along its distribution range.

𝑥
1
state 𝑥

1
𝑥
2

𝑥
3

𝑥
4

𝑥
5

1 — — — — —
2 — — — — —
3 −1.83 −0.55 0.12 −0.44 0.04
4 −1.37 −0.01 0.96 −0.20 1.03
5 −0.91 −2.16 −1.56 −1.14 −0.45
6 −0.46 −0.28 0.03 0.03 −0.70
7 0.00 0.44 −0.35 −0.75 0.95
8 0.46 0.59 1.04 0.20 −0.04
9 0.91 1.34 −0.72 −0.44 −0.70
10 — — — — —
11 1.83 −0.28 −1.28 0.49 −0.20
12 — — — — —

Table 4: Resultant mean values for input (𝑥
2
to 𝑥
5
) and output (𝑦) variables in the hypothetical database derived in state-based sensitivity

analysis (SBSA) and local sensitivity analysis (local SA), for instance, when the mean value of 𝑥
1
lies within a distinct “state” along its

distribution range.

𝑥
1
state 𝑥

1
value SBSA Local SA

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑦 𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑦

1 — — — — — — — — — — —
2 — — — — — — — — — — —
3 −1.83 −0.55 0.12 −0.44 0.04 −1.50 0.01 0.16 −0.27 0.03 −1.29
4 −1.37 −0.01 0.96 −0.20 1.03 −1.10 0.01 0.16 −0.27 0.03 −0.95
5 −0.91 −2.16 −1.56 −1.14 −0.45 −1.61 0.01 0.16 −0.27 0.03 −0.62
6 −0.46 −0.28 0.03 0.03 −0.70 −0.28 0.01 0.16 −0.27 0.03 −0.30
7 0.00 0.44 −0.35 −0.75 0.95 −0.09 0.01 0.16 −0.27 0.03 0.04
8 0.46 0.59 1.04 0.20 −0.04 0.75 0.01 0.16 −0.27 0.03 0.37
9 0.91 1.34 −0.72 −0.44 −0.70 1.30 0.01 0.16 −0.27 0.03 0.69
10 — — — — — — — — — — —
11 1.83 −0.28 −1.28 0.49 −0.20 0.83 0.01 0.16 −0.27 0.03 1.36
12 — — — — — — — — — — —
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and an output variable (𝑦) arising from PE
𝑜
and utiliz-

ing a backpropagation learning algorithm, were originated
using NeuroSolutions v6.31 software (NeuroDimension, Inc.,
Gainesville, Florida, USA) as (refer to Figure 1(a) for nota-
tion)

𝑦 = 𝑓 {𝑤PE1,PE𝑜 [𝑓 (𝑤𝑥1 ,PE1 ⋅ 𝑥1 + 𝑤𝑥2 ,PE1

⋅ 𝑥
2
⋅ ⋅ ⋅ 𝑤
𝑥𝑖 ,PE1 ⋅ 𝑥𝑖 + 𝜀1)]} + 𝑓 {𝑤PE2 ,PE𝑜 [𝑓 (𝑤𝑥1 ,PE2

⋅ 𝑥
1
+ 𝑤
𝑥2 ,PE2 ⋅ 𝑥2 ⋅ ⋅ ⋅ 𝑤𝑥𝑖 ,PE2 ⋅ 𝑥𝑖 + 𝜀2)]}

+ 𝑓 {𝑤PE𝑗 ,PE𝑜 [𝑓 (𝑤𝑥1 ,PE𝑗 ⋅ 𝑥1 + 𝑤𝑥2 ,PE𝑗

⋅ 𝑥
2
. . . 𝑤
𝑥𝑖 ,PE𝑗 ⋅ 𝑥𝑖 + 𝜀𝑗)]} .

(6)

This network architecture was identical to that used by Olden
et al. [8] in order to make study comparisons possible. Trans-
fer functions within PEs were linear (note that a networkwith
linear transfer functions is capable of modeling nonlinear
interactions among dependent variables). Exemplars within
each of the data subsets were assigned randomly for model
training, cross-validation, and testing (60, 15, and 25% of sub-
set exemplars, resp.). ANNs were trained and cross-validated
prior to being applied to test exemplars. The presentation of
cross-validation data concurrent with training data provided
for an unbiased estimation of prediction.

For training, exemplars were repeatedly presented to a
network utilizing a constant momentum rate (0.7) and varied
step sizes (1.0 and 0.1 for the HL and output layer, resp.),
with weights adjusted after presentation of all exemplars (or
“epoch”) to minimize the mean square error (MSE). The
MSE was computed concurrently for the cross-validation
exemplars. Training was terminated prior to the maximum
of 1000 epochs if the MSE within either the training or
cross-validation data began to increase (i.e., an indication
that the network began to memorize the data [39, 40]).
Values of MSE for both training and cross-validation data
subsets converged to global minimums over multiple epochs
(e.g., Figure 3(a)), indicating that MLPs provided adequate
estimates of prediction (e.g., Figure 3(b)). Upon applying
trained networks to testing data subsets, modeled response
values closely approximated simulated (measured) values
(e.g., Figure 3(c)).

6.2. Determining and Evaluating SBSA. For each simulated
data subset, values of singular input variables of interest were
deviated across predefined states of their data range. The
remaining input variables were fixed at values corresponding
to the particular state that the value of the input variable
of interest resided within. When the state for the variable
of interest changed, values of the remaining predictors also
changed to values within their respective distributions cor-
responding to the “new” state for the variable of interest.
Following this approach for each of the 50 simulations,
weighted mean values for ancillary variables were generated
for singular variables of interest within each of the designated
states across its distribution (e.g., Table 5; see above). These

data then were implemented within the aforementioned
trained/validated ANNs.

State-based sensitivity values were derived for all input
variables (following (4) and (5)). The accuracy of ranking the
input variable importance then was estimated via Gower’s
coefficient [8, 41]. Briefly, for inputs (𝑥

1,...,5
) within a simu-

lation subset (𝑧), the agreement between the modeled and
actual variable ranks was tabulated as a binary number (“1” if
correct and “0” if incorrect). The accuracy in ranking inputs
across 50 simulations then was derived as

Gower’s coefficient (as%) = 100 ⋅ (

1

50

) ⋅

50

∑

𝑧=1

𝑥
1,...,5

. (7)

In this manner, the correctness in ranking predictors for
each of SBSA, local SA (following (1)), and CWA (following
(2) and (3)) was estimated, affording the means with which
to compare methodology effectiveness (i.e., accuracy). The
absolute deviation of the modeled rank from the actual rank
(i.e., precision) also was tabulated.

Correctness in ranking predictive significance of input
variables was dissimilar among SBSA, local SA, and CWA
(Figure 4), with the accuracy of SBSA (Gower’s coefficient =
0.83) being twofold greater than those provided by local SA
and CWA (coefficients of 0.42 and 0.43, resp.).

SBSA correctly ranked the initial three variables having
the greatest predictive significance (i.e., 𝑥

1
, 𝑥
2
, and 𝑥

3
) in 95%

of simulations; thereafter, accuracy diminished to approx-
imately 65% for the rankings of 𝑥

4
and 𝑥

5
(Figure 4(a)).

Notably, SBSA yielded minimal deviations in estimation
of rank importance across variables (Figure 4(b)). Local
SA was comparable with SBSA in ranking the two most
significant predictors (𝑥

1
, 𝑥
2
). However, the ranking of 𝑥

3

correctly occurred in only 20% of simulations with zero
instances of correctness for inputs 𝑥

4
and 𝑥

5
. In contrast,

CWA correctly ranked 𝑥
1
and 𝑥

2
, in only 84 and 52% of

instances, respectively. Accuracy subsequently diminished to
approximately 28% for inputs 𝑥

4
and 𝑥

5
. Notwithstanding

the substantial deviation in ranking 𝑥
3
by local SA (see

Figure 4(b)), CWA produced the greatest holistic deviation
of modeled rankings from actual rankings (i.e., the least
precision) for predictors.

7. Discussion

Through delineation of inputs having the greatest impact
upon the variability of modeled outcomes, SA offers an
interpretable metric of how well predictor variables embody
the behavior of the modeled process. Because SA is used to
characterize regions of maximal variation within a model
domain, it can be considered a byproduct of uncertainty
analysis [42]. Local SA is easy tomanipulate throughminimal
computational effort; as such, it has had universal, ostensibly
indiscriminate application within statistical and mechanistic
modeling practices spanning diverse disciplines [14, 19]. Yet,
local SA only provides information concerning how network
outcomes may (or may not) be altered via deviation of a
single predictor. Such a “one parameter at a time” approach
is realistic only when the relationships between predictor
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Table 5: Resultant mean values for input variables, 𝑥
2
to 𝑥
5
, and the modeled output, 𝑦, within the case study simulation, #37 (see Figure 3),

when values of 𝑥
1
lie within distinct “states” across its distribution (refer to Figure 2). 𝑛: the instances of data vectors within a distinct 𝑥

1

“state” (total 𝑛 = 150).

𝑛 State of 𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑦

2 −2.5 0.000 −0.313 −0.250 −0.313 −1.750
7 −1.75 −0.446 −0.161 −0.286 −0.268 −1.536
18 −1.25 0.118 −0.167 0.125 −0.375 −0.771
9 −0.875 −0.653 −0.083 −0.167 0.194 −1.111
10 −0.625 −0.300 −0.538 −0.050 −0.438 −0.575
18 −0.375 −0.007 −0.382 −0.458 0.111 −0.347
13 −0.125 −0.154 0.269 0.173 −0.115 −0.058
15 0.125 0.158 0.042 −0.383 −0.083 0.258
12 0.375 0.031 −0.031 0.406 −0.469 0.458
11 0.625 0.091 0.045 −0.250 0.011 0.420
8 0.875 0.281 0.297 0.578 0.344 0.797
17 1.25 0.096 0.272 0.125 0.434 0.838
6 1.75 0.313 0.500 0.021 0.313 1.500
4 2.5 0.344 0.844 0.656 1.281 1.688
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Figure 3: Outcomes of a multilayer perceptron for a representative simulation (Model 37; see text) within Case Study. (a) Mean square error
associated with training and cross-validation data subsets during network training. (b and c) Modeled values as a function of actual values in
(b) training and cross-validation data (𝑛 = 90 and 22, resp.). (c) Test data (𝑛 = 38) subsets. The dashed line represents a 1 : 1 relationship.
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Figure 4: (a) Correctness of state-based sensitivity, local sensitivity, and connected weights analyses (SBSA, local SA, and CWA, resp.) in
ranking singular variables within the Case Study, as compared to actual variable importance ranks. (b) Absolute deviations of modeled
rankings (arising from SBSA, local SA, and CWA) for variables from actual rankings. Data are means ± standard error; 𝑛 = 50.

and response variables are linear, and/or variable averaging
is reasonable for the modeled process [13, 43].

The proposed SBSA incorporated a global perspective
where values of all input variables deviated, corresponding
to the variable of interest, yet retained the computational
ease and simplicity of comprehension for local SA. From
this, SBSA not only affords the identification of interacting
predictors (or potentially insignificant predictors) within
networks, but also provides a quantitative means upon
which users can base network optimization, validation, and
parsimony via variable “pruning” [13, 31, 44]. Notably, SBSA
retained the generalized correlation structure among predic-
tors, enabling direct absolute comparison(s) of interacting
predictor importance. In doing so, SBSA provided a realistic
representation of the predictive influences formultiple inputs
(with minimal deviation in the predictive significance of
inputs; see Figure 4) while negating the unrealistic premise
underlying local SA (i.e., altering one input while keeping
values of other attributes “fixed”).

To assess the efficiency of SBSA, results arising from an
artificial database having correlated predictors were com-
pared to those generated via local SA and CWA. SBSA
provided an accurate and precise portrayal of holistic vari-
able interactions (cf. [27, 45]) and, as such, a superior
approximation of database variability to those achieved via
the alternative methodologies. The SBSA application was
demonstrated in conjunction with artificial intelligence due
to the superior capabilities of ANNs in modeling complex,
nonlinear data relationships. Quantifying the importance(s)
of input variables upon a modeled output is a significant
problem that users must address when identifying the
functionality and interpreting the predictive uncertainty of
a trained network. The accounting of interaction among

database variables and the robustness of SBSA for com-
puting and subsequently ranking the predictive importance
of correlated network predictors was impressive. Moreover,
the ability to extend SA applications to predictor variable
states where insufficient input data existed (see Table 3) was
a benefit. Though originally derived for ANN applications,
SBSA also is applicable for defining complex, interacting,
variable relationships within alternative parametricmodeling
efforts (e.g., multiple linear regression).

SBSA is an extended, albeit global derivation of tra-
ditional SA and can be classified as a regression-based
approach (i.e., based upon multiple linear regression of the
response variable upon the predictor vector). Similar to local
SA, SBSA typically requires minimal analytic effort. Yet,
depending upon the number of distinct states chosen for
characterization of a variable’s data range, the computational
complexity for SBSA can become cumbersome. As users
increase the number of variable states, calculations become
more complicated (and with a large number of states poten-
tially unwieldy). Conversely, as the number of variable states
decreases, SBSA becomes more manageable and increasingly
approximates local SA methodology. In instances where only
one variable state is recognized, SBSA will emulate local SA.

Multiple dissimilar databases typically have been utilized
in studies intent on denoting differences among sensitivity
methodologies (e.g., [3, 4, 7, 18, 38, 46–48]). Olden et
al. [8] utilized a similar approach to that presented here
(i.e., a synthetic database where predictor-response rela-
tionships were known a priori and used to evaluate multi-
ple analytics estimating predictor importance for a trained
ANN). In evaluating the effectiveness of genetic algorithms,
partial derivatives, input perturbation, the profile method,
SA by forward-backward stepwise addition/elimination, and
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Garson’s Algorithm for differentiating predictor influences,
Olden et al. [8] stated that, due to disparate data structures,
a user’s ability to identify the “best” analytic for assessing
predictor importance among studies is difficult. Nevertheless,
it was concluded that CWA provided “. . . the best overall
performance compared to the other approaches in terms of
its accuracy (i.e. the degree of similarity between true and
estimated variable ranks) and precision (i.e. the degree of
variation in accuracy) . . ..” Interestingly, the exact database
within the aforementioned assessment was assessed here and
although the accuracy of CWA rivaled that of local SA, CWA
generally displayed less precision in the rankings of predictive
significance across inputs.The accuracy of SBSA was twofold
greater than those of local SA and CWA, yielding minimal
deviation inmodeled ranking (fromactual) across predictors.

A disadvantage of CWA is the inability to identify the
absolute influence that a predictor variable has uponmodeled
outcomes. Specifically, the explanatory ability of CWA is
limited to ranking the relative importance of inputs that
neither are based upon variable means nor provide results for
summarizing (and illustrating) predictor variability within
an ANN. To accomplish detection of input-output rela-
tionships of a predictor variable across its data range via
CWA, practitioners would need to separate the database
into distinct subsets, via mechanical means and/or Monte
Carlo resampling, which reflect a single- (or multiple-)
specified range(s)/deviation(s) of predictor variability. Such
a technical approach is analogous to that used in local
SA where the effects of deviating predictor variables by
one and two standard deviations (denoting “common” and
“disturbance” variation, resp.) upon the response variable can
be reported [16, 49]. A similar application of CWA would
require the manual “splitting” of the holistic database into
multiple (representative) subsets, with derivation of separate
ANNs having individualized training procedures for each
data grouping.

Here, a global SA that provided a realistic insight into
the significance of correlated predictor variables upon a
modeled response was developed. Within its calculations,
SBSA maintained predictor relationships, challenging the
premise of local SA that variable attributes are linear and
independent. When validated with ANN models of a syn-
thetic database, SBSA outperformed local SA and CWA in
predictive accuracy and precision. Despite the predictive
capability of ANNs, most researchers entrust low confi-
dence to their use as empirical models due to the lack of
transparency in ascertaining predictor significance [38, 50].
SBSA helps to overcome this “black-box” nature of MLPs
by improving upon the identification of interacting predictor
influences and the delineation of their uncertainty domains
(thereby simplifying interpretation of modeled outcomes).
From this, it is anticipated that user skepticisms for ANNs as
a common modeling practice will be reduced.
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