On Self-Centeredness of Product of Graphs

Priyanka Singh and Pratima Panigrahi
Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
Correspondence should be addressed to Priyanka Singh; priyankaiit22@gmail.com

Received 4 April 2016; Revised 28 June 2016; Accepted 12 July 2016
Academic Editor: Laszlo A. Szekely
Copyright © 2016 P. Singh and P. Panigrahi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A graph G is said to be a self-centered graph if the eccentricity of every vertex of the graph is the same. In other words, a graph is a selfcentered graph if radius and diameter of the graph are equal. In this paper, self-centeredness of strong product, co-normal product, and lexicographic product of graphs is studied in detail. The necessary and sufficient conditions for these products of graphs to be a self-centered graph are also discussed. The distance between any two vertices in the co-normal product of a finite number of graphs is also computed analytically.

1. Introduction

The concept of self-centered graphs is widely used in applications, for example, the facility location problem. The facility location problem is to locate facilities in a locality (network) so that these facilities can be used efficiently. All graphs in this paper are simple and connected graphs. The distance between two vertices u and v in a graph G, denoted by $d_{G}(u, v)$ (or simply $d(u, v)$), is the minimum length of $u-v$ path in the graph. The eccentricity of a vertex v in G, denoted by $\operatorname{ecc}_{G}(v)$, is defined as the distance between v and a vertex farthest from v; that is, $\operatorname{ecc}_{G}(v)=\max \left\{d_{G}(v, u): u \in V(G)\right\}$. The radius $\operatorname{rad}(G)$ and diameter $\operatorname{diam}(G)$ of the graph G are, respectively, the minimum and maximum eccentricity of the vertices of graph G; that is, $\operatorname{rad}(G)=\min \{\operatorname{ecc}(v): v \in V(G)\}$ and $\operatorname{diam}(G)=\max \{\operatorname{ecc}(v): v \in V(G)\}$. The center $C(G)$ of graph G is the induced subgraph of G on the set of all vertices with minimum eccentricity. A graph G is said to be a selfcentered graph if the eccentricity of every vertex is the same; that is, $C(G)=G$ or $\operatorname{rad}(G)=\operatorname{diam}(G)$. If the eccentricity of every vertex is equal to d, then G is called d-self-centered graph.

For any kind of graph product G of the graphs G_{1}, G_{2}, \ldots, G_{n}, the vertex set is taken as $V(G)=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right.$: $\left.x_{i} \in V\left(G_{i}\right)\right\}$. Because of their adjacency rules, product names are different. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ be two vertices in $V(G)$. Then the product is called
(i) Cartesian product, denoted by $G=G_{1} \square G_{2} \square \cdots \square G_{n}$, where $x \sim y$ if and only if $x_{i} y_{i} \in E\left(G_{i}\right)$ for exactly one index $i, 1 \leq i \leq n$, and $x_{j}=y_{j}$ for each index $j \neq i$,
(ii) strong product, denoted by $G=G_{1} \boxtimes \cdots \boxtimes G_{n}$, where $x \sim y$ if and only if $x_{i} y_{i} \in E\left(G_{i}\right)$ or $x_{i}=y_{i}$, for every $i, 1 \leq i \leq n$,
(iii) lexicographic product, denoted by $G=G_{1} \circ \cdots \circ G_{n}$, where $x \sim y$ if and only if, for some $j \in\{1,2$, $\ldots, n\}, x_{j} y_{j} \in E\left(G_{j}\right)$ and $x_{i}=y_{i}$ for each $1 \leq i<j$,
(iv) co-normal product, denoted by $G=G_{1} * G_{2} * \cdots *$ G_{n}, where $x \sim y$ if and only if $x_{i} \sim y_{i}$ for some $i \in$ $\{1,2, \ldots, n\}$.
Self-centered graphs have been broadly studied and surveyed in [1-3]. In [4], the authors described several algorithms to construct self-centered graphs. Stanic [5] proved that the Cartesian product of two self-centered graphs is a self-centered graph. Inductively, one can prove that Cartesian product of n-self-centered graphs is also a self-centered graph.

In this paper, we find conditions for self-centeredness of strong product, co-normal product, and lexicographic product of graphs.

2. Main Results

In this section, we will discuss the self-centeredness of different types of product graphs. As mentioned before, all graphs
considered here are simple and connected. The following result is given by Stanic [5].

Theorem 1. If G_{1} and G_{2} are m - and n-self-centered graphs, respectively, then $G_{1} \square G_{2}$ is $(m+n)$-self-centered graph. Reciprocally, if $G_{1} \square G_{2}$ is self-centered, then both graphs G_{1} and G_{2} are self-centered.

By method of induction, one can extend the above theorem and get the result given below.

Theorem 2. Let $G=G_{1} \square G_{2} \square \cdots \square G_{n}$ be the Cartesian product of graphs $G_{1}, G_{2}, \ldots, G_{n}$. If every G_{i} is d_{i}-self-centered graph, then G is m-self-centered graph, where $m=\sum_{i=1}^{n} d_{i}$, $1 \leq i \leq n$. Conversely, if G is a self-centered graph, then every G_{i} is a self-centered graph.

Next we will discuss self-centeredness of strong product of graphs.

Theorem 3. Let $G=G_{1} \boxtimes \cdots \boxtimes G_{n}$ be the strong product of graphs $G_{1}, G_{2}, \ldots, G_{n}$. Then G is d-self-centered graph if and only if, for some $k \in\{1, \ldots, n\}, G_{k}$ is d-self-centered graph and $\operatorname{diam}\left(G_{i}\right) \leq d$ for every $i, 1 \leq i \leq n$.

Proof. For any two vertices $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}\right.$, \ldots, y_{n}), the distance between them is given in [6]:

$$
\begin{equation*}
d(x, y)=\max _{1 \leq i \leq n}\left\{d_{G_{i}}\left(x_{i}, y_{i}\right)\right\} . \tag{1}
\end{equation*}
$$

Now, the eccentricity of any vertex x of G is given by

$$
\operatorname{ecc}(x)=\max \{d(x, y): y \in V(G)\}
$$

$$
\begin{equation*}
=\max \left\{\max _{1 \leq i \leq n}\left\{d_{G_{i}}\left(x_{i}, y_{i}\right)\right\}: y \in V(G)\right\}, \tag{2}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$.
First, let G_{k} be d-self-centered graph for some $k \in$ $\{1,2, \ldots, n\}$ and $\operatorname{diam}\left(G_{i}\right) \leq d$ for all $i, 1 \leq i \leq n$. Since G_{k} is d-self-centered, $\operatorname{ecc}\left(x_{k}\right)=d$ and there exists some y_{k} in G_{k} such that $d\left(x_{k}, y_{k}\right)=d$. As $\operatorname{diam}\left(G_{i}\right) \leq d$ for all $i, 1 \leq i \leq n$, the distance between any two vertices in any G_{i} cannot exceed d. Hence, $\operatorname{ecc}(x)=d$ for all $x \in V(G)$ and thus G is d-selfcentered graph.

Conversely, let G be a d-self-centered graph. If, for some $l \in\{1, \ldots, n\}, \operatorname{diam}\left(G_{l}\right)=d_{l}>d$, then there exist vertices x_{l} and y_{l} in G_{l} such that $d\left(x_{l}, y_{l}\right)=d_{l}$. Now for $x=\left(x_{1}\right.$, $\left.\ldots, x_{l}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{l}, \ldots, y_{n}\right)$ in $V(G), d(x, y) \geq$ $d\left(x_{l}, y_{l}\right)=d_{l}>d$ and so $\operatorname{ecc}(x) \geq d_{l}>d$. This contradicts the fact that G is d-self-centered graph and thus it is proven that $\operatorname{diam}\left(G_{i}\right) \leq d$ for all i. Now, our claim is that there exists $k \in\{1, \ldots, n\}$ such that G_{k} is d-self-centered graph. On the contrary, suppose that none of G_{i} is d-self-centered graph. Then there exist vertices $x_{i} \in V\left(G_{i}\right)$ for all i such that $\operatorname{ecc}\left(x_{i}\right)=d_{i}<d$. Let $x=\left(x_{1}, \ldots, x_{n}\right)$. Then $\operatorname{ecc}(x)=$ $\max _{1 \leq i \leq n}\left\{d_{i}\right\}<d$, which contradicts the fact that G is d-selfcentered graph.

In the following lemma, we determine the formula for the distance between two vertices in the co-normal product of a finite number of graphs.

Lemma 4. Let $G=G_{1} * G_{2} * \cdots * G_{n}$ be the co-normal product of graphs $G_{1}, G_{2}, \ldots, G_{n}$. The distance between $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in G is

$$
d(x, y)= \begin{cases}1 & \text { if } x_{i} \sim y_{i} \text { for some } i \in\{1,2, \ldots, n\} \tag{3}\\ d\left(x_{i}, y_{i}\right) & \text { if } G_{j}=K_{1}, \forall j \neq i \\ 2 & \text { if } x+y, x_{l} \neq y_{l} \text { for exactly one index } l \text { and } G_{j} \neq K_{1} \text { for some } j \neq l \\ 2 & \text { if } x+y \text { and } \exists \text { at least two indices } k, l \text { s.t. } x_{k} \neq y_{k} \text { and } x_{l} \neq y_{l} .\end{cases}
$$

Proof. Consider two vertices $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}\right.$, $\left.\ldots, y_{n}\right)$ of G. If, for some $i \in\{1,2, \ldots, n\}, x_{i} \sim y_{i}$, then by the definition of co-normal product $x \sim y$ and thus $d(x, y)=1$.

Next, let $G_{j}=K_{1}$ for all $j \neq i$. In this case, for any path P between x and y, every adjacent pair of vertices in P differ only in the i th coordinate. So $d(x, y)=d\left(x_{i}, y_{i}\right)$. For the third option of the distance formula, we have vertices x and y as $x=\left(x_{1}, x_{2}, \ldots, x_{l}, \ldots, x_{j}, \ldots, x_{n}\right)$ and $y=\left(x_{1}\right.$, $\left.x_{2}, \ldots, y_{l}, \ldots, x_{j}, \ldots, x_{n}\right)$ such that $x_{l} \neq y_{l}$ and $G_{j} \neq K_{1}$ for some $j \neq l$. Since G_{j} is connected graph, there exists a vertex $z_{j} \in V\left(G_{j}\right)$ such that $x_{j} \sim z_{j}$ and thus we get a vertex $z=\left(x_{1}, x_{2}, \ldots, x_{l}, \ldots, z_{j}, \ldots, x_{n}\right) \in G$ such that $x \sim z$ and $z \sim y$ (because $x_{j}=y_{j}$) and $x z y$ is a path of length two and hence $d(x, y)=2$.

Finally, consider the case, where, for at least two indices k and $l, x_{k} \neq y_{k}$ and $x_{l} \neq y_{l}$; that is, for at least two indices k and $l, G_{k} \neq K_{1}$ and $G_{l} \neq K_{1}$. Since $x \nsim y, x_{k} \not y_{k}$, and $x_{l}+y_{l}$, then from the connectivity of graphs G_{k} and G_{l} there exist vertices $z_{k} \in V\left(G_{k}\right)$ and $z_{l} \in V\left(G_{l}\right)$ such that $z_{k} \sim x_{k}$ in G_{k} and $z_{l} \sim y_{l}$ in G_{l}. Then we have a vertex $z=\left(x_{1}, \ldots, z_{k}, \ldots, z_{l}, \ldots, x_{n}\right) \in V(G)$ such that $x \sim z$ and $z \sim y$. Thus $x z y$ will be an $x-y$ path of length two and this proves that $d(x, y)=2$.

The following theorem gives necessary and sufficient conditions for a co-normal product of graphs to be a selfcentered graph.

Theorem 5. Let $G=G_{1} * G_{2} * \cdots * G_{n}$ be the co-normal product of graphs $G_{1}, G_{2}, \ldots, G_{n}$ with $\left|V\left(G_{i}\right)\right|=n_{i}$. Then the following hold:
(i) Let $G_{i} \neq K_{1}$ and $G_{j}=K_{1}$ for all $j \neq i$. Then G is d-self-centered graph if and only if G_{i} is d-self-centered graph.
(ii) Let there be at least two values of i such that $G_{i} \neq K_{1}$. Then G is 2-self-centered graph if and only if there exists an index l such that $\Delta\left(G_{l}\right) \neq n_{l}-1$, where $\Delta(G)$ is the maximum degree of a vertex in G.

Proof. (i) The result is true because G is isomorphic to G_{i} in this case through the isomorphism

$$
\begin{equation*}
f: V(G) \longrightarrow V\left(G_{i}\right) \tag{4}
\end{equation*}
$$

with $f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)=x_{i}$.
(ii) Let G be a 2 -self-centered graph. If, for all the indices $i, \Delta\left(G_{i}\right)=n_{i}-1$, then there are vertices $x_{i} \in V\left(G_{i}\right), 1 \leq i \leq n$, such that $\operatorname{deg}\left(x_{i}\right)=n_{i}-1$. Now, the vertex $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, $\operatorname{ecc}(x)=1$, which contradicts the fact that G is 2 -self-centered graph. Hence there exists an index l such that $\Delta\left(G_{l}\right) \neq n_{l}-1$.

Conversely, let there be an index l such that $\Delta\left(G_{l}\right) \neq n_{l}-1$. Then for any vertex $x=\left(x_{1}, x_{2}, \ldots, x_{l}, x_{l+1}, \ldots, x_{n}\right)$ in G there exists another vertex $y=\left(x_{1}, x_{2}, \ldots, y_{l}, x_{l+1}, \ldots, x_{n}\right)$, where $y_{l} \in V\left(G_{l}\right)$ and $x_{l}+y_{l}$. Since $x+y$, from the third option of the distance formula given in Lemma $4, \operatorname{ecc}(x)=2$. Since x is an arbitrary vertex, G is 2-self-centered graph.

In the following two theorems, we discuss self-centeredness of lexicographic product of graphs.

Theorem 6. Let $G=G_{1} \circ G_{2} \circ \ldots \circ G_{n}$ be the lexicographic product of graphs $G_{1}, G_{2}, \ldots, G_{n}$ and let $k \geq 1$ be the smallest index for which $G_{k} \neq K_{1}$. If G_{k} is d-self-centered graph, where $d \geq 2$, then G is d-self-centered graph. The converse is true for $d \geq 3$.

Proof. For vertices $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ of G, the following distance formula is due to Hammack et al. [6]:

$$
\begin{align*}
& d(x, y) \\
& = \begin{cases}d_{G_{1}}\left(x_{1}, y_{1}\right) & \text { if } x_{1} \neq y_{1} \\
d_{G_{i}}\left(x_{i}, y_{i}\right) & \text { if } d_{G_{l}}\left(x_{l}\right)=0 \forall 1 \leq l<i \\
\min \left\{d_{G_{i}}\left(x_{i}, y_{i}\right), 2\right\} & \text { if } d_{G_{l}}\left(x_{l}\right) \neq 0 \text { for some } 1 \leq l<i,\end{cases} \tag{5}
\end{align*}
$$

where i is the smallest index for which $x_{i} \neq y_{i}$.
Let $\left|V\left(G_{i}\right)\right|=1$ for $i=1,2, \ldots, k-1$ and let G_{k} be d-selfcentered graph, where $d \geq 2$. First let $k=1$. Since $\left|V\left(G_{1}\right)\right|>$ $1, G_{1}$ is connected and degree of no vertex in G_{1} is zero; then the second option in the distance formula will not arise. Then the above formula to calculate the distance reduces to

$$
d(x, y)= \begin{cases}d_{G_{1}}\left(x_{1}, y_{1}\right) & \text { if } i=1 \tag{6}\\ \min \left\{d_{G_{i}}\left(x_{i}, y_{i}\right), 2\right\} & \text { if } i \geq 2\end{cases}
$$

where i is the smallest index for which $x_{i} \neq y_{i}$. For $i \geq 2$, let $r=\min \left\{d_{G_{i}}\left(x_{i}, y_{i}\right), 2\right\}$. Then $r \leq 2$. Since $d \geq 2$, we get $r \leq d$. Now, for $x \in V(G)$,

$$
\begin{align*}
\operatorname{ecc}(x) & =\max \{d(x, y): y \in V(G)\} \\
& =\max \left\{d_{G_{1}}\left(x_{1}, y_{1}\right), r: y_{1} \in V\left(G_{1}\right)\right\} \tag{7}\\
& =d
\end{align*}
$$

because $\operatorname{ecc}\left(x_{1}\right)=d$ and there exists $y_{1} \in G_{1}$ such that $d\left(x_{1}, y_{1}\right)=d$. This proves that $\operatorname{ecc}(x)=d$ for all $x \in V(G)$ and hence G is a d-self-centered graph.

Next, let $k>1$. Since $\left|V\left(G_{1}\right)\right|=1$, there is no $y_{1} \in G_{1}$ such that $x_{1} \neq y_{1}$. So, first option in the distance formula will not arise. Since the degree of the vertex in G_{j} for $j=1,2, \ldots, k-1$ is zero, if $i=k$ in the above distance formula then $d(x, y)=$ $d_{G_{k}}\left(x_{k}, y_{k}\right)$. Since $G_{k} \neq K_{1}$ and is connected $\operatorname{deg}\left(x_{k}\right) \neq 0$. So if $i \geq k+1$ in the above formula, $d(x, y)=\min \left\{d_{G_{i}}\left(x_{i}, y_{i}\right), 2\right\}$ and thus the above formula to calculate the distance reduces to

$$
d(x, y)= \begin{cases}d_{G_{k}}\left(x_{k}, y_{k}\right) & \text { if } i=k \tag{8}\\ \min \left\{d_{G_{i}}\left(x_{i}, y_{i}\right), 2\right\} & \text { if } i \geq k+1\end{cases}
$$

where i is the smallest index for which $x_{i} \neq y_{i}$. For $i \geq k+1$ let $r_{1}=\min \left\{d_{G_{i}}\left(x_{i}, y_{i}\right), 2\right\}$. Then $r_{1} \leq 2$. Since $d \geq 2$, we get $r_{1} \leq d$. Thus, for any vertex $x \in V(G)$, we have

$$
\begin{align*}
\operatorname{ecc}(x) & =\max \{d(x, y): y \in V(G)\} \\
& =\max \left\{d_{G_{k}}\left(x_{k}, y_{k}\right), r_{1}: y_{k} \in V\left(G_{k}\right)\right\} \tag{9}\\
& =d
\end{align*}
$$

This proves that $\operatorname{ecc}(x)=d$ for all $x \in V(G)$ and hence G is a d-self-centered graph.

Conversely, let G be a d-self-centered graph, where $d \geq 3$. Then $\operatorname{ecc}(x)=d$ for all $x \in V(G)$. Notice that, for any vertex $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in G,

$$
\begin{align*}
& \operatorname{ecc}(x)=\max \{d(x, y): y \in V(G)\} \\
& \quad= \begin{cases}\max \left\{\operatorname{ecc}\left(x_{1}\right), r: x_{1} \in V\left(G_{1}\right)\right\} & \text { if } k=1 \\
\max \left\{\operatorname{ecc}\left(x_{k}\right), r_{1}: x_{k} \in V\left(G_{k}\right)\right\} & \text { if } k>1\end{cases} \tag{10}
\end{align*}
$$

where r and r_{1} are as defined above. Since $\operatorname{ecc}(x)$ (which is the maximum of ecc $\left(x_{k}\right)$ and r or $\left.r_{1}\right)$ is equal to $d, d \geq 3$ and $r, r_{1} \leq 2$, we get $\operatorname{ecc}\left(x_{k}\right)=d$ for all $x_{k} \in V\left(G_{k}\right)$. So G_{k} is d-self-centered graph.

If we take $d=2$, then $\operatorname{ecc}(x)=2$ may not imply that $\operatorname{ecc}\left(x_{k}\right)=2$ (there may be ecc $\left(x_{k}\right)<2$ and r or r_{1} is equal to 2 ; see example below).

Example 7. Here we consider the lexicographic product of three graphs, G_{1}, G_{2}, and G_{3}, where $G_{1}=K_{2}, G_{2}=P_{4}$, and $G_{3}=K_{2}$. Let $V\left(G_{1}\right)=\{x, y\}, V\left(G_{2}\right)=\{a, b, c, d\}$, and $V\left(G_{3}\right)=\{1,2\}$. The lexicographic product $G=K_{2} \circ P_{4} \circ K_{2}$

of graphs K_{2}, P_{4}, and K_{2} is shown in Figure 1. One can check that the eccentricity of every vertex of G is two and hence G is a 2 -self-centered graph. However, G_{1} is not a 2 -self-centered graph.

In the theorem below, we present the general version of the 2 -self-centered product graphs included in the previous example.

Theorem 8. Let $G=G_{1} \circ G_{2} \circ \cdots \circ G_{n}$ be the lexicographic product of graphs $G_{1}, G_{2}, \ldots, G_{n}$ with $\left|V\left(G_{i}\right)\right|=n_{i}$, let G_{k} be 1 -self-centered graph for some $k \in\{1, \ldots, n-1\}$, and let G_{i} (if it exists) be K_{1} for all $i<k$. Then G is a 2 -self-centered graph if and only if $\Delta\left(G_{j}\right) \neq n_{j}-1$ for some $j \geq k+1$.

Proof. First let G be a 2-self-centered graph. It is given that, for some $k \in\{1, \ldots, n-1\}, G_{k}$ is 1-self-centered graph and let G_{i} be K_{1} for all $i<k$. Our claim is that $\Delta\left(G_{j}\right) \neq n_{j}-1$ for some $j \geq k+1$. On the contrary, let $\Delta\left(G_{j}\right)=n_{j}-1$ for all $j \geq k+1$. Then there are vertices $g_{i} \in G_{i}$ such that $\operatorname{ecc}\left(g_{i}\right)=1$ for every $i, k \leq i \leq n$. Now, by using above distance formula, for every $x=\left(x_{1}, \ldots, x_{k-1}, g_{k}, \ldots, g_{n}\right)$ in G, one gets $\operatorname{ecc}(x)=1$. This contradicts the fact that G is a 2 -self-centered graph.

Conversely, let $\Delta\left(G_{l}\right) \neq n_{l}-1$ for some $l \geq k+1$. Then for any vertex $x_{l} \in G_{l}$ there exists $y_{l} \in G_{l}$ such that $x_{l}+y_{l}$. For any vertex $x=\left(x_{1}, \ldots, x_{k}, \ldots, x_{l}, \ldots, x_{n}\right)$ there exists a vertex $y=\left(x_{1}, \ldots, x_{k}, \ldots, y_{l}, \ldots, x_{n}\right)$ such that $x+y$. So, $\operatorname{ecc}(x) \geq 2$. Since $G_{i}=K_{1}$ for all $i<k$ (if any), the distance formula will be

$$
d(x, y)= \begin{cases}d_{G_{i}}\left(x_{i}, y_{i}\right) & \text { if } i=k \tag{11}\\ \min \left\{d_{G_{i}}\left(x_{i}, y_{i}\right), 2\right\} & \text { if } i \geq k+1\end{cases}
$$

where i is the smallest index for which $x_{i} \neq y_{i}$. Since G_{k} is a $1-$ self-centered graph, $d_{G_{i}}\left(x_{i}, y_{i}\right)=1$ if $i=k$. Also, for $i \geq k+1$, $\min \left\{d_{G_{i}}\left(x_{i}, y_{i}\right), 2\right\} \leq 2$. Thus eccentricity of no vertex is more than two and we get $\operatorname{ecc}(x)=2$ for every $x \in G$. Hence G is a 2-self-centered graph.

Competing Interests

The authors declare that there are no competing interests regarding the publication of this paper.

References

[1] F. Buckley, "Self-centered graphs," Annals of the New York Academy of Sciences, vol. 576, pp. 71-78, 1989.
[2] F. Buckley, Z. Miller, and P. J. Slater, "On graphs containing a given graph as center," Journal of Graph Theory, vol. 5, no. 4, pp. 427-434, 1981.
[3] T. N. Janakiraman, "On special classes of self-centred graphs," Discrete Mathematics, vol. 126, no. 1-3, pp. 411-414, 1994.
[4] T. N. Janakiraman, M. Bhanumathi, and S. Muthammai, "Selfcentered super graph of a graph and center number of a graph," Ars Combinatoria, vol. 87, pp. 271-290, 2008.
[5] Z. Stanic, "Some notes on minimal self-centered graphs," $A K C E$ International Journal of Graphs and Combinatorics, vol. 7, pp. 97-102, 2010.
[6] R. Hammack, W. Imrich, and S. Klavžar, Handbook of Product Graphs, CRC Press, 2nd edition, 2011.

Advances in
Operations Research
$=$

The Scientific World Journal

International
Journal of
Mathematics and
Mathematical
Sciences

Advances in
Decision Sciences
$\pm=$

Applied Mathematics
$\underline{=}$

Hindawi

Submit your manuscripts at http://www.hindawi.com

Journal of Function Spaces

