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A graph𝐺 is said to be a self-centered graph if the eccentricity of every vertex of the graph is the same. In otherwords, a graph is a self-
centered graph if radius and diameter of the graph are equal. In this paper, self-centeredness of strong product, co-normal product,
and lexicographic product of graphs is studied in detail.The necessary and sufficient conditions for these products of graphs to be a
self-centered graph are also discussed.The distance between any two vertices in the co-normal product of a finite number of graphs
is also computed analytically.

1. Introduction

The concept of self-centered graphs is widely used in applica-
tions, for example, the facility location problem. The facility
location problem is to locate facilities in a locality (network)
so that these facilities can be used efficiently. All graphs in this
paper are simple and connected graphs.The distance between
two vertices 𝑢 and V in a graph 𝐺, denoted by 𝑑𝐺(𝑢, V) (or
simply 𝑑(𝑢, V)), is the minimum length of 𝑢-V path in the
graph. The eccentricity of a vertex V in 𝐺, denoted by ecc

𝐺
(V),

is defined as the distance between V and a vertex farthest from
V; that is, ecc

𝐺
(V) = max{𝑑

𝐺
(V, 𝑢) : 𝑢 ∈ 𝑉(𝐺)}. The radius

rad(𝐺) and diameter diam(𝐺) of the graph𝐺 are, respectively,
the minimum and maximum eccentricity of the vertices of
graph 𝐺; that is, rad(𝐺) = min{ecc(V) : V ∈ 𝑉(𝐺)} and
diam(𝐺) = max{ecc(V) : V ∈ 𝑉(𝐺)}. The center 𝐶(𝐺) of
graph𝐺 is the induced subgraph of𝐺 on the set of all vertices
with minimum eccentricity. A graph 𝐺 is said to be a self-
centered graph if the eccentricity of every vertex is the same;
that is, 𝐶(𝐺) = 𝐺 or rad(𝐺) = diam(𝐺). If the eccentricity
of every vertex is equal to 𝑑, then 𝐺 is called 𝑑-self-centered
graph.

For any kind of graph product 𝐺 of the graphs 𝐺
1
, 𝐺
2
,

. . . , 𝐺
𝑛
, the vertex set is taken as 𝑉(𝐺) = {(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) :

𝑥
𝑖
∈ 𝑉(𝐺

𝑖
)}. Because of their adjacency rules, product names

are different. Let 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) and 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
) be two

vertices in 𝑉(𝐺). Then the product is called

(i) Cartesian product, denoted by 𝐺 = 𝐺
1
◻𝐺
2
◻ ⋅ ⋅ ⋅ ◻𝐺

𝑛
,

where 𝑥 ∼ 𝑦 if and only if 𝑥
𝑖
𝑦
𝑖
∈ 𝐸(𝐺

𝑖
) for exactly one

index 𝑖, 1 ≤ 𝑖 ≤ 𝑛, and 𝑥
𝑗
= 𝑦
𝑗
for each index 𝑗 ̸= 𝑖,

(ii) strong product, denoted by 𝐺 = 𝐺1 ⊠ ⋅ ⋅ ⋅ ⊠ 𝐺𝑛, where
𝑥 ∼ 𝑦 if and only if 𝑥𝑖𝑦𝑖 ∈ 𝐸(𝐺𝑖) or 𝑥𝑖 = 𝑦𝑖, for every
𝑖, 1 ≤ 𝑖 ≤ 𝑛,

(iii) lexicographic product, denoted by 𝐺 = 𝐺1 ∘ ⋅ ⋅ ⋅ ∘ 𝐺𝑛,
where 𝑥 ∼ 𝑦 if and only if, for some 𝑗 ∈ {1, 2,

. . . , 𝑛}, 𝑥𝑗𝑦𝑗 ∈ 𝐸(𝐺𝑗) and 𝑥𝑖 = 𝑦𝑖 for each 1 ≤ 𝑖 < 𝑗,
(iv) co-normal product, denoted by 𝐺 = 𝐺

1
∗ 𝐺
2
∗ ⋅ ⋅ ⋅ ∗

𝐺𝑛, where 𝑥 ∼ 𝑦 if and only if 𝑥𝑖 ∼ 𝑦𝑖 for some 𝑖 ∈
{1, 2, . . . , 𝑛}.

Self-centered graphs have been broadly studied and surveyed
in [1–3]. In [4], the authors described several algorithms to
construct self-centered graphs. Stanic [5] proved that theCar-
tesian product of two self-centered graphs is a self-centered
graph. Inductively, one can prove that Cartesian product of
𝑛-self-centered graphs is also a self-centered graph.

In this paper, we find conditions for self-centeredness of
strong product, co-normal product, and lexicographic prod-
uct of graphs.

2. Main Results

In this section, we will discuss the self-centeredness of differ-
ent types of product graphs. As mentioned before, all graphs
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considered here are simple and connected. The following
result is given by Stanic [5].

Theorem 1. If 𝐺
1
and 𝐺

2
are 𝑚- and 𝑛-self-centered graphs,

respectively, then 𝐺
1
◻𝐺
2
is (𝑚 + 𝑛)-self-centered graph. Recip-

rocally, if 𝐺
1
◻𝐺
2
is self-centered, then both graphs 𝐺

1
and 𝐺

2

are self-centered.

By method of induction, one can extend the above theo-
rem and get the result given below.

Theorem 2. Let 𝐺 = 𝐺
1
◻𝐺
2
◻ ⋅ ⋅ ⋅ ◻𝐺

𝑛
be the Cartesian prod-

uct of graphs 𝐺1, 𝐺2, . . . , 𝐺𝑛. If every 𝐺𝑖 is 𝑑𝑖-self-centered
graph, then 𝐺 is 𝑚-self-centered graph, where 𝑚 = ∑

𝑛

𝑖=1
𝑑𝑖,

1 ≤ 𝑖 ≤ 𝑛. Conversely, if 𝐺 is a self-centered graph, then every
𝐺𝑖 is a self-centered graph.

Next we will discuss self-centeredness of strong product
of graphs.

Theorem 3. Let 𝐺 = 𝐺1 ⊠ ⋅ ⋅ ⋅ ⊠ 𝐺𝑛 be the strong product of
graphs 𝐺1, 𝐺2, . . . , 𝐺𝑛. Then 𝐺 is 𝑑-self-centered graph if and
only if, for some 𝑘 ∈ {1, . . . , 𝑛}, 𝐺𝑘 is 𝑑-self-centered graph and
diam(𝐺𝑖) ≤ 𝑑 for every 𝑖, 1 ≤ 𝑖 ≤ 𝑛.

Proof. For any two vertices 𝑥 = (𝑥
1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1,

. . . , 𝑦
𝑛
), the distance between them is given in [6]:

𝑑 (𝑥, 𝑦) = max
1≤𝑖≤𝑛

{𝑑
𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
)} . (1)

Now, the eccentricity of any vertex 𝑥 of 𝐺 is given by

ecc (𝑥) = max {𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝑉 (𝐺)}

= max {max
1≤𝑖≤𝑛

{𝑑
𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
)} : 𝑦 ∈ 𝑉 (𝐺)} ,

(2)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) and 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
).

First, let 𝐺
𝑘
be 𝑑-self-centered graph for some 𝑘 ∈

{1, 2, . . . , 𝑛} and diam(𝐺
𝑖
) ≤ 𝑑 for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛. Since 𝐺

𝑘

is 𝑑-self-centered, ecc(𝑥
𝑘
) = 𝑑 and there exists some 𝑦

𝑘
in 𝐺
𝑘

such that 𝑑(𝑥
𝑘
, 𝑦
𝑘
) = 𝑑. As diam(𝐺

𝑖
) ≤ 𝑑 for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛,

the distance between any two vertices in any𝐺
𝑖
cannot exceed

𝑑. Hence, ecc(𝑥) = 𝑑 for all 𝑥 ∈ 𝑉(𝐺) and thus 𝐺 is 𝑑-self-
centered graph.

Conversely, let 𝐺 be a 𝑑-self-centered graph. If, for some
𝑙 ∈ {1, . . . , 𝑛}, diam(𝐺

𝑙
) = 𝑑

𝑙
> 𝑑, then there exist vertices

𝑥
𝑙
and 𝑦

𝑙
in 𝐺
𝑙
such that 𝑑(𝑥

𝑙
, 𝑦
𝑙
) = 𝑑

𝑙
. Now for 𝑥 = (𝑥

1
,

. . . , 𝑥
𝑙
, . . . , 𝑥

𝑛
) and 𝑦 = (𝑦

1
, . . . , 𝑦

𝑙
, . . . , 𝑦

𝑛
) in 𝑉(𝐺), 𝑑(𝑥, 𝑦) ≥

𝑑(𝑥𝑙, 𝑦𝑙) = 𝑑𝑙 > 𝑑 and so ecc(𝑥) ≥ 𝑑𝑙 > 𝑑. This contradicts
the fact that 𝐺 is 𝑑-self-centered graph and thus it is proven
that diam(𝐺𝑖) ≤ 𝑑 for all 𝑖. Now, our claim is that there
exists 𝑘 ∈ {1, . . . , 𝑛} such that 𝐺𝑘 is 𝑑-self-centered graph.
On the contrary, suppose that none of 𝐺𝑖 is 𝑑-self-centered
graph. Then there exist vertices 𝑥𝑖 ∈ 𝑉(𝐺𝑖) for all 𝑖 such
that ecc(𝑥𝑖) = 𝑑𝑖 < 𝑑. Let 𝑥 = (𝑥1, . . . , 𝑥𝑛). Then ecc(𝑥) =
max1≤𝑖≤𝑛{𝑑𝑖} < 𝑑, which contradicts the fact that 𝐺 is 𝑑-self-
centered graph.

In the following lemma, we determine the formula for the
distance between two vertices in the co-normal product of a
finite number of graphs.

Lemma 4. Let 𝐺 = 𝐺1 ∗ 𝐺2 ∗ ⋅ ⋅ ⋅ ∗ 𝐺𝑛 be the co-normal
product of graphs 𝐺1, 𝐺2, . . . , 𝐺𝑛. The distance between 𝑥 =

(𝑥1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, . . . , 𝑦𝑛) in 𝐺 is

𝑑 (𝑥, 𝑦) =

{{{{{{{{{{

{{{{{{{{{{

{

1 𝑖𝑓 𝑥
𝑖
∼ 𝑦
𝑖
𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ∈ {1, 2, . . . , 𝑛}

𝑑 (𝑥
𝑖, 𝑦𝑖) 𝑖𝑓 𝐺𝑗 = 𝐾1, ∀𝑗 ̸= 𝑖

2 𝑖𝑓 𝑥 ≁ 𝑦, 𝑥
𝑙

̸= 𝑦
𝑙
𝑓𝑜𝑟 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑜𝑛𝑒 𝑖𝑛𝑑𝑒𝑥 𝑙 𝑎𝑛𝑑 𝐺

𝑗
̸= 𝐾
1
𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑗 ̸= 𝑙

2 𝑖𝑓 𝑥 ≁ 𝑦 𝑎𝑛𝑑 ∃ 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑘, 𝑙 𝑠.𝑡. 𝑥
𝑘 ̸= 𝑦𝑘 𝑎𝑛𝑑 𝑥𝑙 ̸= 𝑦𝑙.

(3)

Proof. Consider two vertices 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) and 𝑦 = (𝑦

1
,

. . . , 𝑦
𝑛
) of 𝐺. If, for some 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑥

𝑖
∼ 𝑦
𝑖
, then by the

definition of co-normal product 𝑥 ∼ 𝑦 and thus 𝑑(𝑥, 𝑦) = 1.
Next, let 𝐺

𝑗
= 𝐾
1
for all 𝑗 ̸= 𝑖. In this case, for any

path 𝑃 between 𝑥 and 𝑦, every adjacent pair of vertices in
𝑃 differ only in the 𝑖th coordinate. So 𝑑(𝑥, 𝑦) = 𝑑(𝑥

𝑖
, 𝑦
𝑖
).

For the third option of the distance formula, we have vertices
𝑥 and 𝑦 as 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑙
, . . . , 𝑥

𝑗
, . . . , 𝑥

𝑛
) and 𝑦 = (𝑥

1
,

𝑥
2
, . . . , 𝑦

𝑙
, . . . , 𝑥

𝑗
, . . . , 𝑥

𝑛
) such that 𝑥

𝑙
̸= 𝑦
𝑙
and 𝐺

𝑗
̸= 𝐾
1

for some 𝑗 ̸= 𝑙. Since 𝐺𝑗 is connected graph, there exists a
vertex 𝑧𝑗 ∈ 𝑉(𝐺𝑗) such that 𝑥𝑗 ∼ 𝑧𝑗 and thus we get a vertex
𝑧 = (𝑥1, 𝑥2, . . . , 𝑥𝑙, . . . , 𝑧𝑗, . . . , 𝑥𝑛) ∈ 𝐺 such that 𝑥 ∼ 𝑧 and
𝑧 ∼ 𝑦 (because 𝑥𝑗 = 𝑦𝑗) and 𝑥𝑧𝑦 is a path of length two and
hence 𝑑(𝑥, 𝑦) = 2.

Finally, consider the case, where, for at least two indices 𝑘
and 𝑙, 𝑥𝑘 ̸= 𝑦𝑘 and 𝑥𝑙 ̸= 𝑦𝑙; that is, for at least two indices
𝑘 and 𝑙, 𝐺

𝑘
̸= 𝐾
1
and 𝐺

𝑙
̸= 𝐾
1
. Since 𝑥 ≁ 𝑦, 𝑥

𝑘
≁ 𝑦
𝑘
,

and 𝑥
𝑙
≁ 𝑦
𝑙
, then from the connectivity of graphs 𝐺

𝑘
and

𝐺
𝑙 there exist vertices 𝑧𝑘 ∈ 𝑉(𝐺𝑘) and 𝑧𝑙 ∈ 𝑉(𝐺𝑙) such that

𝑧
𝑘
∼ 𝑥
𝑘
in 𝐺
𝑘
and 𝑧

𝑙
∼ 𝑦
𝑙
in 𝐺
𝑙
. Then we have a vertex

𝑧 = (𝑥
1
, . . . , 𝑧

𝑘
, . . . , 𝑧

𝑙
, . . . , 𝑥

𝑛
) ∈ 𝑉(𝐺) such that 𝑥 ∼ 𝑧 and

𝑧 ∼ 𝑦. Thus 𝑥𝑧𝑦 will be an 𝑥-𝑦 path of length two and this
proves that 𝑑(𝑥, 𝑦) = 2.

The following theorem gives necessary and sufficient
conditions for a co-normal product of graphs to be a self-
centered graph.
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Theorem 5. Let 𝐺 = 𝐺
1
∗ 𝐺
2
∗ ⋅ ⋅ ⋅ ∗ 𝐺

𝑛
be the co-normal

product of graphs 𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑛
with |𝑉(𝐺

𝑖
)| = 𝑛

𝑖
. Then the

following hold:

(i) Let 𝐺
𝑖

̸= 𝐾
1
and 𝐺

𝑗
= 𝐾
1
for all 𝑗 ̸= 𝑖. Then 𝐺 is

𝑑-self-centered graph if and only if 𝐺
𝑖
is 𝑑-self-centered

graph.

(ii) Let there be at least two values of 𝑖 such that 𝐺
𝑖

̸= 𝐾
1
.

Then𝐺 is 2-self-centered graph if and only if there exists
an index 𝑙 such that Δ(𝐺

𝑙
) ̸= 𝑛
𝑙
− 1, where Δ(𝐺) is the

maximum degree of a vertex in 𝐺.

Proof. (i) The result is true because 𝐺 is isomorphic to 𝐺
𝑖
in

this case through the isomorphism

𝑓 : 𝑉 (𝐺) → 𝑉(𝐺
𝑖) (4)

with 𝑓(𝑥
1
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑛
) = 𝑥
𝑖
.

(ii) Let 𝐺 be a 2-self-centered graph. If, for all the indices
𝑖, Δ(𝐺

𝑖
) = 𝑛
𝑖
− 1, then there are vertices 𝑥

𝑖
∈ 𝑉(𝐺

𝑖
), 1 ≤ 𝑖 ≤ 𝑛,

such that deg(𝑥
𝑖
) = 𝑛
𝑖
−1. Now, the vertex𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
),

ecc(𝑥) = 1, which contradicts the fact that𝐺 is 2-self-centered
graph. Hence there exists an index 𝑙 such that Δ(𝐺

𝑙
) ̸= 𝑛
𝑙
− 1.

Conversely, let there be an index 𝑙 such thatΔ(𝐺
𝑙
) ̸= 𝑛
𝑙
−1.

Then for any vertex𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑙
, 𝑥
𝑙+1
, . . . , 𝑥

𝑛
) in𝐺 there

exists another vertex 𝑦 = (𝑥
1
, 𝑥
2
, . . . , 𝑦

𝑙
, 𝑥
𝑙+1
, . . . , 𝑥

𝑛
), where

𝑦
𝑙
∈ 𝑉(𝐺

𝑙
) and 𝑥

𝑙
≁ 𝑦
𝑙
. Since 𝑥 ≁ 𝑦, from the third option of

the distance formula given in Lemma 4, ecc(𝑥) = 2. Since 𝑥
is an arbitrary vertex, 𝐺 is 2-self-centered graph.

In the following two theorems, we discuss self-centered-
ness of lexicographic product of graphs.

Theorem 6. Let 𝐺 = 𝐺1 ∘ 𝐺2 ∘ ⋅ ⋅ ⋅ ∘ 𝐺𝑛 be the lexicographic
product of graphs 𝐺1, 𝐺2, . . . , 𝐺𝑛 and let 𝑘 ≥ 1 be the smallest
index for which 𝐺

𝑘
̸= 𝐾
1
. If 𝐺
𝑘
is 𝑑-self-centered graph, where

𝑑 ≥ 2, then 𝐺 is 𝑑-self-centered graph. The converse is true for
𝑑 ≥ 3.

Proof. For vertices 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) and 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
) of𝐺,

the following distance formula is due to Hammack et al. [6]:

𝑑 (𝑥, 𝑦)

=

{{{{

{{{{

{

𝑑
𝐺1
(𝑥
1
, 𝑦
1
) if 𝑥

1
̸= 𝑦
1

𝑑
𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
) if 𝑑

𝐺𝑙
(𝑥
𝑙
) = 0 ∀1 ≤ 𝑙 < 𝑖

min {𝑑
𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
) , 2} if 𝑑

𝐺𝑙
(𝑥
𝑙
) ̸= 0 for some 1 ≤ 𝑙 < 𝑖,

(5)

where 𝑖 is the smallest index for which 𝑥
𝑖 ̸= 𝑦𝑖.

Let |𝑉(𝐺𝑖)| = 1 for 𝑖 = 1, 2, . . . , 𝑘 − 1 and let 𝐺𝑘 be 𝑑-self-
centered graph, where 𝑑 ≥ 2. First let 𝑘 = 1. Since |𝑉(𝐺1)| >
1, 𝐺1 is connected and degree of no vertex in 𝐺1 is zero; then
the second option in the distance formula will not arise.Then
the above formula to calculate the distance reduces to

𝑑 (𝑥, 𝑦) =
{

{

{

𝑑𝐺1
(𝑥1, 𝑦1) if 𝑖 = 1

min {𝑑𝐺𝑖 (𝑥𝑖, 𝑦𝑖) , 2} if 𝑖 ≥ 2,

(6)

where 𝑖 is the smallest index for which 𝑥
𝑖

̸= 𝑦
𝑖
. For 𝑖 ≥ 2, let

𝑟 = min{𝑑
𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
), 2}. Then 𝑟 ≤ 2. Since 𝑑 ≥ 2, we get 𝑟 ≤ 𝑑.

Now, for 𝑥 ∈ 𝑉(𝐺),

ecc (𝑥) = max {𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝑉 (𝐺)}

= max {𝑑
𝐺1
(𝑥
1
, 𝑦
1
) , 𝑟 : 𝑦

1
∈ 𝑉 (𝐺

1
)}

= 𝑑,

(7)

because ecc(𝑥
1
) = 𝑑 and there exists 𝑦

1
∈ 𝐺
1
such that

𝑑(𝑥
1
, 𝑦
1
) = 𝑑. This proves that ecc(𝑥) = 𝑑 for all 𝑥 ∈ 𝑉(𝐺)

and hence 𝐺 is a 𝑑-self-centered graph.
Next, let 𝑘 > 1. Since |𝑉(𝐺

1
)| = 1, there is no𝑦

1
∈ 𝐺
1
such

that 𝑥
1

̸= 𝑦
1
. So, first option in the distance formula will not

arise. Since the degree of the vertex in𝐺
𝑗
for 𝑗 = 1, 2, . . . , 𝑘−1

is zero, if 𝑖 = 𝑘 in the above distance formula then 𝑑(𝑥, 𝑦) =
𝑑
𝐺𝑘
(𝑥
𝑘
, 𝑦
𝑘
). Since 𝐺

𝑘
̸= 𝐾
1
and is connected deg(𝑥

𝑘
) ̸= 0. So

if 𝑖 ≥ 𝑘 + 1 in the above formula, 𝑑(𝑥, 𝑦) = min{𝑑
𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
), 2}

and thus the above formula to calculate the distance reduces
to

𝑑 (𝑥, 𝑦) =
{

{

{

𝑑
𝐺𝑘
(𝑥
𝑘
, 𝑦
𝑘
) if 𝑖 = 𝑘

min {𝑑
𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
) , 2} if 𝑖 ≥ 𝑘 + 1,

(8)

where 𝑖 is the smallest index for which 𝑥
𝑖

̸= 𝑦
𝑖
. For 𝑖 ≥ 𝑘 + 1

let 𝑟
1
= min{𝑑

𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
), 2}. Then 𝑟

1
≤ 2. Since 𝑑 ≥ 2, we get

𝑟
1
≤ 𝑑. Thus, for any vertex 𝑥 ∈ 𝑉(𝐺), we have

ecc (𝑥) = max {𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝑉 (𝐺)}

= max {𝑑
𝐺𝑘
(𝑥
𝑘
, 𝑦
𝑘
) , 𝑟
1
: 𝑦
𝑘
∈ 𝑉 (𝐺

𝑘
)}

= 𝑑.

(9)

This proves that ecc(𝑥) = 𝑑 for all 𝑥 ∈ 𝑉(𝐺) and hence 𝐺 is a
𝑑-self-centered graph.

Conversely, let𝐺 be a 𝑑-self-centered graph, where 𝑑 ≥ 3.
Then ecc(𝑥) = 𝑑 for all 𝑥 ∈ 𝑉(𝐺). Notice that, for any vertex
𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) in 𝐺,

ecc (𝑥) = max {𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝑉 (𝐺)}

=
{

{

{

max {ecc (𝑥
1
) , 𝑟 : 𝑥

1
∈ 𝑉 (𝐺

1
)} if 𝑘 = 1

max {ecc (𝑥
𝑘
) , 𝑟
1
: 𝑥
𝑘
∈ 𝑉 (𝐺

𝑘
)} if 𝑘 > 1,

(10)

where 𝑟 and 𝑟
1
are as defined above. Since ecc(𝑥) (which is

the maximum of ecc(𝑥
𝑘
) and 𝑟 or 𝑟

1
) is equal to 𝑑, 𝑑 ≥ 3 and

𝑟, 𝑟
1
≤ 2, we get ecc(𝑥

𝑘
) = 𝑑 for all 𝑥

𝑘
∈ 𝑉(𝐺

𝑘
). So 𝐺

𝑘
is

𝑑-self-centered graph.

If we take 𝑑 = 2, then ecc(𝑥) = 2 may not imply that
ecc(𝑥
𝑘
) = 2 (there may be ecc(𝑥

𝑘
) < 2 and 𝑟 or 𝑟

1
is equal to

2; see example below).

Example 7. Here we consider the lexicographic product of
three graphs, 𝐺

1
, 𝐺
2
, and 𝐺

3
, where 𝐺

1
= 𝐾
2
, 𝐺
2
= 𝑃
4
,

and 𝐺
3
= 𝐾
2
. Let 𝑉(𝐺

1
) = {𝑥, 𝑦}, 𝑉(𝐺

2
) = {𝑎, 𝑏, 𝑐, 𝑑}, and

𝑉(𝐺
3
) = {1, 2}. The lexicographic product 𝐺 = 𝐾

2
∘ 𝑃
4
∘ 𝐾
2
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(x, a, 1) (x, a, 2) (x, b, 1) (x, b, 2) (x, c, 1) (x, c, 2) (x, d, 1) (x, d, 2)

(y, a, 1) (y, a, 2) (y, b, 1) (y, b, 2) (y, c, 1) (y, c, 2) (y, d, 1) (y, d, 2)

Figure 1

of graphs𝐾
2
, 𝑃
4
, and𝐾

2
is shown in Figure 1. One can check

that the eccentricity of every vertex of𝐺 is two and hence𝐺 is
a 2-self-centered graph. However, 𝐺1 is not a 2-self-centered
graph.

In the theorem below, we present the general version of
the 2-self-centered product graphs included in the previous
example.

Theorem 8. Let 𝐺 = 𝐺1 ∘ 𝐺2 ∘ ⋅ ⋅ ⋅ ∘ 𝐺𝑛 be the lexicographic
product of graphs 𝐺1, 𝐺2, . . . , 𝐺𝑛 with |𝑉(𝐺𝑖)| = 𝑛

𝑖
, let 𝐺

𝑘
be

1-self-centered graph for some 𝑘 ∈ {1, . . . , 𝑛 − 1}, and let 𝐺𝑖 (if
it exists) be𝐾1 for all 𝑖 < 𝑘. Then 𝐺 is a 2-self-centered graph if
and only if Δ(𝐺

𝑗
) ̸= 𝑛
𝑗
− 1 for some 𝑗 ≥ 𝑘 + 1.

Proof. First let 𝐺 be a 2-self-centered graph. It is given that,
for some 𝑘 ∈ {1, . . . , 𝑛 − 1}, 𝐺

𝑘
is 1-self-centered graph and let

𝐺
𝑖
be𝐾
1
for all 𝑖 < 𝑘. Our claim is thatΔ(𝐺

𝑗
) ̸= 𝑛
𝑗
−1 for some

𝑗 ≥ 𝑘 + 1. On the contrary, let Δ(𝐺
𝑗
) = 𝑛
𝑗
− 1 for all 𝑗 ≥ 𝑘 + 1.

Then there are vertices 𝑔
𝑖
∈ 𝐺
𝑖
such that ecc(𝑔

𝑖
) = 1 for every

𝑖, 𝑘 ≤ 𝑖 ≤ 𝑛. Now, by using above distance formula, for every
𝑥 = (𝑥

1
, . . . , 𝑥

𝑘−1
, 𝑔
𝑘
, . . . , 𝑔

𝑛
) in 𝐺, one gets ecc(𝑥) = 1. This

contradicts the fact that 𝐺 is a 2-self-centered graph.
Conversely, let Δ(𝐺

𝑙
) ̸= 𝑛

𝑙
− 1 for some 𝑙 ≥ 𝑘 + 1. Then

for any vertex 𝑥
𝑙
∈ 𝐺
𝑙
there exists 𝑦

𝑙
∈ 𝐺
𝑙
such that 𝑥

𝑙
≁ 𝑦
𝑙
.

For any vertex 𝑥 = (𝑥
1
, . . . , 𝑥

𝑘
, . . . , 𝑥

𝑙
, . . . , 𝑥

𝑛
) there exists a

vertex 𝑦 = (𝑥
1
, . . . , 𝑥

𝑘
, . . . , 𝑦

𝑙
, . . . , 𝑥

𝑛
) such that 𝑥 ≁ 𝑦. So,

ecc(𝑥) ≥ 2. Since 𝐺
𝑖
= 𝐾
1
for all 𝑖 < 𝑘 (if any), the distance

formula will be

𝑑 (𝑥, 𝑦) =
{

{

{

𝑑
𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
) if 𝑖 = 𝑘

min {𝑑
𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
) , 2} if 𝑖 ≥ 𝑘 + 1,

(11)

where 𝑖 is the smallest index for which 𝑥
𝑖

̸= 𝑦
𝑖
. Since𝐺

𝑘
is a 1-

self-centered graph, 𝑑
𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
) = 1 if 𝑖 = 𝑘. Also, for 𝑖 ≥ 𝑘 + 1,

min{𝑑
𝐺𝑖
(𝑥
𝑖
, 𝑦
𝑖
), 2} ≤ 2. Thus eccentricity of no vertex is more

than two and we get ecc(𝑥) = 2 for every 𝑥 ∈ 𝐺. Hence 𝐺 is a
2-self-centered graph.
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Graphs, CRC Press, 2nd edition, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


