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We shall study the problem of minimizing a functional involving the curl of vector fields in a three-dimensional, bounded
multiconnected domain with prescribed tangential component on the boundary. The paper is an extension of 𝐿2 minimization
problem of the curl of vector fields. We shall prove the existence and the estimate of minimizers of more general functional which
contains 𝐿𝑝 norm of the curl of vector fields.

1. Introduction

In this paper, we consider the following problem which was
proposed by Pan [1, p. 9].

Problem A. Minimize the 𝐿𝑝 norm of the curl of vector fields
in a given space with tangential trace on the boundary being
prescribed.

The problem is related to the mathematical theory of
liquid crystal, of superconductivity, and of electromagnetic
field. When 𝑝 = 2 and Ω is a simply connected domain
without holes, Bates and Pan [2, 3] showed the existence of
minimizer. For the multiconnected domain, the author of [1]
obtained the existence of aminimizer of the ProblemA in the
case 𝑝 = 2.

In the present paper we shall extend the results to more
general functional containing Problem A.

More precisely, let 𝑆(𝑥, 𝑡) be a Carathéodory function onΩ × [0,∞) and 𝑆(𝑥, 𝑡2) is a convex function with respect to𝑡; moreover assume that for a.e. 𝑥 ∈ Ω, 𝑆(𝑥, 𝑡) ∈ 𝐶1((0,∞)),
and there exist 1 < 𝑝 < ∞ and 𝜆, Λ > 0 such that for a.e.𝑥 ∈ Ω and all 𝑡 > 0:

𝜆𝑡(𝑝−2)/2 ≤ 𝑆𝑡 (𝑥, 𝑡) fl 𝜕
𝜕𝑡𝑆 (𝑥, 𝑡) ≤ Λ𝑡(𝑝−2)/2. (1)

Without loss of generality, we may assume that 𝑆(𝑥, 0) = 0.
We furthermore assume the following structure condition:

(𝑆𝑡 (𝑥, |a|2) a − 𝑆𝑡 (𝑥, |b|2) b) ⋅ (a − b) > 0
for any a, b ∈ R

3 with a ̸= b. (2)

Under (1) with 𝑆(𝑥, 0) = 0, we have
2
𝑝𝜆𝑡𝑝/2 ≤ 𝑆 (𝑥, 𝑡) ≤

2
𝑝Λ𝑡𝑝/2. (3)

For example, the function 𝑆(𝑥, 𝑡) = ](𝑥)𝑡𝑝/2 where ](𝑥) is
a measurable function satisfying 0 < ]∗ ≤ ](𝑥) ≤ ]∗ < ∞ for
a.e. 𝑥 ∈ Ω satisfies (1)-(2).

Let Ω be a bounded domain in R3 with 𝐶2 boundary𝜕Ω. Let H𝑇 be a given tangential vector field on 𝜕Ω. Let𝑊1,𝑝(Ω,R3) be the standard Sobolev space of vector fields.
From now, we denote the tangential component of a vector
field u by u𝑇; that is, u𝑇 = u − (u ⋅ ^)^, where ^ is the
outer normal unit vector to the boundary 𝜕Ω. For any given
tangential vector field on 𝜕Ω

H𝑇 ∈ 𝑊1−1/𝑝,𝑝 (𝜕Ω,R3) , (4)
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define a space of vector fields

𝑊1,𝑝𝑡 (Ω,R3,H𝑇)
= {u ∈ 𝑊1,𝑝 (Ω,R3) ; u𝑇 = H𝑇 on 𝜕Ω} . (5)

Then it is clear that𝑊1,𝑝𝑡 (Ω,R3,H𝑇) is a closed convex set in𝑊1,𝑝(Ω,R3). We consider the minimization problem

𝑅𝑝𝑡 (H𝑇) = inf
u∈𝑊1,𝑝𝑡 (Ω,R3,H𝑇)

∫
Ω
𝑆 (𝑥, |curlu|2) 𝑑𝑥. (6)

When 𝑝 = 2, 𝑆(𝑥, 𝑡) = 𝑡, and Ω is a simply connected
domain without holes, the authors of [2, 3] showed that (6)
is achieved, and then in the case where 𝑝 = 2, 𝑆(𝑥, 𝑡) = 𝑇,
and Ω is bounded multiconnected domain, the author of [1]
succeeded to show the existence of a minimizer of (6).

Since we allow Ω to be a multiconnected domain in R3,
throughout this paper, we assume that the domainΩ satisfies
the following (O1) and (O2) (cf. Dautray and Lions [4] and
Amrouche and Seloula [5]).

(O1)Ω is a bounded domain inR3 with𝐶2 boundary 𝜕Ω.Ω is locally situated on one side of 𝜕Ω; 𝜕Ω has a finite number
of connected components Γ1, . . . , Γ𝑚+1 (𝑚 ≥ 0) and Γ𝑚+1
denoting the boundary of the infinite connected component
of R3 \ Ω.

(O2) There exist 𝑛manifolds of dimension 2 and of class𝐶2 denoted by Σ1, . . . , Σ𝑛 (𝑛 ≥ 0) such that Σ𝑖 ∩Σ𝑗 = 0 (𝑖 ̸= 𝑗)
and they are nontangential to 𝜕Ω and such thatΩ \ (⋃𝑛𝑖=1 Σ𝑖)
is simply connected and pseudo 𝐶1,1.

The number 𝑛 is called the first Betti number and 𝑚 the
second Betti number ofΩ. We say thatΩ is simply connected
if 𝑛 = 0, andΩ has no holes if𝑚 = 0. If we define the spaces

K
𝑝
𝑁 (Ω) = {u ∈ 𝑊1,𝑝 (Ω,R3) ; curlu = 0, div u
= 0 in Ω, ^ ⋅ u = 0 on 𝜕Ω} ,

K
𝑝
𝑇 (Ω) = {u ∈ 𝑊1,𝑝 (Ω,R3) ; curlu = 0, div u
= 0 in Ω, u𝑇 = 0 on 𝜕Ω} ,

(7)

then it is well known that dimK
𝑝
𝑁(Ω) = 𝑛 and dimK

𝑝
𝑇(Ω) =𝑚. We note that K

𝑝
𝑁(Ω) and K

𝑝
𝑇(Ω) are contained in

𝑊1,𝑝(Ω,R3); moreover, K𝑝𝑁(Ω) and K
𝑝
𝑇(Ω) are closed sub-

spaces of 𝑊1,𝑝(Ω,R3). Also it will be shown in Lemma 4
that K𝑝𝑁(Ω) and K

𝑝
𝑇(Ω) are closed subspaces of 𝐿𝑝(Ω,R3).

Thus since K𝑝𝑇(Ω) is a finite-dimensional closed subspace of
𝐿𝑝(Ω,R3), K𝑝𝑇(Ω) has a complement L𝑝 in 𝐿𝑝(Ω,R3); that
is, L𝑝 is a closed subspace of 𝐿𝑝(Ω,R3), L𝑝 ∩ K

𝑝
𝑇(Ω) = {0},

and 𝐿𝑝(Ω,R3) = L𝑝 ⊕ K
𝑝
𝑇(Ω) (the direct sum). Therefore,

for any w ∈ 𝐿𝑝(Ω,R3), there exist uniquely k ∈ L𝑝 and
u ∈ K

𝑝
𝑇(Ω) such that w = k + u. We denote the projection

𝑃 : 𝐿𝑝(Ω,R3) → L𝑝 by 𝑃w = k.

Define

𝐻𝑝 (Ω, curl, div 0) = {u ∈ 𝐿𝑝 (Ω,R3) ; curlu
∈ 𝐿𝑝 (Ω,R3) , div u = 0 in Ω} ,

𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) = {u ∈ 𝐻𝑝 (Ω, curl, div 0) ; u𝑇
= H𝑇 on 𝜕Ω} .

(8)

Note that if u ∈ 𝐿𝑝(Ω,R3) and curlu ∈ 𝐿𝑝(Ω,R3),
then the tangent trace u𝑇 is well defined as an element of
𝑊−1/𝑝,𝑝(𝜕Ω,R3) (cf. [5, p. 45]), and

𝐻𝑝 (Ω, curl, div 0) ∩ 𝑊1,𝑝 (Ω,R3)
= {u ∈ 𝑊1,𝑝 (Ω,R3) ; div u = 0 in Ω} . (9)

Moreover, we note that ifH𝑇 ∈ 𝑊1−1/𝑝,𝑝(𝜕Ω,R3), then
𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) ⊂ 𝑊1,𝑝𝑡 (Ω,R3,H𝑇) . (10)

(cf. Amrouche and Seloula [6, Theorem 2.3]). We will see, in
Lemma 2 of Section 2, that

𝑅𝑝𝑡 (H𝑇) = inf
k∈𝐻𝑝𝑡 (Ω,curl,div 0,H𝑇)

∫
Ω
𝑆 (𝑥, |curl k|2) 𝑑𝑥. (11)

We are in a position to state the main theorem.

Theorem 1. Let Ω ⊂ R3 be a bounded domain satisfying
(O1) and (O2), and let H𝑇 ∈ 𝑊1−1/𝑝,𝑝(𝜕Ω,R3) be a
tangential vector field on 𝜕Ω. Then 𝑅𝑝𝑡 (H𝑇) is achieved, and
the minimizerA of 𝑅𝑝𝑡 (H𝑇) in𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) satisfies
the following estimate. There exists a constant 𝐶 = 𝐶(Ω) > 0
independent ofH𝑇 such that

‖𝑃A‖𝑊1,𝑝(Ω) ≤ 𝐶 󵄩󵄩󵄩󵄩H𝑇󵄩󵄩󵄩󵄩𝑊1−1/𝑝,𝑝(𝜕Ω) . (12)

2. Preliminaries

In this section, we shall give some lemmas as preliminaries.

Lemma 2. LetH𝑇 ∈ 𝑊1−1/𝑝,𝑝(𝜕Ω,R3) be a tangential vector
field on 𝜕Ω. Then one has

𝑅𝑝𝑡 (H𝑇) = inf
k∈𝐻𝑝𝑡 (Ω,curl,div 0,H𝑇)

∫
Ω
𝑆 (𝑥, |curl k|2) 𝑑𝑥. (13)

Proof. Put

𝛼 = inf
u∈𝑊1,𝑝𝑡 (Ω,R3 ,H𝑇)

∫
Ω
𝑆 (𝑥, |curlu|2) 𝑑𝑥,

𝛽 = inf
k∈𝐻𝑝𝑡 (Ω,curl,div 0,H𝑇)

∫
Ω
𝑆 (𝑥, |curl k|2) 𝑑𝑥.

(14)

Since 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) ⊂ 𝑊1,𝑝𝑡 (Ω,R3,H𝑇), it is trivial
that 𝛼 ≤ 𝛽. For any u ∈ 𝑊1,𝑝(Ω,R3,H𝑇), the problem

Δ𝜑 = div u in Ω,
𝜑 = 0 on 𝜕Ω (15)
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has a unique solution 𝜑 ∈ 𝑊2,𝑝(Ω) (cf. Girault and Raviart
[7, Theorem 1.8]). If we define k = u − ∇𝜑 ∈ 𝑊1,𝑝(Ω,R3),
then curl k = curlu, div k = div u − Δ𝜑 = 0 in Ω and v𝑇 =
u𝑇 − (∇𝜑)𝑇 = u𝑇 = H𝑇. Thus k ∈ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇). So
we have

∫
Ω
𝑆 (𝑥, |curlu|2) 𝑑𝑥 = ∫

Ω
𝑆 (𝑥, |curl k|2) 𝑑𝑥 ≥ 𝛽. (16)

Thus we have 𝛼 ≥ 𝛽.
By Lemma 2, theminimization problem (1) reduces to the

following problem.

Problem B. Find the minimizer u ∈ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇)
such that

𝑅𝑝𝑡 (H𝑇) = inf
k∈𝐻𝑝𝑡 (Ω,curl,div 0,H𝑇)

∫
Ω
𝑆 (𝑥, |curl k|2) 𝑑𝑥. (17)

In the later, we frequently use the following lemma.

Lemma 3. (i) If u ∈ 𝐿𝑝(Ω,R3), curlu ∈ 𝐿𝑝(Ω,R3), div u ∈
𝐿𝑝(Ω), and u ⋅ ^ ∈ 𝑊1−1/𝑝,𝑝(𝜕Ω), then u ∈ 𝑊1,𝑝(Ω,R3), and
there exists a constant 𝑐1(Ω) > 0 such that

‖u‖𝑊1,𝑝(Ω) ≤ 𝑐1 (Ω) (‖u‖𝐿𝑝(Ω) + ‖curlu‖𝐿𝑝(Ω)
+ ‖div u‖𝐿𝑝(Ω) + ‖u ⋅ ^‖𝑊1−1/𝑝,𝑝(𝜕Ω)) .

(18)

Here we note that if furthermoreΩ is simply connected, we can
delete the first term ‖u‖𝐿𝑝(Ω) in the right-hand side of (18).

(ii) If u ∈ 𝐿𝑝(Ω,R3), curlu ∈ 𝐿𝑝(Ω,R3), div u ∈ 𝐿𝑝(Ω),
and u𝑇 ∈ 𝑊1−1/𝑝,𝑝(𝜕Ω,R3), then u ∈ 𝑊1,𝑝(Ω,R3), and there
exists a constant 𝑐2(Ω) > 0 such that

‖u‖𝑊1,𝑝(Ω) ≤ 𝑐2 (Ω) (‖u‖𝐿𝑝(Ω) + ‖curlu‖𝐿𝑝(Ω)
+ ‖div u‖𝐿𝑝(Ω) + 󵄩󵄩󵄩󵄩u𝑇󵄩󵄩󵄩󵄩𝑊1−1/𝑝,𝑝(𝜕Ω)) .

(19)

We note that if furthermore Ω has no holes, we can delete the
first term ‖u‖𝐿𝑝(Ω) in the right-hand side of (19).

For the proof of (18) and (19), see [5, Theorem 3.4 and
Corollary 5.2]. If Ω is simply connected or has no holes, see
Aramaki [8, Lemma 2.2].
Lemma 4. The spaceK𝑝𝑇(Ω) is a closed subspace of 𝐿𝑝(Ω,R3).
Proof. Let K𝑝𝑇(Ω) ∋ u𝑗 → u in 𝐿𝑝(Ω,R3). Then from (19) we
have

󵄩󵄩󵄩󵄩󵄩u𝑗 − u𝑘
󵄩󵄩󵄩󵄩󵄩𝑊1,𝑝(Ω) ≤ 𝑐2 (Ω) 󵄩󵄩󵄩󵄩󵄩u𝑗 − u𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω) . (20)

Therefore {u𝑗} is a Cauchy sequence in 𝑊1,𝑝(Ω,R3). Hence
there exists u0 ∈ 𝑊1,𝑝(Ω,R3) such that u𝑗 → u0 in𝑊1,𝑝(Ω,R3), so we have u = u0 and u𝑗 → u in𝑊1,𝑝(Ω,R3)
as 𝑗 → ∞. It is clear that curlu = 0, div u = 0 in Ω, and
u𝑇 = 0 on 𝜕Ω. This implies that u ∈ K

𝑝
𝑇(Ω).

3. Proof of the Main Theorem 1

In this section, we give a proof of Theorem 1. The proof
consists of some lemmas and propositions. Throughout this
section, we assume thatH𝑇 is a given tangential vector field
on 𝜕Ω.
Lemma 5. Let A ∈ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇). Then the mini-
mization problem

𝛾 = inf
u∈K𝑝𝑇(Ω)

‖A − u‖𝐿𝑝(Ω) (21)

has a unique minimizer.

Proof. From Lemma 4, we know that K
𝑝
𝑇(Ω) is a closed

subspace of 𝐿𝑝(Ω,R3). Thus it is well known that (21) has a
minimizer. For the uniqueness of the minimizer, it suffices to
show that the unit sphere 𝐵 = {u ∈ 𝐿𝑝(Ω,R3); ‖u‖𝐿𝑝(Ω) = 1}
does not contain any line segment [u, k] = {𝜆u+ (1−𝜆)k; 0 ≤𝜆 ≤ 1} for u, k ∈ 𝐵 and u ̸= k. (cf. Fujita et al. [9, p. 306 and
the remark]). However, this is clear because the functional

𝑓 (u) = ∫
Ω
|u|𝑝 𝑑𝑥 (22)

is strictly convex.

For A ∈ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇), let u ∈ K
𝑝
𝑇(Ω) be a

unique minimizer of (21) and define B = A − u. Then since
for any z ∈ K

𝑝
𝑇(Ω) and 𝑡 ∈ R, ‖B‖𝑝

𝐿𝑝(Ω)
≤ ‖B + 𝑡z‖𝑝

𝐿𝑝(Ω)
, we

have

0 = 𝑑
𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 ∫Ω |B + 𝑡z|

𝑝 𝑑𝑥 = 𝑝∫
Ω
|B|𝑝−2 B ⋅ z 𝑑𝑥. (23)

If we define a space

𝐵 (Ω,H𝑇) = {B ∈ 𝐿𝑝 (Ω,R3) ; curlB
∈ 𝐿𝑝 (Ω,R3) , divB = 0 in Ω,B𝑇
= H𝑇 on 𝜕Ω, ∫

Ω
|B|𝑝−2 B ⋅ z 𝑑𝑥 = 0 ∀z

∈ K
𝑝
𝑇 (Ω)} ,

(24)

then we see that B ∈ 𝐵(Ω,H𝑇). Then we have the following.

Lemma 6. One can see that

𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) = 𝐵 (Ω,H𝑇) ⊕ K
𝑝
𝑇 (Ω)

(the direct sum) . (25)

Proof. For any A ∈ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇), as the above we
can write

A = B + u, where B ∈ 𝐵 (Ω,H𝑇) , u ∈ K
𝑝
𝑇 (Ω) . (26)

We show the uniqueness of the above decomposition. If we
can write

A = B1 + u1 = B2 + u2, (27)
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where B1,B2 ∈ 𝐵(Ω,H𝑇), u1 and u2 ∈ K
𝑝
𝑇(Ω), then B1 −

B2 = u2 − u1 ∈ K
𝑝
𝑇(Ω). Therefore we have

∫
Ω

󵄨󵄨󵄨󵄨B1󵄨󵄨󵄨󵄨𝑝−2 B1 ⋅ (B1 − B2) 𝑑𝑥 = 0,
∫
Ω

󵄨󵄨󵄨󵄨B2󵄨󵄨󵄨󵄨𝑝−2 B2 ⋅ (B1 − B2) 𝑑𝑥 = 0.
(28)

Hence

∫
Ω
(󵄨󵄨󵄨󵄨B1󵄨󵄨󵄨󵄨𝑝−2 B1 − 󵄨󵄨󵄨󵄨B2󵄨󵄨󵄨󵄨𝑝−2 B2) ⋅ (B1 − B2) 𝑑𝑥 = 0. (29)

Here we use the following inequality. There exists a constant𝑐 > 0 such that

(|a|𝑝−2 a − |b|𝑝−2 b) ⋅ (a − b)

≥ {{{
𝑐 |a − b|𝑝 if 𝑝 ≥ 2,
𝑐 (|a| + |b|)𝑝−2 |a − b|2 if 1 < 𝑝 < 2

(30)

for all a, b ∈ R3. For the proof of this inequality, see
DiBenedetto [10, Lemma 4.4] for 𝑝 ≥ 2, and see Miranda et
al. [11, (7C’)]. Applying (30) with a = B1, b = B2 to (29), we
have

∫
Ω

󵄨󵄨󵄨󵄨B1 − B2
󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 = 0 for 𝑝 ≥ 2,

∫
Ω
(󵄨󵄨󵄨󵄨B1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨B2󵄨󵄨󵄨󵄨)𝑝−2 󵄨󵄨󵄨󵄨B1 − B2

󵄨󵄨󵄨󵄨2 𝑑𝑥 = 0 for 1 < 𝑝 < 2.
(31)

From these equalities, we have B1 = B2, so u1 = u2.

Nowwe state a refinement of Fatou’s lemma (cf. Evans [12,
pp. 11-12]).

Lemma 7. Assume that 1 < 𝑝 < ∞. Let B𝑗 → B weakly in
𝐿𝑝(Ω,R3) and a.e. in Ω. Then one has

lim
𝑗→∞

∫
Ω
(󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨𝑝 − 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨

𝑝−2
B𝑗 − |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨

𝑝󸀠)𝑑𝑥

= ∫
Ω
|B|𝑝 𝑑𝑥.

(32)

If furthermore

lim
𝑗→∞

∫
Ω

󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 = ∫
Ω
|B|𝑝 𝑑𝑥, (33)

then

󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨𝑝−2 B𝑗 󳨀→ |B|𝑝−2 B strongly in 𝐿𝑝󸀠 (Ω,R3) , (34)

where 𝑝󸀠 denotes the conjugate exponent of 𝑝; that is, (1/𝑝) +(1/𝑝󸀠) = 1. In particular, if B𝑗 → B strongly in 𝐿𝑝(Ω,R3) and
a.e. in Ω, then (34) holds.

Proof. We use an elementary estimate. Let 1 ≤ 𝑞 < ∞. Then,
for any fixed 𝜀 > 0, there exists a constant 𝐶 = 𝐶(𝜀, 𝑞) > 0
such that

󵄨󵄨󵄨󵄨|a + b|𝑞 − |a|𝑞󵄨󵄨󵄨󵄨 ≤ 𝜀 |a|𝑞 + 𝐶 |b|𝑞 (35)

for any a, b ∈ R3 (cf. [12, (1.13)]). Define

𝑔𝜀𝑗 = [
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨
𝑝−2

B𝑗
󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠 − 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨

𝑝−2
B𝑗 − |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨

𝑝󸀠

− 󵄨󵄨󵄨󵄨󵄨|B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨𝑝
󸀠 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 − 𝜀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨
𝑝−2

B𝑗 − |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠]
+

,
(36)

where [𝑎]+ = max{𝑎, 0} for 𝑎 ∈ R. Then we have

𝑔𝜀𝑗 ≤ [
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨
𝑝−2

B𝑗
󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠 − 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨

𝑝−2
B𝑗 − |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨

𝑝󸀠 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨|B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨𝑝

󸀠 − 𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨
𝑝−2

B𝑗 − |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠]
+

= [󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨
𝑝−2

B𝑗 − |B|𝑝−2 B + |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠

− 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨
𝑝−2

B𝑗 − |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨|B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨𝑝
󸀠

− 𝜀 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨
𝑝−2

B𝑗 − |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠]
+

.

(37)

If we apply (35) with a = |B𝑗|𝑝−2B𝑗 − |B|𝑝−2B, b = |B|𝑝−2B
and 𝑞 = 𝑝󸀠, we have

𝑔𝜀𝑗 ≤ (𝐶 + 1) 󵄨󵄨󵄨󵄨󵄨|B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨𝑝
󸀠 = (𝐶 + 1) |B|𝑝 . (38)

We note that the right-hand side is integrable. By the hypo-
thesis, we can see that 𝑔𝜀𝑗 → 0 a.e. in Ω. Therefore by the
Lebesgue dominated theorem, we have

lim
𝑗→∞

∫
Ω
𝑔𝜀𝑗𝑑𝑥 = 0. (39)

Therefore we have

lim sup
𝑗→∞

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨
𝑝−2

B𝑗
󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠 − 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨

𝑝−2
B𝑗 − |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨

𝑝󸀠

− 󵄨󵄨󵄨󵄨󵄨|B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨𝑝
󸀠 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝜀 lim sup

𝑗→∞

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨
𝑝−2

B𝑗

− |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠 𝑑𝑥

≤ 𝜀2𝑝󸀠 lim sup
𝑗→∞

∫
Ω
(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨

𝑝−2
B𝑗
󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠

+ 󵄨󵄨󵄨󵄨󵄨|B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨𝑝
󸀠)𝑑𝑥 = 𝜀2𝑝󸀠 lim sup

𝑗→∞

∫
Ω
(󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨𝑝

+ |B|𝑝) 𝑑𝑥.

(40)
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Since B𝑗 → B weakly in 𝐿𝑝(Ω,R3), ‖B𝑗‖𝐿𝑝(Ω) is bounded.
Since 𝜀 is arbitrary, we have

lim
𝑗→∞

∫
Ω
(󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨𝑝 − 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨

𝑝−2
B𝑗 − |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨

𝑝󸀠)𝑑𝑥

= ∫
Ω
|B|𝑝 𝑑𝑥.

(41)

If furthermore

lim
𝑗→∞

∫
Ω

󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 = ∫
Ω
|B|𝑝 𝑑𝑥, (42)

then we have

lim
𝑗→∞

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨
𝑝−2

B𝑗 − |B|𝑝−2 B󵄨󵄨󵄨󵄨󵄨󵄨
𝑝󸀠 𝑑𝑥 = 0. (43)

Lemma 8. 𝐵(Ω,H𝑇) is a weakly closed set in𝑊1,𝑝(Ω,R3).
Proof. Let B𝑗 ∈ 𝐵(Ω,H𝑇), B𝑗 → B weakly in𝑊1,𝑝(Ω,R3).
Then we have curlB ∈ 𝐿𝑝(Ω,R3), divB = 0 in Ω, B𝑇 = H𝑇
on 𝜕Ω, and

∫
Ω

󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨𝑝−2 B𝑗 ⋅ z 𝑑𝑥 = 0 ∀z ∈ K
𝑝
𝑇 (Ω) . (44)

Passing to a subsequence, we may assume that B𝑗 → B
strongly in 𝐿𝑝(Ω,R3) and a.e. in Ω. Thus from Lemma 7, we
have |B𝑗|𝑝−2B𝑗 → |B|𝑝−2B in 𝐿𝑝󸀠(Ω,R3). Therefore we have

∫
Ω
|B|𝑝−2 B ⋅ z 𝑑𝑥 = 0 ∀z ∈ K

𝑝
𝑇 (Ω) . (45)

This implies that B ∈ 𝐵(Ω,H𝑇).
Lemma 9. There exists a constant 𝑐(Ω) > 0 such that for all
B ∈ 𝑊1,𝑝(Ω,R3) satisfying divB = 0 in Ω and

∫
Ω
|B|𝑝−2 B ⋅ z 𝑑𝑥 = 0 ∀z ∈ K

𝑝
𝑇 (Ω) , (46)

one has

‖B‖𝑊1,𝑝(Ω) ≤ 𝑐 (Ω) (‖curlB‖𝐿𝑝(Ω) + 󵄩󵄩󵄩󵄩B𝑇󵄩󵄩󵄩󵄩𝑊1−1/𝑝,𝑝(𝜕Ω)) . (47)

Proof. If the conclusion (47) is false, there exists a sequence{B𝑗} ⊂ 𝑊1,𝑝(Ω,R3) satisfying divB𝑗 = 0 inΩ and

∫
Ω

󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨𝑝−2 B𝑗 ⋅ z 𝑑𝑥 = 0 ∀z ∈ K
𝑝
𝑇 (Ω) , (48)

such that ‖B𝑗‖𝑊1,𝑝(Ω) = 1, ‖ curlB𝑗‖𝐿𝑝(Ω) → 0,‖B𝑗,𝑇‖𝑊1−1/𝑝,𝑝(𝜕Ω) → 0 as 𝑗 → ∞. After passing to a
subsequence, we may assume that B𝑗 → B0 weakly in
𝑊1,𝑝(Ω,R3), strongly in 𝐿𝑝(Ω,R3), and a.e. in Ω. Therefore

we have divB0 = 0, curlB0 = 0 in Ω and B0,𝑇 = 0 on 𝜕Ω, so
B0 ∈ K

𝑝
𝑇(Ω). From Lemma 7,

∫
Ω

󵄨󵄨󵄨󵄨B0󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 = ∫
Ω

󵄨󵄨󵄨󵄨B0󵄨󵄨󵄨󵄨𝑝−2 B0 ⋅ B0𝑑𝑥
= lim
𝑗→∞

∫
Ω

󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨𝑝−2 B𝑗 ⋅ B0𝑑𝑥 = 0.
(49)

Thus we have B0 = 0. Hence B𝑗 → 0 strongly in 𝐿𝑝(Ω,R3).
From (19), we see that
󵄩󵄩󵄩󵄩󵄩B𝑗󵄩󵄩󵄩󵄩󵄩𝑊1,𝑝(Ω) ≤ 𝑐2 (Ω)
⋅ (󵄩󵄩󵄩󵄩󵄩B𝑗󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω) + 󵄩󵄩󵄩󵄩󵄩curlB𝑗󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω) + 󵄩󵄩󵄩󵄩󵄩B𝑗,𝑇󵄩󵄩󵄩󵄩󵄩𝑊1−1/𝑝,𝑝(𝜕Ω)) 󳨀→ 0 (50)

as 𝑗 → ∞. This contradicts ‖B𝑗‖𝑊1,𝑝(Ω) = 1.
Proposition 10. Let H𝑇 ∈ 𝑊1−1/𝑝,𝑝(𝜕Ω,R3). Then the
minimization problem

inf
B∈𝐵(Ω,H𝑇)

∫
Ω
𝑆 (𝑥, |curlB|2) 𝑑𝑥 (51)

is achieved and

𝑅𝑝𝑡 (H𝑇) = inf
B∈𝐵(Ω,H𝑇)

∫
Ω
𝑆 (𝑥, |curlB|2) 𝑑𝑥 (52)

Proof. By Lemma 2, we can see that

𝑅𝑝𝑡 (H𝑇) = inf
A∈𝐻𝑝𝑡 (Ω,curl,div 0,H𝑇)

∫
Ω
𝑆 (𝑥, |curlA|2) 𝑑𝑥. (53)

Since 𝐵(Ω,H𝑇) ⊂ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇), it is clear that
𝑅𝑝𝑡 (H𝑇) ≤ inf

B∈𝐵(Ω,H𝑇)
∫
Ω
𝑆 (𝑥, |curlB|2) 𝑑𝑥. (54)

On the other hand, for any A ∈ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇), we
can write A = B + u, where B ∈ 𝐵(Ω,H𝑇), and u ∈ K

𝑝
𝑇(Ω).

Hence we have

∫
Ω
𝑆 (𝑥, |curlA|2) 𝑑𝑥 = ∫

Ω
𝑆 (𝑥, |curlB|2) 𝑑𝑥

≥ inf
B∈𝐵(Ω,H𝑇)

∫
Ω
𝑆 (𝑥, |curlB|2) 𝑑𝑥.

(55)

Thus (52) holds. We show that the right-hand side of (52) has
a minimizer. Let {B𝑗} ⊂ 𝐵(Ω,H𝑇) be aminimizing sequence.
Then

∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥 = 𝑅𝑝𝑡 (H𝑇) + 𝑜 (1)

as 𝑗 󳨀→ ∞.
(56)

By (1), we have

2
𝑝𝜆∫Ω

󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 ≤ ∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥

= 𝑅𝑝𝑡 (H𝑇) + 𝑜 (1) .
(57)
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Thus, by Lemma 9, {B𝑗} is bounded in𝑊1,𝑝(Ω,R3). Passing
to a subsequence, we may assume that B𝑗 → B0 weakly in
𝑊1,𝑝(Ω,R3), strongly in 𝐿𝑝(Ω,R3), and a.e. in Ω. Therefore
we have divB0 = 0, B0,𝑇 = H𝑇 on 𝜕Ω. Since

∫
Ω

󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨𝑝−2 B𝑗 ⋅ z 𝑑𝑥 = 0 ∀z ∈ K
𝑝
𝑇 (Ω) , (58)

it follows from Lemma 7 that

∫
Ω

󵄨󵄨󵄨󵄨B0󵄨󵄨󵄨󵄨𝑝−2 B0 ⋅ z 𝑑𝑥 = 0 ∀z ∈ K
𝑝
𝑇 (Ω) . (59)

Therefore B0 ∈ 𝐵(Ω,H𝑇). It suffices to prove that

∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨curlB0󵄨󵄨󵄨󵄨2) 𝑑𝑥
≤ lim inf
𝑗→∞

∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥.

(60)

In fact, we can choose a subsequence {curlB𝑗𝑘} of {curlB𝑗} so
that

lim
𝑘→∞

∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗𝑘 󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥

= lim inf
𝑗→∞

∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥.

(61)

Since curlB𝑗𝑘 → curlB0 weakly in 𝐿𝑝(Ω,R3), it follows from
the Mazur theorem that there exist g𝑙 ∈ 𝐿𝑝(Ω,R3) such that
g𝑙 ∈ convex hull of {curlB𝑗𝑘 ; 𝑘 ≥ 𝑙} and g𝑙 → curlB0 strongly
in𝐿𝑝(Ω,R3). Hencewe can choose a subsequence {g𝑙𝑚} of {g𝑙}
so that g𝑙𝑚 → curlB0 strongly in 𝐿𝑝(Ω,R3) and a.e. in Ω. By
the Fatou lemma, we have

∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨curlB0󵄨󵄨󵄨󵄨2) 𝑑𝑥 ≤ lim inf

𝑚→∞
∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨g𝑙𝑚 󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥. (62)

Since 𝑆(𝑥, 𝑡2) is a convex function with respect to 𝑡, we have
∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨g𝑙𝑚 󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥
≤ sup {∫

Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗𝑘 󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥; 𝑘 ≥ 𝑙𝑚} .

(63)

Therefore we have

∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨curlB0󵄨󵄨󵄨󵄨2) 𝑑𝑥 ≤ lim inf

𝑚→∞
∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨g𝑙𝑚 󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥

≤ lim
𝑚→∞

sup {∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗𝑘 󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥; 𝑘 ≥ 𝑙𝑚}

= lim
𝑘→∞

∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗𝑘 󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥

= lim inf
𝑗→∞

∫
Ω
𝑆 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥.

(64)

This completes the proof.

Lemma 11. Let A ∈ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) be a minimizer of𝑅𝑝𝑡 (H𝑇). Then A is a weak solution of the following system:

curl [𝑆𝑡 (𝑥, |curlA|2) curlA] = 0, divA = 0 in Ω,
A𝑇 = H𝑇 on 𝜕Ω. (65)

Proof. If A ∈ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) is a minimizer of𝑅𝑝𝑡 (H𝑇), then we can see that, for any w ∈ 𝐻𝑝𝑡 (Ω, curl,
div 0, 0), we have

𝑑
𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 ∫Ω 𝑆 (𝑥, |curlA + 𝑡 curlw|2) 𝑑𝑥 = 0. (66)

Thus we have

∫
Ω
𝑆𝑡 (𝑥, |curlA|2) curlA ⋅ curlw 𝑑𝑥 = 0 (67)

for all w ∈ 𝐻𝑝𝑡 (Ω, curl, div 0, 0). We claim that

curl [𝐻𝑝𝑡 (Ω, curl, div 0, 0)]
= curl [𝑊1,𝑝𝑡 (Ω,R3, 0)] . (68)

In fact, since it is clear that 𝐻𝑝𝑡 (Ω, curl, div 0, 0) ⊂
𝑊1,𝑝𝑡 (Ω,R3, 0), we have

curl [𝐻𝑝𝑡 (Ω, curl, div 0, 0)]
⊂ curl [𝑊1,𝑝𝑡 (Ω,R3, 0)] . (69)

Conversely let u ∈ 𝑊1,𝑝𝑡 (Ω,R3, 0). Choose 𝜙 to be a solution
of

Δ𝜙 = div u in Ω,
𝜙 = 0 on 𝜕Ω. (70)

By the elliptic regularity theorem, we see that 𝜙 ∈ 𝑊2,𝑝(Ω).
Define k = u − ∇𝜙. Then curl k = curlu ∈ 𝐿𝑝(Ω,R3), div k =
div u − Δ𝜙 = 0 in Ω, and k𝑇 = u𝑇 − (∇𝜙)𝑇 = u𝑇 = 0 on𝜕Ω. Therefore k ∈ 𝐻𝑝𝑡 (Ω, curl, div 0, 0) and curlu = curl k ∈
curl[𝐻𝑝𝑡 (Ω, curl, div 0, 0)].

Hence (67) holds for any w ∈ 𝑊1,𝑝𝑡 (Ω,R3, 0). Since
D(Ω,R3) ⊂ 𝑊1,𝑝𝑡 (Ω,R3, 0), it follows from (67) that A is a
weak solution of (65).

Remark 12. The system (65) is so called the 𝑝-curl system.
When Ω is a bounded, simply connected domain in R3

without holes and with 𝐶2+𝛼 boundary for some 𝛼 ∈ (0, 1). If
H𝑇 = 0, then [8] showed that the weak solution A of system
(65) satisfies the fact thatA ∈ 𝐶1+𝛽(Ω,R3) for some 𝛽 ∈ (0, 1)
and there exists a constant 𝐶 depending only on 𝑝,Ω such
that ‖A‖𝐶1+𝛽(Ω) ≤ 𝐶.
Lemma 13. Let B0 ∈ 𝐵(Ω,H𝑇) be a minimizer of (52). Then
any minimizer A ∈ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) of (17) must have
the form A = B0 + u where u ∈ K

𝑝
𝑇(Ω). In particular, the

minimizer of (52) is unique.
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Proof. Since for any u ∈ K
𝑝
𝑇(Ω), we see that

B0 + u ∈ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) ,
∫
Ω

󵄨󵄨󵄨󵄨󵄨curl (B0 + u)𝑝󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 = ∫
Ω

󵄨󵄨󵄨󵄨curlB0󵄨󵄨󵄨󵄨𝑝 𝑑𝑥
= 𝑅𝑝𝑡 (H𝑇) .

(71)

Thus B0 + u is a minimizer of (17). On the other hand, for
any minimizerA ∈ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) of (17), define w =
A − B0. Then w ∈ 𝐻𝑝𝑡 (Ω, curl, div 0, 0). From (67), we have

∫
Ω
𝑆𝑡 (𝑥, |curlA|2) curlA ⋅ curlw 𝑑𝑥
= ∫
Ω
𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨curlB0󵄨󵄨󵄨󵄨2) curlB0 ⋅ curlw 𝑑𝑥 = 0.

(72)

Therefore,

∫
Ω
(𝑆𝑡 (𝑥, |curlA|2) curlA
− 𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨curlB0󵄨󵄨󵄨󵄨2) curlB0) ⋅ (curlA
− curlB0) 𝑑𝑥 = 0.

(73)

By the structure condition (2), we have curl(A − B0) = 0 inΩ, so A − B0 ∈ K
𝑝
𝑇(Ω).

If B ∈ 𝐵(Ω,H𝑇) ⊂ 𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) is a minimizer
of (52), we can write B = B0 + u, where u ∈ K

𝑝
𝑇(Ω). If follows

from Lemma 6 that we see that u = 0. Thus the minimizer of
(52) in 𝐵(Ω,H𝑇) is unique.

For H𝑇 ∈ 𝑊1−1/𝑝,𝑝(𝜕Ω,R3), let A = A(H𝑇) ∈𝐻𝑝𝑡 (Ω, curl, div 0,H𝑇) be a minimizer of (17). Then there
exist uniquely B0 = B0(H𝑇) ∈ 𝐵(Ω,H𝑇) which is a
minimizer of (52) and u = u(H𝑇) ∈ K

𝑝
𝑇(Ω) such that

A (H𝑇) = B0 (H𝑇) + u (H𝑇) . (74)

We note that 𝑃A(H𝑇) = B0(H𝑇).
In order to show the estimate in Theorem 1, it suffices to

prove the following proposition.

Proposition 14. There exists a constant 𝑐 = 𝑐(Ω) independent
ofH𝑇 such that

󵄩󵄩󵄩󵄩B0 (H𝑇)󵄩󵄩󵄩󵄩𝑊1,𝑝(Ω) ≤ 𝑐 󵄩󵄩󵄩󵄩H𝑇󵄩󵄩󵄩󵄩𝑊1−1/𝑝,𝑝(𝜕Ω) . (75)

Proof. Assume that the conclusion is false. Then there
exists a sequence {H𝑗,𝑇} ⊂ 𝑊1−1/𝑝,𝑝(𝜕Ω,R3) such that‖B0(H𝑗,𝑇)‖𝑊1,𝑝(Ω) = 1 and

󵄩󵄩󵄩󵄩󵄩H𝑗,𝑇󵄩󵄩󵄩󵄩󵄩𝑊1−1/𝑝,𝑝(𝜕Ω) 󳨀→ 0 as 𝑗 󳨀→ ∞. (76)

For brevity of notation, we write B𝑗 = B0(H𝑗,𝑇). Passing
to a subsequence, we may assume that B𝑗 → B weakly
in 𝑊1,𝑝(Ω,R3), strongly in 𝐿𝑝(Ω,R3), and a.e. in Ω. Thus

curlB ∈ 𝐿𝑝(Ω,R3), divB = 0 in Ω, and B𝑇 = 0 on 𝜕Ω. Since
B𝑗 satisfies

∫
Ω

󵄨󵄨󵄨󵄨󵄨B𝑗󵄨󵄨󵄨󵄨󵄨𝑝−2 B𝑗 ⋅ z 𝑑𝑥 = 0 ∀z ∈ K
𝑝
𝑇 (Ω) (77)

and B𝑗 → B strongly in 𝐿𝑝(Ω,R3) and a.e. in Ω, it follows
from Lemma 7 that

∫
Ω
|B|𝑝−2 B ⋅ z 𝑑𝑥 = 0 ∀z ∈ K

𝑝
𝑇 (Ω) . (78)

Hence we have B ∈ 𝐵(Ω, 0). On the other hand, B𝑗 is a weak
solution of

curl [𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) curlB𝑗] = 0 in Ω,
B𝑗,𝑇 = H𝑗,𝑇 on 𝜕Ω. (79)

Since 𝑆𝑡(𝑥, |curlB𝑗|2) curlB𝑗 ∈ 𝐿𝑝󸀠(Ω,R3) and curl[𝑆𝑡(𝑥,|curlB𝑗|2) curlB𝑗] = 0, we see that 𝑆𝑡(𝑥, |curlB𝑗|2) curlB𝑗| 𝜕Ω
∈ 𝑊−1/𝑝󸀠 ,𝑝󸀠(𝜕Ω,R3). Since ^ × H𝑗,𝑇 ∈ 𝑊1−1/𝑝,𝑝(𝜕Ω,R3) =
𝑊1/𝑝󸀠 ,𝑝(𝜕Ω,R3), it follows from the Green formula that

0 = ∫
Ω
curl [𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) curlB𝑗] ⋅ B𝑗𝑑𝑥

= ∫
Ω
𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) curlB𝑗 ⋅ curlB𝑗𝑑𝑥

+ ∫
𝜕Ω
⟨B𝑗,𝑇, ^ × 𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) curlB𝑗⟩𝑑𝑆,

(80)

where ⟨⋅, ⋅⟩ denotes the duality bracket of the spaces
𝑊1/𝑝󸀠 ,𝑝(𝜕Ω,R3) and𝑊−1/𝑝󸀠 ,𝑝󸀠(𝜕Ω,R3). Here we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝜕Ω ⟨H𝑗,𝑇, ^ × 𝑆𝑡 (𝑥,

󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) curlB𝑗⟩𝑑𝑆
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄩󵄩󵄩󵄩󵄩H𝑗,𝑇󵄩󵄩󵄩󵄩󵄩𝑊1−1/𝑝,𝑝(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩󵄩𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨
2) curlB𝑗󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝󸀠 (Ω)

≤ 󵄩󵄩󵄩󵄩󵄩H𝑗,𝑇󵄩󵄩󵄩󵄩󵄩𝑊1−1/𝑝,𝑝(𝜕Ω) (∫
Ω
(Λ 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨𝑝−1)

𝑝󸀠 𝑑𝑥)
1/𝑝󸀠

≤ Λ 󵄩󵄩󵄩󵄩󵄩H𝑗,𝑇󵄩󵄩󵄩󵄩󵄩𝑊1−1/𝑝,𝑝(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩curlB𝑗󵄩󵄩󵄩󵄩󵄩𝑝/𝑝
󸀠

𝐿𝑝(Ω)
.

(81)

Since curlB𝑗 → curlB weakly in 𝐿𝑝(Ω,R3), we see that‖curlB𝑗‖𝐿𝑝(Ω) is bounded. Since ‖H𝑗,𝑇‖𝑊1−1/𝑝,𝑝(𝜕Ω) → 0, we
have

∫
𝜕Ω
⟨^ ×H𝑗,𝑇, 𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) curlB𝑗⟩𝑑𝑆 󳨀→ 0 (82)
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as 𝑗 → ∞. Since 𝑆(𝑥, 𝑡2)𝑡2 is equivalent to 𝑆(𝑥, 𝑡), using (80),
we have

∫
Ω
𝑆𝑡 (𝑥, |curlB|2) |curlB|2 𝑑𝑥
≤ lim inf
𝑗→∞

∫
Ω
𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥

= lim inf
𝑗→∞

[∫
Ω
𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥

+ ∫
𝜕Ω
⟨^ ×H𝑗,𝑇, 𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) curlB𝑗⟩𝑑𝑆]

= lim sup
𝑗→∞

[∫
Ω
𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥

+ ∫
𝜕Ω
⟨^ ×H𝑗,𝑇, 𝑆𝑡 (𝑥, 󵄨󵄨󵄨󵄨󵄨curlB𝑗󵄨󵄨󵄨󵄨󵄨2) curlB𝑗⟩𝑑𝑆]

= 0.

(83)

Since 𝑆𝑡(𝑥, |curlB|2)|curlB|2 ≥ 𝜆|curlB|𝑝, we see that
curlB = 0, so B ∈ K

𝑝
𝑇(Ω). From (78) with z = B, we have

0 = ∫
Ω
|B|𝑝−2 B ⋅ B 𝑑𝑥 = ∫

Ω
|B|𝑝 𝑑𝑥. (84)

Therefore B = 0 in Ω, so B𝑗 → 0 weakly in 𝑊1,𝑝(Ω,R3)
and strongly in 𝐿𝑝(Ω,R3). From (80), we can see that‖curlB𝑗‖𝐿𝑝(Ω) → 0. By (19),
󵄩󵄩󵄩󵄩󵄩B𝑗󵄩󵄩󵄩󵄩󵄩𝑊1,𝑝(Ω) ≤ 𝑐2 (Ω)
⋅ (󵄩󵄩󵄩󵄩󵄩B𝑗󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω) + 󵄩󵄩󵄩󵄩󵄩curlB𝑗󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω) + 󵄩󵄩󵄩󵄩󵄩H𝑗,𝑇󵄩󵄩󵄩󵄩󵄩𝑊1−1/𝑝,𝑝(𝜕Ω)) 󳨀→ 0 (85)

as 𝑗 → ∞. This contradicts ‖B𝑗‖𝑊1,𝑝(Ω) = 1.
Proof of Theorem 1. The proof of Theorem 1 follows from
Lemma 2 and Propositions 10 and 14.

Remark 15. Instead of minimizing 𝑆(𝑡, |curlu|2), it is also
interesting to minimize 𝑆(𝑥, |div u|2). This problem is related
to the mathematical theory of liquid crystals. For 𝑝 = 2 and𝑆(𝑥, 𝑡) = 𝑡, see Aramaki [13].
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