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Recently, it has been shown that the annihilation of 30–40GeV dark matter particles through 𝑏𝑏 channel can satisfactorily explain
the excess GeV gamma-ray spectrum near the Galactic Center. In this paper, we apply the above model to galaxy clusters and use
the latest upper limits of gamma-ray flux derived from Fermi-LAT data to obtain an upper bound of the annihilation cross section
of dark matter. By considering the extended density profiles and the cosmic ray profile models of 49 galaxy clusters, the upper
bound of the annihilation cross section can be further tightened to ⟨𝜎V⟩ ≤ 9 × 10

−26 cm3 s−1. This result is consistent with the one
obtained from the data near the Galactic Center.

1. Introduction

In the past few decades, high energy gamma-ray near the
Galactic Center was detected. The origin of this gamma-
ray is commonly believed to be the cosmic ray due to high
energy proton-proton collisions and emission from pulsars
[1, 2]. However, recently, Hooper et al. [3] point out that
a large diffuse signal of gamma-ray is obtained near the
Galactic Center, which is hard to be explained by the cosmic
ray and pulsar emission. In particular, even including both
known sources and unidentified sources, the millisecond
pulsars can only account for no more than 10 percent of
the GeV excess [3]. Although recent studies report some
evidence for unresolved point sources in the inner galaxy
which can explain part of the excess gamma-ray signal [4, 5],
the possibility of the emission of gamma-ray due to the dark
matter annihilation is still a very popular model to explain
the observed diffuse signal [1, 2, 6–8]. Moreover, Daylan
et al. [6] discover that the gamma-ray spectrum obtained
from Fermi-LAT data can be well fitted with 𝑏𝑏 annihilation
channel of dark matter particles. The required rest mass of
the dark matter particle is about 𝑚

𝜒

≈ 30–40 GeV and
the annihilation cross sections obtained by two different
groups are ⟨𝜎V⟩ = (1.4–2.0) × 10−26 cm3 s−1 [6] and ⟨𝜎V⟩ =
(2.7–7.5) × 10−26 cm3 s−1 [1], respectively. The obtained cross

sections are consistent with the expected canonical thermal
relic abundance cross section (⟨𝜎V⟩ ≈ 3 × 10

−26 cm3 s−1) in
cosmology. Furthermore, Moore et al. (1999) point out that
the inner slope of the radial-dependence of the gamma-ray
emission is 𝛾 ≈ 1.1–1.3 (the best fit is 𝛾 = 1.26), which is
consistent with the numerical simulation of dark matter halo
structure 𝛾 = 1–1.5 [9, 10].

Besides the emission of gamma-ray near the Galactic
Centre, Fermi-LAT also reports the emission of gamma-ray
from different galaxy clusters. Although most galaxy clusters
are located far away from us, the dark matter annihilation
signals from some of them are still significant because
they have a larger amount of dark matter. Therefore, it is
worthwhile to detect gamma-ray flux emitted by some nearby
galaxy clusters.The first systematic study of 33 galaxy clusters
by Fermi-LAT obtained some upper limits on the gamma-ray
flux in the range 0.2–100GeV. The typical values of the flux
are about (1–5)×10−9 ph cm−2 s−1 [11]. However, these upper
limits are too high to constrain the fluxdue to the annihilation
of dark matter, which is of the order 10−10 ph cm−2 s−1. Later,
Ando and Nagai [12] start to realize that the gamma-ray flux
data from Fornax cluster is able to constrain the annihilation
dark matter model because the cosmic ray emission from
Fornax cluster does not dominate the gamma-ray emission.
By using their data, the cross section constrained from
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Figure 1: The energy spectrum of photons emitted per one annihi-
lation 𝐸𝑑𝑁

𝛾
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= 30GeV.

the Fornax cluster is ⟨𝜎V⟩ ≤ (2-3) × 10−25 cm3 s−1 [12]. This
upper limit, however, is a factor of 5 greater than that obtained
from the data near the Galactic Center.

Fortunately, the recent observations of 50 galaxy clusters
in 4 years of Fermi-LAT data narrow down the upper flux
limit to the order of 10−10 ph cm−2 s−1, which may provide a
better constraint on the dark matter annihilation [13]. In this
paper, we calculate the latest constraint on the dark matter
annihilation cross section through 𝑏𝑏 channel based on these
recent observations. We also realize that there are 2 galaxy
clusters (Fornax and A2877) which are good candidates to
constrain the properties of dark matter annihilation.

2. Dark Matter Annihilation in Galaxy Clusters

The total number of photons with energy greater than 𝐸
0

produced by the annihilation of dark matter within a galaxy
cluster can be calculated by

𝑁̇
𝛾

= 4𝜋∫

𝑅
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where 𝜌DM is the dark matter density profile, 𝑅
200

is the
effective radius of a galaxy cluster, and 𝑑𝑁

𝛾

/𝑑𝐸 is the energy
spectrum of gamma-ray produced per one annihilation. The
final-state spectrum 𝐸𝑑𝑁

𝛾

/𝑑𝐸 can be generated by PYTHIA
simulations. It can be well fitted by the following analytic
formula (see Figure 1) [16]:
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𝑞, and 𝑝 are all fitted parameters. Some of the parameters
depend on 𝑚

𝜒

and they can be estimated by using simple
power law in 𝑚
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[16]. For 𝑚
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= 30–40 GeV, the values
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Figure 2:The total number of photons emitted per one annihilation
∫(𝑑𝑁

𝛾

/𝑑𝐸)𝑑𝐸 for 𝐸
0

≥ 500MeV (solid line) and 𝐸
0

≥ 1GeV
(dashed line) versus𝑚

𝜒

.

and (0.018 ± 0.001)GeV−2 for 𝐸
0

= 500MeV and 𝐸
0

= 1

GeV, respectively (see Figure 2). The reason of using these
two energy bins (𝐸

0

= 500MeV and 1GeV) is to match the
observed fluxes in [13]. Since the values of Φ vary less than
4% of the mean value, for simplicity, we just assume that this
value is a constant in the following discussion.

We apply the NFW density profile to model the mass
density profile of dark matter in galaxy clusters [10]:

𝜌DM =
𝜌
𝑠

𝑟
3

𝑠

𝑟 (𝑟 + 𝑟
𝑠

)
2

, (3)

where 𝜌
𝑠

and 𝑟
𝑠

are the scale density and scale radius of a
galaxy cluster, respectively. By using the virial mass𝑀

200

, we
can get the concentration parameter 𝑐 for each galaxy cluster
by a universal scaling relation [17]. Therefore, we can get the
scale density 𝜌

𝑠

and 𝑟
𝑠

= 𝑟
200

/𝑐 for each galaxy cluster. The
observed gamma-ray flux from the above extended profile
within a solid angle ΔΩ along the line of sight can be
calculated by

𝜙 (ΔΩ) =
1

8𝜋

⟨𝜎V⟩
𝑚2
𝜒

∫

∞

𝐸

0

𝑑𝑁
𝛾

𝑑𝐸
𝑑𝐸∫
ΔΩ

𝑑Ω∫
los
𝜌
2

DM𝑑𝑠

=
Φ

8𝜋
⟨𝜎V⟩ 𝐽NFW.

(4)

In general, the 𝐽-factor 𝐽NFW depends on 𝜌
𝑠

, 𝑟
𝑠

, and the size
and the distance of a galaxy cluster.

3. Comparing the Gamma-Ray Flux with
the Observed Data

Since most of the galaxy clusters are extended sources, we
compare the calculated flux from (4) with the upper limit
of the “extended flux” obtained from Fermi-LAT [13]. The
𝐽-factor (in GeV2 cm−5) calculated by using the angle of view
measured is about log(𝐽NFW) ≈ 18 (see Table 1), which is



Physics Research International 3

Table 1: The scale radius (in Mpc), the scale density (in
10
14

𝑀
⊙

Mpc−3), 𝐽-factor (in log(GeV2cm−5)), the gamma-ray flux
from cosmic ray emissionΦCR [13–15], the observed gamma-ray flux
upper limits (95%CL)ΦUL [13], and the calculated upper limits (95%
CL) of the annihilation cross section (⟨𝜎V⟩UL

1

and ⟨𝜎V⟩UL
2

) for A2877
and Fornax. All the units for the gamma-ray flux and annihilation
cross section are in 10−10cm−2 s−1 and 10−26 cm3 s−1, respectively.

A2877 Fornax
𝑟
𝑠

0.411 0.196
𝜌
𝑠

8.67 12.9
𝐽NFW 17.3 18.1
ΦCR (𝐸 ≥ 500MeV) 0.51 0.84
ΦCR (𝐸 ≥ 1GeV) 0.29 0.49
ΦUL (𝐸 ≥ 500MeV) 0.9 3.1
ΦUL (𝐸 ≥ 1GeV) 0.43 1.4
ΦDM (𝐸 ≥ 500MeV) 0.39 2.3
ΦDM (𝐸 ≥ 1GeV) 0.94 0.14
⟨𝜎V⟩UL
1

(𝐸 ≥ 500MeV) 37 19
⟨𝜎V⟩UL
1

(𝐸 ≥ 1GeV) 28 14
⟨𝜎V⟩UL
2

(𝐸 ≥ 500MeV) 16 14
⟨𝜎V⟩UL
2

(𝐸 ≥ 1GeV) 9.2 9.0

consistent with the result obtained previously [18]. In order
to match the observational data, we examine 𝐸

0

= 500MeV
and 𝐸

0

= 1GeV [13]. By assuming ⟨𝜎V⟩ = 10
26 cm3 s−1,

the ranges of the flux calculated by (4) based on the
sample in Ackermann et al. [13] (49 galaxy clusters) are
(0.001–0.17) × 10

−10 ph cm−2 s−1 for 𝐸
0

= 500MeV and
(0.007–1.0) × 10−11 ph cm−2 s−1 for 𝐸

0

= 1GeV, respectively.
The obtained ranges of flux are much smaller than the upper
limits obtained by Fermi-LAT data for many galaxy clusters
except 2 nearby galaxy clusters (A2877 and Fornax) whose
gamma-ray flux upper limits (95% CL) are close to their
corresponding annihilation gamma-ray flux. If we assume
that all gamma-ray flux is due to the darkmatter annihilation,
we can obtain an upper limit of annihilation cross section
⟨𝜎V⟩UL
1

for each galaxy cluster (see Table 1). In particular, the
Fornax cluster gives the tightest upper bound (95% CL) for
the annihilation cross section ⟨𝜎V⟩ ≤ 1.9 × 10

−25 cm3 s−1,
which is just a little bit tightened compared with the result
obtained by Ando and Nagai [12].

Nevertheless, inmost galaxy clusters, themajor contribu-
tion of the gamma-ray flux is the cosmic ray emission due to
proton-proton collisions [11]. Recently, Pinzke and Pfrommer
[14] discover a universal scaling relation to model the cosmic
ray emission in galaxy clusters. Later, Pinzke et al. [15] give
a better model to estimate the gamma-ray contribution from
cosmic ray. If we assume that some of the gamma-ray flux is
contributed by the cosmic ray emission, and the remaining
flux is due to the dark matter annihilation, we can obtain
a tighter constraint on the upper bound of the annihilation
cross section ⟨𝜎V⟩UL

2

for each galaxy cluster (see Table 1).
The two smallest 95% CL upper bounds of the annihila-

tion cross section ⟨𝜎V⟩UL
2

are close to ⟨𝜎V⟩ ≤ 9×10−26 cm3 s−1
(A2877 and Fornax). Although this upper bound is somewhat
greater than that obtained by using the data from the Galactic
Center (⟨𝜎V⟩ ≤ 7.5×10−26 cm3 s−1), this is already the tightest

upper bound ever obtained based on the data from galaxy
clusters.This upper bound can be tightened to a greater extent
if we could get a tighter upper bound on gamma-ray flux.

4. Discussion

Recently, it has been reported that the excess gamma-ray
emission near the Galactic Center can be explained by the
30–40GeV dark matter annihilation through 𝑏𝑏 channel. In
this paper, we follow this model and use the Fermi-LAT data
obtained from galaxy clusters to constrain the annihilation
cross section. By considering the most recent cosmic ray
model, the tightest 95% CL upper limit on the cross section is
⟨𝜎V⟩ ≤ 9×10−26 cm3 s−1. If we can preciselymodel the cosmic
ray contribution, the possible range of the annihilation cross
section could be tightened to a smaller range.

On the other hand, it can be shown that the annihilation
of dark matter particles can also provide the required energy
source of soft and hard components of hot plasma in the
Galactic Centre.The predicted cross section is ⟨𝜎V⟩ ≈ (2–6)×
10
−26 cm3 s−1 [19]. All these results are generally consistent

with each other and satisfy the constraints from cosmic
microwave background and low-redshift data [20]. They are
also close to the canonical thermal relic abundance cross
section in cosmology ⟨𝜎V⟩ ≈ 3 × 10−26 cm3 s−1 [21].

Besides, recent analysis from a stack of the 79 richest
nearby galaxy clusters obtained an upper luminosity limit of
𝑁̇
𝛾

= 1.7 × 10
44 ph s−1 per galaxy cluster in the 0.8–100GeV

band [22]. In the sample we used, the galaxy cluster with the
highest luminosity in the same energy band is A2244 with
𝑁̇
𝛾

= 7 × 10
43 ph s−1 for ⟨𝜎V⟩ ≤ 9 × 10−26 cm3 s−1. Therefore,

our calculations still agree with the most recent analysis.
Although the joint-likelihood analysis using a stack of galaxy
cluster may be a better approach to study the dark matter
annihilation, using nearby individual cluster can avoid sys-
tematic errors for distant galaxy clusters in the stack analysis.
We can check the results from different approaches to ensure
the constraints obtained are consistent with each other.

Moreover, we find that there are 2 important galaxy
cluster candidates for the evaluation of dark matter anni-
hilation. The gamma-ray annihilation flux is close to their
corresponding upper limits obtained from the Fermi-LAT
data. In particular, the data from Fornax can provide the best
indicator on the dark matter annihilation besides the Milky
Way. The advantage of using data from galaxy clusters is that
we can neglect the contribution from pulsars, which is quite
significant in Milky Way. Therefore, further observations on
these galaxy clusters can give an alternative way to study the
properties of dark matter annihilation.

To conclude, our result provides a self-consistent picture
and a tighter constraint on the annihilation dark matter
model. The rest mass and the annihilation cross section
could probably be verified by the Large Hadron Collider
Experiment in the future.
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