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We shall study the problem of minimizing a functional involving the curl of vector fields in a three-dimensional, bounded
multiconnected domain with prescribed tangential component on the boundary. The paper is an extension of L* minimization
problem of the curl of vector fields. We shall prove the existence and the estimate of minimizers of more general functional which

contains L? norm of the curl of vector fields.

1. Introduction

In this paper, we consider the following problem which was
proposed by Pan [1, p. 9].

Problem A. Minimize the L? norm of the curl of vector fields
in a given space with tangential trace on the boundary being
prescribed.

The problem is related to the mathematical theory of
liquid crystal, of superconductivity, and of electromagnetic
field. When p = 2 and Q is a simply connected domain
without holes, Bates and Pan [2, 3] showed the existence of
minimizer. For the multiconnected domain, the author of [1]
obtained the existence of a minimizer of the Problem A in the
case p = 2.

In the present paper we shall extend the results to more
general functional containing Problem A.

More precisely, let S(x, ) be a Carathéodory function on
Q x [0,00) and S(x, t*) is a convex function with respect to
t; moreover assume that for a.e. x € Q, S(x,t) € C'((0,0)),
and there exist 1 < p < oo and A, A > 0 such that for a.e.
x € Qandallt > 0:

MED2 <8 (x,t) = %S (x,t) < AP, Q)

Without loss of generality, we may assume that S(x,0) = 0.
We furthermore assume the following structure condition:

(S, (x.1al*)a =S, (x,[b]*)b) - (a—b) > 0

()
for any a,b € R® with a # b.
Under (1) with S(x, 0) = 0, we have
2P < S (x,1) < Z AP, 3)
p p

For example, the function S(x, t) = v(x)t” /2 where v(x) is
a measurable function satisfying 0 < », < ¥(x) < v" < oo for
a.e. x € Q) satisfies (1)-(2).

Let Q be a bounded domain in R* with C* boundary
0Q. Let #Z' be a given tangential vector field on 0Q. Let
WLP(Q,R?) be the standard Sobolev space of vector fields.
From now, we denote the tangential component of a vector
field u by uy; that is, up = u — (u - v)», where ¥ is the
outer normal unit vector to the boundary 0Q. For any given
tangential vector field on 0Q

Hr e WPP (30, RY), (4)



define a space of vector fields

WP (R, ;)
€)
= {u e WP (Q, R3);uT =% on aQ}.

Then it is clear that WtI’P QR % 1) is a closed convex set in
WP (Q), R*). We consider the minimization problem

R (#7) = inf J S(x [curlu*)dx.  (g)
uew? (QR3,77) Ja

When p = 2, S(x,t) = t, and Q is a simply connected
domain without holes, the authors of [2, 3] showed that (6)
is achieved, and then in the case where p = 2, S(x,t) = T,
and Q is bounded multiconnected domain, the author of [1]
succeeded to show the existence of a minimizer of (6).

Since we allow Q to be a multiconnected domain in R,
throughout this paper, we assume that the domain Q) satisfies
the following (O1) and (O2) (cf. Dautray and Lions [4] and
Amrouche and Seloula [5]).

(O1) Q is a bounded domain in R? with C? boundary 0Q.
Q is locally situated on one side of 9Q); 0} has a finite number
of connected components I',...,T,,,; (m > 0) and T, ;
denoting the boundary of the infinite connected component
of R*\ Q.

(O2) There exist n manifolds of dimension 2 and of class
C? denoted by %,,...,%, (n > 0)such that $,n%; = 0 (i # j)
and they are nontangential to 9Q and such that Q \ (-, Z;)
is simply connected and pseudo C"'.

The number n is called the first Betti number and m the
second Betti number of (2. We say that Q) is simply connected
if n = 0, and Q has no holes if m = 0. If we define the spaces

Kﬁ] Q) = {u e wh? (Q, R3) ;curlu = 0, divu

=0in Q,v-u=0o0n BQ},
1 3 (7)
KE(Q) = fue W' (Q,R*);curlu = 0,divu

=0in Q,u; =0 on BQ},

then it is well known that dim K%(Q) = nand dim K’;(Q) =
m. We note that Kg(Q) and K’%(Q) are contained in
WL2(Q, R®); moreover, Ki,(ﬂ) and K‘T’(Q) are closed sub-
spaces of WwbP(Q,R?). Also it will be shown in Lemma 4
that Ki,(Q) and [KIT’(Q) are closed subspaces of Lf(Q, R?).
Thus since K?(Q) is a finite-dimensional closed subspace of
LP(Q,R?), KB(Q) has a complement L7 in LP(Q, R®); that
is, L? is a closed subspace of L?(Q, R?), L? n KE(Q) = {0},
and LP(Q,R’) = L @ KL(Q) (the direct sum). Therefore,
for any w € LP(Q,R’), there exist uniquely v € L? and
u € [K.I;(Q) such that w = v + u. We denote the projection
P:LP(Q,R’) — LP by Pw = v.
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Define
H? (Q, curl, div0) = {u eL? (Q, R3);curlu
e I” (Q,R*),divu=0in Q}, ©
H? (Q, curl, div0, #7) = {u € H? (Q, curl, div 0) ; uy
= % on 0Q}.

Note that if u € LP(Q,R%) and curlu € LF(Q,RY),
then the tangent trace u; is well defined as an element of

WVPPQ, R?) (cf. [5, p. 45]), and

H? (Q, curl, div0) n WP (Q, [R3)

9)
= {u e wh? (Q, R3);divu =0in Q}
Moreover, we note that if %, € W'™/PP(3Q), R?), then
H (Q,curl, divo, %) ¢ WP (R, 7). (10)

(cf. Amrouche and Seloula [6, Theorem 2.3]). We will see, in
Lemma 2 of Section 2, that

R (#r) = inf

veH? (Q,curl,div0,%7)

J S(x, |curlv|2) dx. (1)
Q

We are in a position to state the main theorem.

Theorem 1. Let O ¢ R® be a bounded domain satisfying
(O1) and (02), and let #; € W' VPP(OQ,R?) be a
tangential vector field on 0Q. Then RP () is achieved, and
the minimizer A ofRf(?/T) in Hf(Q, curl, div 0, Z';) satisfies
the following estimate. There exists a constant C = C(Q)) > 0
independent of 1 such that

IPAllyr(qy < C | # T"wlfl/PxP(aQ) . (12)

2. Preliminaries

In this section, we shall give some lemmas as preliminaries.

Lemma 2. Let % € W'™V/PP(3Q, R®) be a tangential vector
field on 0Q). Then one has

RE(9#7) = inf J- S (x, |curlv|2)dx. (13)
ver(Q,curl,divO,WT) Q
Proof. Put
o= inf J S (x, |curlu|2) dx,
ueW P (QR3,77) JQ
(14)
= inf J S (x, |curlv|2) dx.
veH? (Q,curl div0,#7) JO

Since H? (Q, curl, div 0, ) ¢ W"P(Q, R®, #), it is trivial
that « < B. For any u € W"F(Q, R?, %), the problem
Ap =divu in Q,
(15)
=0 ondQ
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has a unique solution ¢ € W2P(Q) (cf. Girault and Raviart
[7, Theorem 1.8]). If we define v = u — Vo € W"P(Q,R?),
then curlv = curlu,divv = divu - Agp = 0in Q and v; =
u; — (V) = up = #r. Thus v € H(Q, curl, div 0, ;). So
we have

J S (x, |cur1u|2) dx = J. S (x, |curlv|2) dx>p. (16)
Q Q

Thus we have « > f3. O

By Lemma 2, the minimization problem (1) reduces to the
following problem.

Problem B. Find the minimizer u € Hf (Q, curl, div0, Z)
such that

R () = inf

S(x, lcurlvf?)dx. (17
ver(Q,curl,divO,Z”T) JQ ( ) ( )

In the later, we frequently use the following lemma.

Lemma 3. (i) Ifu € LF(Q,R?), curlu € LP(Q,R?), divu €
LP(Q), and u -y € WVPP(QQ), then u € W P(Q, R?), and
there exists a constant ¢;(Q) > 0 such that

”u”WLP(Q) <¢ (Q) (”u"LP(Q) + ||Curlu||u’(0)
(18)
+ il oy + 10 Vo ) -

Here we note that if furthermore Q is simply connected, we can
delete the first term |[ul|;» (o in the right-hand side of (18).

(i) Ifu € LF(Q,R?), curlu € LP(Q,R?), divu € LP(Q),
and up € WYPPQQ, R?), then u € WhP(Q, R?), and there
exists a constant ¢,(Q) > 0 such that

”u”WLP(Q) <6 (Q) (”u"LP(Q) + ||Curlu||y’(g)
(19)

+[|divul e ) + ”“T”wlfwvﬂ(am)-

We note that if furthermore Q has no holes, we can delete the
first term |[ull p(q) in the right-hand side of (19).

For the proof of (18) and (19), see [5, Theorem 3.4 and
Corollary 5.2]. If Q is simply connected or has no holes, see
Aramaki [8, Lemma 2.2].

Lemma 4. The space IKIT’(Q) is a closed subspace of LF(Q, R3).

Proof. Let K?(Q) >u; —>uin LP(Q, R?). Then from (19) we
have

"uj - uk"WIvP(Q) <6 (Q) “llj - uk"LP(Q) . (20)

Therefore {u;} is a Cauchy sequence in WhP(Q, R?). Hence
there exists u, € W"P(Q,R?) such that u; — u,in
WP(Q, R?), so we have u = u, and u; > uin WhP(Q, R%)
as j — o0. Itis clear that curlu = 0,divu = 0in Q, and
up = 0 on 0Q. This implies that u € K?(Q). O

3. Proof of the Main Theorem 1

In this section, we give a proof of Theorem 1. The proof
consists of some lemmas and propositions. Throughout this
section, we assume that #; is a given tangential vector field
on 0Q.

Lemma 5. Let A € Hf(Q, curl, div 0, Z;). Then the mini-
mization problem

= inf |[A-u
y uerT’(Q)" e ) (21)

has a unique minimizer.

Proof. From Lemma 4, we know that K?(Q) is a closed
subspace of Lf(Q, R?). Thus it is well known that (21) has a
minimizer. For the uniqueness of the minimizer, it suffices to
show that the unit sphere B = {u € LP(Q, R%); lallzrqy = 1}
does not contain any line segment [u,v] = {Au+(1-A)v;0 <
A <1} foru,v € Band u # v. (cf. Fujita et al. [9, p. 306 and
the remark]). However, this is clear because the functional

Flw= jQ Jul? dx (22)

is strictly convex. O

For A ¢ H;D(Q, curl,div0, %), let u € [K1T)(Q) be a
unique minimizer of (21) and define B = A — u. Then since
forany z € KJ(Q) and t € R, B}, < IB + tzlf, ), we
have

d

0= —
dt

J |B+tz|de=pJ B’ ?B-zdx. (23)
Q Q

t=0

If we define a space
B(Q, ;) = {B e L (Q,R*);curl B

e I (Q,R’),divB = 0 in Q, B

(24)
=%y on aQ,J- BIP?B-zdx=0Vz
Q

ekt @},
then we see that B € B(Q), #’;). Then we have the following.

Lemma 6. One can see that
H (Q,curl, div0, #;) = B(Q, # ;) @ K‘; (Q)

(25)
(the direct sum) .

Proof. For any A € H/(Q, curl,div 0, %7), as the above we
can write

A=B+u, where BeB(Q,#;), uekl(Q). (26)

We show the uniqueness of the above decomposition. If we
can write

A=B,+u, =B, +u,, (27)



where B,,B, € B(Q,#;), u, and u, € [Kg(Q), then B, -
B, = u, — u; € KZ(Q). Therefore we have

.|-Q |B1|p_2 B, (B, -B,)dx =0,
(28)

L) B,|”* B, - (B, - B,) dx = 0.

Hence
JQ (lBllpiz B, - |lepi2 Bz) (B, -B,)dx=0. (29)

Here we use the following inequality. There exists a constant
¢ > 0 such that

(lal”*a=[b"*b) - (a-b)

cla-b?

¢ (Jal +[b])** |a - b*

if p>2, (30)
>
ifl<p<2

for all a,b € R’. For the proof of this inequality, see
DiBenedetto [10, Lemma 4.4] for p > 2, and see Miranda et
al. [11, (7C’)]. Applying (30) with a = B;, b = B, to (29), we
have

J [B, -B,[fdx=0 for p>2,
Q
(31)
J (1B +|B,|)?* B, B, dx =0 for1<p<2.
Q

From these equalities, we have B, = B,, sou; = u,. O

Now we state a refinement of Fatou’s lemma (cf. Evans [12,
pp. 11-12]).

Lemma 7. Assume that 1 < p < co. Let B; — B weakly in
LP(Q, R®) and a.e. in Q. Then one has

_ T
i [ (1o~ - 8] ) ax

o (32)
= J IB|? dx.
Q
If furthermore
lim J B[ dx = j IBI” dx, (33)
j=o0 Ja Q

then
-2 _ ’
B|""B; — BP?B strongly in L¥ (Q,R?),  (34)
where p' denotes the conjugate exponent of p; that is, (1/p) +

(l/p') = 1. In particular, szj — B strongly in LP(Q, R?) and
a.e. in Q, then (34) holds.
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Proof. We use an elementary estimate. Let 1 < g < 0o. Then,
for any fixed € > 0, there exists a constant C = C(g,q) > 0
such that

[la+bl?-|al| <ela]?+C|b|? (35)

foranya,b € R? (cf. [12, (1.13)]). Define

g; = H“BJF_Z Bf|P, - ||Bj|p_2 B, - B B|P’

1+ (36)
_ ! -2 5 |P
~|B1P2 B[’ —s“Bj|p Bj—|B|p2B| ] ,
where [a]* = max{a, 0} for a € R. Then we have
p-2 ? p-2 _ 3
9§S[“BJ' Bj| - |[B;|" "B~ BB ‘
-2 ql? p-2 p-2 Tk
+|BI72B| —s||Bj| B, - [B] B|
-2 . P
- [|||Bj|p B, - [BI">B + [BJ® 2B| (37)

- ||Bj|p_2 B, - |B|"” B|p, + 1By B|p,

1+
e

If we apply (35) with a = [B;|”’B; - |B["”*B, b = |B|"”°B
and g = p', we have

g <(C+1)|BP?B[" =(C+1)IBPF. (38)

We note that the right-hand side is integrable. By the hypo-
thesis, we can see that g; — 0 a.e. in Q. Therefore by the
Lebesgue dominated theorem, we have

lim j gidx = 0. (39)
Q

jooo

Therefore we have

lim sup L ||13.j|"_2 Bj|P’ - ||13].|p_2 B, - |B|p_2B|P’
j—oo
_ ||B|P*2 B'P, dx < £li?l§;1p JQ HBJ,|P*2 B;
—|BJP? B'P, dx

(40)
' — P,
< e2? li?li:)lp L ("Bj'p ? B|

+ ||B|p_2 B'p,>dx = szpllimsupj (|Bj'p
j—o0 Q

+ |B|P)dx.
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Since B; — B weakly in LP(Q,R?), IB;ll.» () is bounded.
Since ¢ is arbitrary, we have

_ o
i [ (1 3, m )

(41)
= J IB|? dx.
Q
If furthermore
lim J |B,|" dx = J IB|? dx, (42)
J=00 JO Q
then we have
_ s
lim J "Bj|p 'B; - |B|P‘ZB| dx = 0. (43)
J=00 J0
]

Lemma 8. B(Q, ) is a weakly closed set in WhP(Q, R?).

Proof. Let B; € B(Q, %), B; — B weakly in W"(Q, R?).
Then we have curl B € LP(Q,R%),divB = 0in Q, By = %
on 0Q), and

j 'Bj'p_sz-zdxzo vz e KE(Q). (44)
Q

Passing to a subsequence, we may assume that B, - B
strongly in L?(Q, R?) and a.e. in Q. Thus from Lemma 7, we
have |B]-|P’2Bj — |B’ B in Lp,(Q, R>). Therefore we have

L IBIF?B.zdx=0 VzeKki(Q). (45)

This implies that B € B(Q), ). O

Lemma 9. There exists a constant c(Q) > 0 such that for all
B € WHP(Q, R?) satisfying divB = 0 in Q and

—2 _ P
JQ Bl *B-zdx=0 VvzeKl(Q), (46)

one has

IBllwroy < ¢ () (llcurl Bl oy + [Brllyrvmrny) - (47)
Proof. If the conclusion (47) is false, there exists a sequence
{Bj} c WP (Q, R?) satisfying div B; = 0inQand

j 'Bj'P_sz-zdx:O vz e K2 (Q), (48)
Q

such that IIlelwl,p(Q) = 1, | curllele(Q) - 0,
B rllwi-irr@qy — 0 as j — oo. After passing to a
subsequence, we may assume that B; — B, weakly in

WP (Q, R?), strongly in LF(Q, R?), and a.e. in Q. Therefore

we have divB, = 0, curl By = 0in Q and B, = 0 on 0, so
B, € K?(Q). From Lemma 7,

J |B0|de:J Bo|”~* B, - Bydx
Q Q
(49)
= lim I B, "B, Bydx = 0.
Q J J

j—00

Thus we have B, = 0. Hence B; — 0 strongly in L?(Q, R).
From (19), we see that

"Bj| WhP(Q) <q(Q)
(50)
: (||Bj||LP(Q) + ”Curl Bj”U’(Q) + ||Bj’T||W1*1/PxP(BQ)) —0
as j — oo. This contradicts IBllyrpqy = 1. O

Proposition 10. Let %, € W' V/PP(BQ,R®). Then the
minimization problem

. 2
BeBl(?z,f%T) J;) S (x, |curl B| ) dx (51)

is achieved and

RI(#y) =  inf

2
BeB(Q,7 ) J;) S (x, [curl B ) dx 2

Proof. By Lemma 2, we can see that

R (#r) = inf

AEH;D(Q,curLdiv 0,7 1)

JS(x,lcurlAlz)dx. (53)
Q

Since B(Q, 1) C HtP(Q, curl, div 0, #'r), it is clear that

RC(#y) < inf

2

On the other hand, for any A € H’(Q, curl, div 0, %), we
can write A = B + u, where B € B(Q), #Z'1), and u € K?(Q).
Hence we have

J S(x,|curlA|2)dx :J S(x,lcurlBlz) dx
Q Q (55)

> inf J S(x,|curlB|2)dx.
BeB(Q.71) Jq

Thus (52) holds. We show that the right-hand side of (52) has
a minimizer. Let {B j} C B(Q, #Z ;) be a minimizing sequence.
Then

L)S(x, |cur1Bj'2>dx:Rf (# 1) +o0(1) 56

as j — oo.
By (1), we have
EAJ |curlBj|‘D dx < J S(x, 'curlBj|2) dx
p o o (57)
=RV (H7)+0(1).



Thus, by Lemma 9, {Bj} is bounded in W"?(Q, R?). Passing
to a subsequence, we may assume that B; — B, weakly in

WP (Q, RY), strongly in LP(€, R?), and a.e. in Q. Therefore
we have divB; = 0, B, = %1 on Q. Since

J [ 7B zdx =0 vaerb@), )
it follows from Lemma 7 that

L IBo|" By -zdx=0 Vvzekl(Q). (59)
Therefore B, € B(Q), # ). It suffices to prove that

J S (x, |curl B0|2) dx
? 2 (60)
< liminf L S (x, 'curl Bj| )dx.

j—oo

In fact, we can choose a subsequence {curl B jk} of {curl B j} SO
that

lim J;) S (x, |cur1 B,

k—o00

2>dx

(61)
2
= lim ian- S(x,|curlB;| )dx.
j—o00 Q ( ' J| )
Since curl B; — curl B, weakly in LP(Q, R?), it follows from

the Mazur theorem that there exist g, € L?(Q, R?) such that
g € convex hull of {curl B ; k > I} and g; — curl B, strongly

in L (Q, R?). Hence we can choose a subsequence {glm} of {g;}

so thatg, — curl By strongly in LP(Q,R%) and a.e. in Q. By
the Fatou lemma, we have

L S (x, |curl B0|2) dx < limrrlkrcl)f J;) S (x, |gl,,,'2> dx. (62)

Since S(x, t*) is a convex function with respect to t, we have

J-Q S (x, |g,m'2) dx

(63)
2
< sup {L S (x, |cur1Bjk' )dx;k > lm} .
Therefore we have
JQ S (x, [curl B0|2) dx < lim inf L S (x, 'glm |2) dx
< Wllg}go sup «”ﬂ N (x, 'curlBjk|2> dx; k > lm}
(64)
= klggo JQ S (x, |curl Bjk'z) dx
o 2
= 11jr1l£f JQ S (x, 'curl Bj| )dx.
This completes the proof. O
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Lemmall. Let A € H;D(Q, curl, div 0, ;) be a minimizer of
RP(F 7). Then A is a weak solution of the following system:

curl [St (x, |curlA|2) curlA] =0, divA=0inQ,
(65)

AT:%T on aQ.

Proof. If A € Hf(Q, curl,div 0, #’;) is a minimizer of
RP(9 1), then we can see that, for any w € H(Q, curl,
div 0, 0), we have

d
at

J‘ S (x, |curl A + ¢ curlwlz) dx = 0. (66)
=0 JQ

Thus we have

J S, (x, |curlA|2) curl A - curlwdx =0 (67)
Q

forallw e Hf (Q, curl, div 0, 0). We claim that

curl [Htp (Q, curl, div 0, 0)]
(68)
= curl [W'tl’p (Q, R’ 0)] .

In fact, since it is clear that H;D (Q,curl,div0,0) ¢
Vth’p(Q, R3, 0), we have

curl [Ht‘D (Q, curl, div 0, 0)]
(69)
C curl [Vth’P (Q, R, 0)] .

Conversely letu € Vth"D(Q, R?,0). Choose ¢ to be a solution
of

A¢ =divu in Q,

70
¢=0 on Q. 70)

By the elliptic regularity theorem, we see that ¢ € W>P(Q).
Define v = u — V¢. Then curlv = curlu € LP(Q, R?), divv =
divu - A¢ = 0in Q, and v; = up — (V) = up = 0 on
0Q). Therefore v € Hf (Q, curl, div 0,0) and curlu = curlv €
curl[Hf(Q, curl, div 0, 0)].

Hence (67) holds for any w € W'tl’P(Q, R>,0). Since
D(O,R%) ¢ VV:’P(Q, R?,0), it follows from (67) that A is a
weak solution of (65). O

Remark 12. The system (65) is so called the p-curl system.
When Q is a bounded, simply connected domain in R’
without holes and with C*** boundary for some « € (0, 1). If
' = 0, then [8] showed that the weak solution A of system
(65) satisfies the fact that A € C'*P(Q, R®) for some 8 € (0, 1)
and there exists a constant C depending only on p, Q such
that |All s, < C.

Lemma 13. Let B, € B(Q, Z';) be a minimizer of (52). Then
any minimizer A € HY(Q, curl, div 0, #7) of (17) must have
the form A = B, + u where u € KE(Q). In particular, the
minimizer of (52) is unique.
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Proof. Since for any u € K}T)(Q), we see that
B, +u € H? (Q,curl,div0, #;),
J |cur1 (B, + u)P' dx = J |curl By|? dx (71)
Q Q

:Rf(%T)'

Thus B, + u is a minimizer of (17). On the other hand, for
any minimizer A € Htp(Q, curl, div 0, #;) of (17), define w =
A -B,. Thenw ¢ Hf(Q, curl, div 0, 0). From (67), we have

J S, (x, |cur1A|2) curl A - curlwdx
¢ (72)
= J S (x, |curl B0|2) curl B, - curlwdx = 0.
Q

Therefore,

J (St (x, |curlA|2) curl A
Q

=S, (x, |curl Bolz) curl BO) - (curl A (73)

—curl By) dx = 0.

By the structure condition (2), we have curl(A — B,) = 0 in
Q,s0 A - B, € KP(Q).

IfB e B(Q,#y) C Htp(Q, curl, div 0, #;) is a minimizer
of (52), we can write B = B, + u, whereu € Ki(Q). If follows
from Lemma 6 that we see that u = 0. Thus the minimizer of

(52) in B(Q, #Z'r) is unique. O

For #; € W' VPPOO,R®), let A = A(H;) €
Htp (Q, curl,div0, ) be a minimizer of (17). Then there
exist uniquely B, = B (#;) € B(Q, %) which is a
minimizer of (52) and u = w(#;) € K’%(Q) such that

A(H7)=By(#r)+u(Hr). (74)

We note that PA(Z ;) = By(Zr).
In order to show the estimate in Theorem 1, it suffices to
prove the following proposition.

Proposition 14. There exists a constant ¢ = c(Q)) independent
of Z - such that

IBo (1) < € N rllwr-im0 o0y - (75)

Proof. Assume that the conclusion is false. Then there
exists a sequence {#;r} ¢ W VPP(90, R®) such that
"BO(%],T)"WI’P(Q) = 1 and

"%’ — 0 as j— oo. (76)

J"T“Wl’l/P’P(aQ)

For brevity of notation, we write B; = B,(% ;). Passing
to a subsequence, we may assume that B; — B weakly

in WhP(Q, R?), strongly in L(Q,R?), and a.e. in Q. Thus

curl B € LP(Q, R?), divB = 0 in Q, and B} = 0 on 9. Since
Bj satisfies

[ BB 2ax=0 vaert@ )
Q

and B; — B strongly in LP(Q,R%) and a.e. in Q, it follows
from Lemma 7 that

L BIP2B-zdx=0 VzeKl(Q).  (78)

Hence we have B € B((2,0). On the other hand, B jisa weak
solution of

curl [St (x, |curl Bj|2) curl Bj] =0 in Q, 79)
Bjp=%r onoQ.

Since S,(x, IcurlBjIZ)curlBj € LP,(Q, R*) and curl[S, (x,
|curl Bj|2) curl Bj] = 0, we see that S;(x, |curl lez) curl le 30

e WP (90, R?). Since v x 7, € W TUPP(Q,R) =
wiiehe (0Q, R?), it follows from the Green formula that

0= JQ curl [St (x, |curl Bj|2) curl Bj] -Bjdx
= L S, (x, 'curl Bj|2> curl B;- curl Bjdx (80)
+ LQ <Bj)T, xS, (x, 'curl Bj|2) curl BJ-> ds,

where (-,-) denotes the duality bracket of the spaces
WPP(30, R?) and WVPP (3Q, R?). Here we have

LQ <§’/j,T, xS, (x, |curl Bj'2> curl Bj> dS’

< "?/j,T“Wl,l/P,P(aQ) "St (x, |curl B]-|2> curl B, )

pl l/p’ (81)
-1
< ||%j’T“W1’1/P’P(aQ) (JQ (A |Curl Ble ) dx)

<A "%1)T||W1’1/P'P(BQ) ”curl B j "iﬁfm :

Since curl B; — curl B weakly in LP(Q, R?), we see that
ﬂlcurl BjIILp(Q) is bounded. Since "%j,anl—l/p,p(aQ) — 0, we
ave

Jao <v X %’j)T,St (x, |curl Bj|2) curl Bj> as— 0 (82)



as j — 0. Since S(x, )t is equivalent to S(x, t), using (80),
we have

J S (x, |curlB|2) |curl B|* dx
Q

< liminf L S (x, 'curl Bj|2> |cur1 B]-'Z dx

J—o00

= lim inf “Q S (x, |cur1 Bj'z) |¢url Bj|2 dx

j—00

+ LQ <v X 1> (x, 'curl Bj|2) curl BJ-> dS] (83)

= lim sup U S (x, |cur1 lez) |curl B],|2 dx
o

j—00
+ LQ <v X 1S (x, 'curl Bj|2) curl Bj> dS]
=0.

Since S,(x, |curl B*)|curl B> > Alcurl B|?, we see that
curlB=0,s0B ¢ K‘IT’(Q). From (78) with z = B, we have

0= J B’ B -Bdx = J |B|? dx. (84)
Q Q

Therefore B = 0 in Q, so B, -0 weakly in WhP(Q, R?)

and strongly in LP(Q, R?). From (80), we can see that
lcurl By — 0. By (19),

”BJ‘”wlvP(Q) <o)
(85)
’ (”Bj"LP(Q) + “curl Bj"U’(Q) + N%JBT||WH/N(30)) —0

as j — oo. This contradicts |B lly1rq) = 1. O

Proof of Theorem 1. The proof of Theorem 1 follows from
Lemma 2 and Propositions 10 and 14. O

Remark 15. Instead of minimizing S(t, |curlul?), it is also
interesting to minimize S(x, |div u/?). This problem is related
to the mathematical theory of liquid crystals. For p = 2 and
S(x,t) = t, see Aramaki [13].
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