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Consider an arbitrary nonnegative deterministic process (in a stochastic setting {𝑋(𝑡), 𝑡 ≥ 0} is a fixed realization, i.e., sample-path
of the underlying stochastic process) with state space 𝑆 = (−∞,∞). Using a sample-path approach, we give necessary and sufficient
conditions for the long-run time average of ameasurable function of process to be equal to the expectation taken with respect to the
same measurable function of its long-run frequency distribution. The results are further extended to allow unrestricted parameter
(time) space. Examples are provided to show that our condition is not superfluous and that it is weaker than uniform integrability.
The case of discrete-time processes is also considered. The relationship to previously known sufficient conditions, usually given in
stochastic settings, will also be discussed. Our approach is applied to regenerative processes and an extension of a well-known result
is given. For researchers interested in sample-path analysis, our results will give them the choice to work with the time average of
a process or its frequency distribution function and go back and forth between the two under a mild condition.

1. Introduction

In this article we seek weak conditions, necessary and
sufficient, for the long-run time average of a process or any
measurable function of it to be equal to the expectation
taken with respect to its long-run frequency distribution.
Throughout the paper we use a sample-path approach (see
[1–3]) in the sense that we restrict attention to one realization
(sample-path) of the process of interest. Our approach reveals
that the stochastic assumptions (regenerative, semistationary,
etc.) in the most part are not needed for this result to hold,
but rather to ensure that the process itself is ergodic and
that a stationary distribution exists. In other words, the long-
run time averages for different sample-paths of the given
stochastic process converge to a common limiting value with
probability one (see Example 17 in Section 4). Our approach
is intuitive and the proofs are rather elementary; nothing
beyond Riemann-Stieltjes integration theory is needed.

Let {𝑋(𝑡), 𝑡 ≥ 0} be an arbitrary real-valued right-
continuous deterministic process (in a stochastic setting

{𝑋(𝑡), 𝑡 ≥ 0} can be a fixed realization, that is, sample-
path of the underlying stochastic process) with state space
𝑆 = (−∞,∞). Let

𝑋
𝑡
= 𝑡
−1
∫
𝑡

0

𝑋 (𝑢) 𝑑𝑢, 𝑡 > 0;

𝑌
𝑡
= 𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢, 𝑡 > 0;

𝐺
𝑡
(𝑥) = 𝑡

−1
∫
𝑡

0

1 {𝑋 (𝑢) ≤ 𝑥} 𝑑𝑢,

𝑡 > 0, 𝑥 ∈ (−∞,∞) ,

(1)

where 1{} is an indicator function and ℎ is a real-valued
measurable function. It is also assumed that ℎ is integrable
with respect to 𝐺(𝑥) in the Riemann-Stieltjes sense. Define
the following limits when they exist:
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𝑋 = lim
𝑡→∞

𝑋
𝑡
;

𝑌 = lim
𝑡→∞

𝑌
𝑡
;

𝐺 (𝑥) = lim
𝑡→∞

𝐺
𝑡
(𝑥) .

(2)

Let 𝐺
𝑡
(𝑥) and 𝐺(𝑥) be the complements of 𝐺

𝑡
(𝑥) and

𝐺(𝑥), respectively (it follows that 𝐺(𝑥) = lim
𝑡→∞

𝐺
𝑡
(𝑥)).

Note that 𝑋 and 𝑌 are the long-run time average of the
processes {𝑋(𝑡), 𝑡 ≥ 0} and {ℎ(𝑋(𝑡)), 𝑡 ≥ 0}, respectively,
and𝐺(𝑥) is the long-run frequency distribution of {𝑋(𝑡), 𝑡 ≥
0}. In a queueing system 𝑋 may represent the long-run
average number of customers in the system, 𝐿, and 𝐺(𝑥) is
the “stationary distribution.”

At an elementary level the problem can be posed as
follows. It is of interest to establish conditions under which
the long-run time average of a given process is equal to
the expectation taken with respect to its long-run frequency
distribution; that is, the following relation holds:

𝑋 = ∫
∞

−∞

𝑥 𝑑𝐺 (𝑥) . (3)

It turns out that in our sample-path setting, when −∞ < 𝑋 <

+∞, there is a necessary and sufficient condition for relation
(3) to hold. Relation (3) may also be valid even when 𝑋 =

±∞.
In a stochastic setting relation (3) may have the following

interpretation: for each 𝑡 > 0, let {𝑋
𝑅
(𝑡), 𝑡 ≥ 0} be a process

such that, for each 𝑡, 𝑋
𝑅
(𝑡) has 𝐺

𝑡
(𝑥) as its distribution

function. Then the process {𝑋
𝑅
(𝑡), 𝑡 ≥ 0} represents the

status of the original process {𝑋(𝑡), 𝑡 ≥ 0} as seen by a
random observer that arrives at a random time uniformly
distributed between 0 and 𝑡. If we let𝑋

𝑅
be a random variable

with 𝐺(𝑥) as its distribution function, then 𝑋
𝑅
describes the

behavior of the process {𝑋
𝑅
(𝑡), 𝑡 ≥ 0} in steady state, and

relation (3) may be written as 𝑋 = 𝐸𝑋
𝑅
, where 𝐸𝑋

𝑅
is the

expected value of𝑋
𝑅
.

This problem has theoretical as well as practical signifi-
cance. For example, in queueing theory the long-run average
number of customers in a queueing system is, sometimes,
defined as 𝐿 = lim

𝑡→∞
∫
𝑡

0
𝐿(𝑢)𝑑𝑢/𝑡, where {𝐿(𝑡), 𝑡 ≥ 0} rep-

resents the number of customers present in the system (both
in queue and service) at instant 𝑡. However, in applications,
𝐿 is usually calculated as the expectation of the stationary
distribution {𝑝

𝑛
}, of the process {𝐿(𝑡), 𝑡 ≥ 0}, provided it

exists; that is,𝐿 = ∑∞
𝑛=0
𝑛𝑝
𝑛
.Thequestion arises as towhen the

above two quantities are equal, particularly when {𝐿(𝑡), 𝑡 ≥
0} is not stationary and ergodic. Similar questions arise also
when calculating other performance measures for queueing
systems such as 𝑊, the long-run average waiting time in
the system per customer. Another example arises when
dealing with the ASTA (Arrivals that See Time Averages)
property (see [1, 4–8]). Following [4, 5] the ASTA problem
is posed as follows: Given two stochastic processes 𝑋 ≡

{𝑋(𝑡), 𝑡 ≥ 0} and 𝑁 ≡ {𝑁(𝑡), 𝑡 ≥ 0} defined on a common
probability space, where 𝑋 is intended to represent a queue
or a network of queues, and𝑁 as an arrival point process, let

𝑇
𝑛
= inf{𝑡 : 𝑁(𝑡) ≥ 𝑛}, 𝑛 ≥ 1, be an imbedded point process,

𝑋(𝑡) ⇒ 𝑋(∞), and 𝑋(𝑇
𝑛
) ⇒ 𝑋̃(∞), where⇒ denotes weak

convergence [9].Then theASTAproblem is to find conditions
under which 𝑋(∞) 𝑑= 𝑋̃(∞), where 𝑑= denotes equality in
distribution. However, rather than working to verify𝑋(∞) 𝑑=
𝑋̃(∞) directly, Melamed and Whitt [4, 5] find conditions
such that 𝑉(∞) = 𝑊(∞), where

𝑉 (∞) = lim
𝑡→∞

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢,

𝑊 (∞) = lim
𝑡→∞

1

𝑁 (𝑡)

𝑁(𝑡)

∑
𝑘=1

ℎ (X (𝑇
𝑘
)) ,

(4)

and ℎ is a bounded measurable real-valued function. In
general 𝑉(∞) and 𝐸ℎ(𝑋(∞)) (equivalently 𝑊(∞) and
𝐸ℎ(𝑋̃(∞))) are not necessarily equal unless 𝑋 is stationary
and ergodic. On the other hand, Stidham Jr. and El-Taha [1]
proveASTAbyworking directly with sample-path versions of
𝑉(∞) and𝑊(∞). In this paper we establish weak conditions
(necessary and sufficient) to guarantee the equality of time
averages of a process and the expectation taken with respect
to its long-run frequency distribution without explicitly
assuming stationarity and ergodicity.

In a stochastic framework this problem has been treated
by many authors, mostly to establish conditions that guar-
antee ergodicity. For example, the case of a process with an
imbedded stationary sequence (the semistationary process)
is proved by [10, 11]. Franken et al. [12] derive similar results
for processes with imbedded marked point processes. Rolski
[13] introduces and exploits the notion of ergodically stable
processes to prove a similar result. Wolff [14] proves a similar
result for processes that are regenerative or nonnegative and
stochastically increasing. The case for stochastic clearing
processes is considered by [15]. Relevant also are [16–20].
For references on sample-path analysis, the reader is referred
to [1, 2, 16, 21–25]. This article should be of interest to
readers with interest in establishing relationships that involve
time averages and frequency distributions in a deterministic
framework.

El-Taha and Stidham Jr. [2] provide a result in a sample-
path setting for the special case of a nonnegative deterministic
process. In this article the results of [2] are extended to any
function of the process; thus all moments of a process can be
treated within one framework.We also extend the state space
to allow for the process to take negative as well as positive
values. Moreover we consider the case where the parameter
space is extended from [0,∞) to (−∞,∞).

The article is organized as follows. In Section 2we concen-
trate on the case when {𝑋(𝑡), 𝑡 ≥ 0} is a general unrestricted
process and give necessary and sufficient conditions (see
conditions 𝐴1 and 𝐴2 in Section 2) when a measurable
function, satisfying a weak regularity condition, of the pro-
cess is considered. We also provide some insight into the
relationship between our condition anduniform integrability.
We also extend our results to allow the parameter 𝑡 to be
unrestricted in sign. Section 3 provides similar results when
X is a discrete-time process. In Section 4 three examples are
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given to help clarify the need for condition 𝐴1, the relation
of condition𝐴1 to uniform integrability, and the relationship
between our pure sample-path setting and stochastic settings.
In Section 5 we close by looking at regenerative processes. A
process with an imbedded sequence is investigated and then
used to extend awell-known result for regenerative processes.

2. Main Results and Related Analysis

In this section we prove the main result, provide several
applications, study the connection of the conditions needed
to uniform integrability, and point out an extension of the
parameter space to allow negative time. Given any determin-
istic process, we show that for any measurable function of
the process the asymptotic time average of a function of a
given process is equal to the expectation taken with respect
to its asymptotic frequency distribution function under weak
conditions. Then several special cases of interest will be
stated. Our objective is to seek weak conditions under which
the asymptotic time average of a function of a given process
is equal to the expectation taken with respect to it asymptotic
frequency distribution function; that is,

lim
𝑡→∞

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢 = ∫
∞

−∞

ℎ (𝑥) 𝑑𝐺 (𝑥) . (5)

Note that (5) reduces to (3) when ℎ is an identity function.
First we establish the following time dependent relationships
in Lemmas 1–3, key to proving the main result.

Lemma 1. Let ℎ(𝑥) be any real-valued measurable function
and 𝐺

𝑡
(𝑥) a distribution function defined on (−∞, +∞). Then

for all 𝛼 ≥ 0, 𝑡 > 0

(i)

∫
∞

𝛼

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥) = ∫

∞

𝛼

𝐺
𝑡
(𝑥) 𝑑ℎ (𝑥) + ℎ (𝛼) 𝐺

𝑡
(𝛼) , (6)

(ii)

∫
−𝛼

−∞

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥)

= ∫
∞

𝛼

𝐺
𝑡
(−𝑥) 𝑑ℎ (−𝑥) + ℎ (−𝛼)𝐺

𝑡
(−𝛼) ,

(7)

(iii)

∫
∞

−∞

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥) = ∫

∞

0

𝐺
𝑡
(𝑥) 𝑑ℎ (𝑥)

+ ∫
∞

0

𝐺
𝑡
(−𝑥) 𝑑ℎ (−𝑥) + ℎ (0) ,

(8)

provided all integrals are well defined (i.e., ℎ(𝑥) is integrable
with respect to 𝐺

𝑡
(𝑥) in the Riemann-Stieltjes sense).

Proof. Note that

∫
∞

𝛼

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥) = ∫

∞

𝛼

[∫
𝑥

0

𝑑ℎ (𝑦) + ℎ (0)] 𝑑𝐺
𝑡
(𝑥)

= ∫
𝛼

0

∫
∞

𝛼

𝑑𝐺
𝑡
(𝑥) 𝑑ℎ (𝑦)

+ ∫
∞

𝛼

∫
∞

𝑦

𝑑𝐺
𝑡
(𝑥) 𝑑ℎ (𝑦)

+ ℎ (0) 𝐺
𝑡
(𝛼)

= ∫
∞

𝛼

𝐺
𝑡
(𝑦) 𝑑ℎ (𝑦) + ℎ (𝛼) 𝐺

𝑡
(𝛼)

(9)

which proves part (i). The proof of (ii) is similar. Part (iii)
follows by taking 𝛼 = 0 in (i) and (ii) and combining both
results.

The results in Lemma 1 remain valid if we replace 𝐺
𝑡
(𝑥)

by𝐺(𝑥)when the limit exists. Now we give the second partial
result.

Lemma 2. For all 𝑡 > 0

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢 = ∫
∞

−∞

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥) . (10)

Proof. Note that

∫
∞

0

𝐺
𝑡
(𝑥) 𝑑ℎ (𝑥) = ∫

∞

0

𝑡
−1
∫
𝑡

0

1 {𝑋 (𝑢) > 𝑥} 𝑑𝑢 𝑑ℎ (𝑥)

= 𝑡
−1
∫
𝑡

0

∫
𝑋(𝑢)

0

1 {𝑋 (𝑢) > 0} 𝑑ℎ (𝑥) 𝑑𝑢

= 𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {𝑋 (𝑢) > 0} 𝑑𝑢 − ℎ (0) 𝐺
𝑡
(0) .

(11)

Similarly

∫
∞

0

𝐺
𝑡
(−𝑥) 𝑑ℎ (−𝑥)

= ∫
∞

0

𝑡
−1
∫
𝑡

0

1 {𝑋 (𝑢) ≤ −𝑥} 𝑑𝑢 𝑑ℎ (−𝑥)

= 𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {𝑋 (𝑢) ≤ 0} 𝑑𝑢 − ℎ (0) 𝐺
𝑡
(0) .

(12)

Then the result follows by appealing to Lemma 1 (iii).

By taking limits, as 𝑡 → ∞ of both sides of Lemma 2,
showing relation (5) holds is seen to be equivalent to a
problem of interchanging limits and integrals.The next result
is a key lemma.

Lemma 3. For all 𝑡 > 0 and 𝛼 ≥ 0

∫
{𝑥:|𝑥|>𝛼}

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥)

= 𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢.
(13)
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Proof. The result will follow if we show that
(i)

∫
∞

𝛼

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥) = 𝑡

−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {𝑋 (𝑢) > 𝛼} 𝑑𝑢, (14)

(ii)

∫
−𝛼

−∞

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥)

= 𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {𝑋 (𝑢) < −𝛼} 𝑑𝑢.
(15)

Now

∫
∞

𝛼

𝐺
𝑡
(𝑥) 𝑑ℎ (𝑥) = ∫

∞

𝛼

𝑡
−1
∫
𝑡

0

1 {𝑋 (𝑢) > 𝑥} 𝑑𝑢 𝑑ℎ (𝑥)

= 𝑡
−1
∫
𝑡

0

∫
𝑋(𝑢)

𝛼

1 {𝑋 (𝑢) > 𝛼} 𝑑ℎ (𝑥) 𝑑𝑢

= 𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {𝑋 (𝑢) > 𝛼} 𝑑𝑢 − ℎ (𝛼) 𝐺
𝑡
(𝛼) .

(16)

Therefore, using Lemma 1 (i), we obtain

∫
∞

𝛼

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥) = 𝑡

−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {𝑋 (𝑢) > 𝛼} 𝑑𝑢 (17)

which proves part (i). Part (ii) is proved similarly using
Lemma 1 (ii).

Because Lemmas 1–3 are time dependent, they can be
useful in time dependent analysis of nonstationary stochastic
systems. Now we give the main result.

Theorem 4. Consider the deterministic process {𝑋(𝑡), 𝑡 ≥ 0},
with state space 𝑆 = (−∞,∞), and let ℎ(⋅) be any real-valued
measurable function. Then, the following are equivalent.

(i) Condition A1:

lim
𝛼→∞

lim
𝑡→∞

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢 = 0. (18)

(ii) Condition A2:

lim
𝛼→∞

lim
𝑡→∞

∫
{𝑥:|𝑥|>𝛼}

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥) = 0. (19)

(iii)

lim
𝑡→∞

[𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢 − ∫
∞

−∞

ℎ (𝑥) 𝑑𝐺 (𝑥)] = 0. (20)

Proof. Taking the limits as lim
𝛼→∞

lim
𝑡→∞

on both sides of
Lemma 3 proves the equivalence of (i) and (ii). Now, using
Lemmas 3 and 2, we write

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢 − ∫
+𝛼

−𝛼

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥)

= ∫
{𝑥:|𝑥|>𝛼}

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥) ,

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢 − ∫
+𝛼

−𝛼

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥)

= 𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢.

(21)

Suppose 𝐴1 (equivalently 𝐴2) holds. Now, taking limits as
𝑡 → ∞ and assuming they exist give

lim
𝑡→∞

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢 − ∫
+𝛼

−𝛼

ℎ (𝑥) 𝑑𝐺 (𝑥)

= lim
𝑡→∞

∫
{𝑥:|𝑥|>𝛼}

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥) ,

(22)

lim
𝑡→∞

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢 − ∫
+𝛼

−𝛼

ℎ (𝑥) 𝑑𝐺 (𝑥)

= lim
𝑡→∞

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢.
(23)

Then part (iii) of the theorem follows by taking limits of both
sides in (22) and (23) as 𝛼 → ∞. Conversely if part (iii) holds,
it is straightforward to see that 𝐴1 and 𝐴2 hold.

It follows from Theorem 4 that the following conditions
are sufficient for (5) to hold.

Corollary 5. Consider the process {𝑋(𝑡), 𝑡 ≥ 0}. Sup-
pose 𝐺

𝑡
(𝑥) → 𝐺(𝑥) uniformly in 𝑥 as 𝑡 → ∞.

Suppose also that condition (i) (equivalently (ii)) of Theo-
rem 4 holds. Then for any measurable real-valued function
ℎ, lim

𝑡→∞
𝑡
−1
∫
𝑡

0
ℎ(𝑋(𝑢))𝑑𝑢 is well defined if and only if

∫
∞

−∞
ℎ(𝑥)𝑑𝐺(𝑥) is well defined, in which case relation (5) holds;

that is,

lim
𝑡→∞

1

𝑡
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢 = ∫
∞

−∞

ℎ (𝑥) 𝑑𝐺 (𝑥) . (24)

Proof. The proof follows by taking limits, as 𝛼 → ∞, in (22)
and (23) and using a similar argument as inTheorem 4.

Corollary 6. Consider the process {𝑋(𝑡), 𝑡 ≥ 0} and suppose
that the conditions of Corollary 5 hold. Additionally, let ℎ(⋅) be
differentiable and ℎ(0) = 0. Then

lim
𝑡→∞

1

𝑡
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢

= ∫
0

−∞

ℎ
󸀠
(𝑥) 𝐺 (𝑥) 𝑑𝑥 + ∫

∞

0

ℎ
󸀠
(𝑥) 𝐺 (𝑥) 𝑑𝑥.

(25)
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Proof. By Corollary 5, it suffices to show that

∫
∞

−∞

ℎ (𝑥) 𝑑𝐺 (𝑥) = ∫
0

−∞

ℎ
󸀠
(𝑥) 𝐺 (𝑥) 𝑑𝑥

+ ∫
∞

0

ℎ
󸀠
(𝑥) 𝐺 (𝑥) 𝑑𝑥.

(26)

So, the result follows by noting that

∫
∞

0

𝐺 (𝑥) 𝑑ℎ (−𝑥) = ∫
0

−∞

ℎ
󸀠
(𝑥) 𝐺 (𝑥) 𝑑𝑥 (27)

and using Lemma 1 (iii).

In Corollary 6, let ℎ(𝑥) = 𝑥
𝛽, then (26) gives the 𝛽th

moment of a distribution function

∫
∞

−∞

𝑥
𝛽
𝑑𝐺
𝑡
(𝑥) = ∫

0

−∞

𝛽𝑥
𝛽−1
𝐺
𝑡
(𝑥) 𝑑𝑥

+ ∫
∞

0

𝛽𝑥
𝛽−1
𝐺
𝑡
(𝑥) 𝑑𝑥

(28)

which is familiar when 𝐺(𝑥) is defined only on [0,∞).

Remarks 7. (i) It follows immediately from Corollary 5 that
when −∞ < 𝑌 < +∞ (recall 𝑌(𝑡) := ℎ(𝑋(𝑡))) condition 𝐴1
(equivalently 𝐴2) is necessary and sufficient for relation (5)
to hold. The requirement that −∞ < 𝑌 < ∞ is not needed to
prove the sufficiency part of the assertion.

(ii) From (23), it is clear that if ∫+𝛼
−𝛼
ℎ(𝑥)𝑑𝐺(𝑥) is well

defined and finite for all 0 < 𝛼 < ∞, then 𝑌 is well defined
iff lim

𝑡→∞
𝑡
−1
∫
𝑡

0
ℎ(𝑋(𝑢))1{𝑋(𝑢) > 𝛼}𝑑𝑢 is well defined for all

𝛼 > 0. Now take limits in (23) as 𝛼 → ∞ to obtain

lim
𝑡→∞

1

𝑡
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢

= ∫
∞

−∞

ℎ (𝑥) 𝑑𝐺 (𝑥)

+ lim
𝛼→∞

lim
𝑡→∞

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢.

(29)

If any two of the three terms in (29) are well defined and
at least one of them is finite then the third term exists and
Corollary 5 holds.

(iii) Assume that all the relevant limits in Corollary 5 are
well defined. From (23) one concludes that, for all 𝛼 ≥ 0,

𝑌 = ±∞

iff lim
𝑡→∞

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢 = ±∞.
(30)

Moreover, if 𝑌 = +∞ and condition 𝐴1 is not satisfied, we
can distinguish to possibilities

(a) ∫∞
−∞
𝑥𝑑𝐺(𝑥) = ∞; then relation (5) holds;

(b) ∫∞
−∞
𝑥𝑑𝐺(𝑥) < ∞; then relation (5) does not hold and

condition𝐴1 takes the value +∞. A similar argument
applies when 𝑌 = −∞. The above discussion should
not imply that if condition 𝐴1 does not hold it
should be infinite. Example 15 given below shows that
relation (5) fails with condition 𝐴1 assuming a finite
value.

(iv) One can construct sufficient conditions for condition
𝐴1 to hold. Following an argument by Billingsley [26, page
186], one can easily see that lim

𝑡→∞
𝑡
−1
∫
𝑡

0
[ℎ(𝑋(𝑢))]

1+𝜖
𝑑𝑢 <

∞ is sufficient for (5) to hold.
Next we explore the relationship between condition 𝐴1

and uniform integrability of the process {𝑋
𝑅
(𝑡), 𝑡 ≥ 0}.

Relation to Uniform Integrability. We discuss the connection
between condition 𝐴1 and uniform integrability when ℎ is
an identity function. Condition 𝐴1 of Theorem 4 requires,
roughly speaking, that the area, for 0 ≤ 𝑡 ≤ ∞, between
𝛼 and 𝑋(𝑡)1{𝑋(𝑡) > 𝛼} minus the area between −𝛼 and
𝑋(𝑡)1{𝑋(𝑡) < −𝛼} goes to zero as 𝛼 approaches infinity. We
point out here that there is a difference between condition𝐴1
and uniform integrability (of 𝑋

𝑅
(𝑡)) which requires that the

above two areas add up to zero as 𝛼 approaches infinity.Wolff
[14] suggests that proving relation (5), in a stochastic setting,
is equivalent to showing that the process {𝑋

𝑅
(𝑡), 𝑡 ≥ 0} and

𝑋
𝑡
are uniformly integrable (u.i.) in 𝑡. Condition𝐴1 is weaker

than being u.i.; it only coincides with uniform integrability of
the process {𝑋

𝑅
(𝑡), 𝑡 ≥ 0} when the process {𝑋(𝑡), 𝑡 ≥ 0} is

nonnegative.
To shed more light on this difference, we show that the

following modified condition is the equivalent to uniform
integrability.

Condition A3. lim
𝛼→∞

sup
𝑡
𝑡
−1
∫
𝑡

0
|𝑋(𝑢)|1{|𝑋(𝑢)| > 𝛼}𝑑𝑢 = 0.

Note that in 𝐴3 we take the absolute value of𝑋(𝑡). In our
sample-path setting the definition of uniform integrability
[26, 27] of the process {𝑋

𝑅
(𝑡), 𝑡 ≥ 0} is equivalent to

lim
𝛼→∞

sup
𝑡

∫
{𝑥:|𝑥|>𝛼}

|𝑥| 𝑑𝐺
𝑡
(𝑥) = 0. (31)

Now, using an argument similar to that used in proving
Lemma 3, we obtain

∫
{𝑥:|𝑥|>𝛼}

|𝑥| 𝑑𝐺
𝑡
(𝑥)

= 𝑡
−1
∫
𝑡

0

|𝑋 (𝑢)| 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢.
(32)

Thus condition 𝐴3 and (31) are equivalent. We note that
condition𝐴3 (equivalently (31)) is sufficient for relation (5) to
hold. Example 16 given below shows the existence of a process
that obeys relation (5), yet condition 𝐴3 is not satisfied.

2.1. Moments. An important special case is when ℎ(𝑥) = 𝑥𝛽,
𝛽 > 0, that provides a relation between time averages of
a process moments and the moments obtained by using its
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asymptotic distribution function. For ℎ(𝑥) = 𝑥𝛽, we have the
following result.

Corollary 8. Let ℎ(𝑥) = 𝑥𝛽.Then the following are equivalent:
(i)

lim
𝛼→∞

lim
𝑡→∞

𝑡
−1
∫
𝑡

0

[𝑋 (𝑢)]
𝛽 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢 = 0; (33)

(ii)

lim
𝛼→∞

lim
𝑡→∞

∫
{𝑥:|𝑥|>𝛼}

𝑥
𝛽
𝑑𝐺
𝑡
(𝑥) = 0; (34)

(iii)

lim
𝑡→∞

𝑡
−1
∫
𝑡

0

[𝑋 (𝑢)]
𝛽
𝑑𝑢 = ∫

∞

−∞

𝑥
𝛽
𝑑𝐺 (𝑥) ,

󵄨󵄨󵄨󵄨󵄨
𝑌
󵄨󵄨󵄨󵄨󵄨
< ∞,

(35)

where 𝑌 = lim
𝑡→∞

𝑡
−1
∫
𝑡

0
[𝑋(𝑢)]

𝛽
𝑑𝑢.

Another important special case is when considering
absolute moments, that is, when ℎ(𝑥) = |𝑥|𝛽.

2.2. Extension. Here, a generalization of Theorem 4 will be
considered. We allow the parameter space [0,∞) to extend
to (−∞,∞) and show that, for any measurable function of
the new process, relation (5) remains valid under conditions
similar to𝐴1 and𝐴2.Theorem4 is extended to the casewhere
the parameter can also be negative.

Let {𝑋(𝑡), −∞ < 𝑡 < ∞} be an arbitrary (deterministic)
process with state space 𝑆 = (−∞,∞), and let

𝐺
𝑡
(𝑥) =

1

2𝑡
∫
𝑡

−𝑡

1 {𝑋 (𝑢) < 𝑥} 𝑑𝑢,

𝑥 ∈ (−∞,∞) , 𝑡 > 0.

(36)

Here we seek weak conditions under which the following
relation holds:

lim
𝑡→∞

1

2𝑡
∫
𝑡

−𝑡

ℎ (𝑋 (𝑢)) 𝑑𝑢 = ∫
∞

−∞

ℎ (𝑥) 𝑑𝐺 (𝑥) . (37)

Theorem 9. Consider the deterministic process {𝑋(𝑡), −∞ <

𝑡 < ∞}, 𝑋(𝑡) ∈ 𝑅, and let ℎ(⋅) be any real-valued measurable
function. Then, the following are equivalent.

(i) Condition B1:

lim
𝛼→∞

lim
𝑡→∞

1

2𝑡
∫
𝑡

−𝑡

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢 = 0. (38)

(ii) Condition B2:

lim
𝛼→∞

lim
𝑡→∞

∫
{𝑥:|𝑥|>𝛼}

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥) = 0. (39)

(iii)

lim
𝑡→∞

[
1

2𝑡
∫
𝑡

−𝑡

ℎ (𝑋 (𝑢)) 𝑑𝑢 − ∫
∞

−∞

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥)] = 0. (40)

Proof. Similar to Lemma 3 we can show that for all 𝑡 > 0 and
𝛼 ≥ 0

∫
{𝑥:|𝑥|≥𝛼}

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥)

=
1

2𝑡
∫
𝑡

−𝑡

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| ≥ 𝛼} 𝑑𝑢.
(41)

Now, let 𝛼 = 0 in (41); then we have for all 𝑡 > 0

1

2𝑡
∫
𝑡

−𝑡

ℎ (𝑋 (𝑢)) 𝑑𝑢 = ∫
∞

−∞

ℎ (𝑥) 𝑑𝐺
𝑡
(𝑥) . (42)

Now an argument similar to that of the proof of Theorem 4
will yield this result.

Note that proof of Theorem 9 follows the same lines of
argument as that of Theorem 4. Note also that conditions 𝐵1
and 𝐵2 are similar to conditions𝐴1 and𝐴2, but with 2𝑡 in the
denominator in 𝐵1.

3. Discrete-Time Processes

In this section we consider a discrete-time process; specif-
ically let {𝑋

𝑛
, 𝑛 ≥ 1} be any deterministic discrete-time

process, that is, an infinite sequence of real numbers, and let
ℎ(⋅) be a real-valued measurable function. Moreover, let

𝑋
𝑛
=
1

𝑛

𝑛

∑
𝑘=1

𝑋
𝑘
;

𝐺
𝑛
(𝑥) =

1

𝑛

𝑛

∑
𝑘=1

1 {𝑋
𝑘
≤ 𝑥} ; 𝑥 ∈ (−∞,∞) ;

(43)

and define the following limits when they exist:

𝑋 = lim
𝑛→∞

𝑋
𝑛
,

𝐺 (𝑥) = lim
𝑛→∞

𝐺
𝑛
(𝑥) , 𝑥 ∈ (−∞,∞) .

(44)

Similar to the continuous time model, we have the following
results.

Theorem 10. Let {𝑋
𝑛
, 𝑛 ≥ 1} be any discrete-time process,

and let ℎ(⋅) be any a real-valued measurable function. Then,
the following are equivalent:

(i) lim
𝛼→∞

lim
𝑛→∞

𝑛
−1
∑
𝑛

𝑘=1
ℎ(𝑋
𝑘
)1{|𝑋
𝑘
| > 𝛼} = 0;

(ii) lim
𝛼→∞

lim
𝑛→∞

∫
{𝑥:|𝑥|>𝛼}

ℎ(𝑥)𝑑𝐺
𝑛
(𝑥) = 0;

(iii) lim
𝑛→∞

[𝑛
−1
∑
𝑛

𝑘=1
ℎ(𝑋
𝑘
) − ∫
∞

−∞
ℎ(𝑥)𝑑𝐺(𝑥)] = 0.

Note that when ℎ(⋅) is an identity function, condition (i)
ofTheorem 10 is sometimes referred to in the literature as the
condition for uniform integrability.

Corollary 11. Consider the process {𝑋
𝑛
, 𝑛 ≥ 1}. Sup-

pose 𝐺
𝑛
(𝑥) → 𝐺(𝑥) uniformly in 𝑥 as 𝑛 → ∞.

Suppose also that condition (i) (equivalently (ii)) of Theo-
rem 10 holds. Then for any measurable real-valued function
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ℎ, lim
𝑛→∞

(1/𝑛)∑
𝑛

𝑘=1
ℎ(𝑋
𝑘
) is well defined if and only if

∫
∞

−∞
ℎ(𝑥)𝑑𝐺(𝑥) is well defined, in which case

lim
𝑛→∞

1

𝑛

𝑛

∑
𝑘=1

ℎ (𝑋
𝑘
) = ∫
∞

−∞

ℎ (𝑥) 𝑑𝐺 (𝑥) . (45)

This corollary has been found useful in the literature.

Corollary 12. Let {𝑋
𝑛
, 𝑛 ≥ 1} be any nonnegative deter-

ministic discrete-time process, that is, infinite sequence of
nonnegative real numbers. Suppose that any of the conditions
(i), (ii), and (iii) of Theorem 10 is satisfied and 𝐺(𝑥) is a proper
distribution function. Now, suppose there exists 𝑦 > 0 such that
if ℎ(⋅) is a nondecreasing real-valued measurable function on
(𝑦,∞) then

lim
𝑥→∞

ℎ (𝑥) 𝐺
𝑐
(𝑥) = 0 (46)

and if ℎ(⋅) is a nonincreasing real-valued measurable function
on (−∞, −𝑦), then

lim
𝑥→−∞

ℎ (𝑥) 𝐺 (𝑥) = 0. (47)

Proof. Note that

lim
𝑥→∞

ℎ (𝑥) 𝐺
𝑐
(𝑥) = lim

𝑥→∞
lim
𝑛→∞

ℎ (𝑥) 𝐺
𝑐

𝑛
(𝑥)

= lim
𝑥→∞

lim
𝑛→∞

∫
∞

𝑥

ℎ (𝑥) 𝑑𝐺
𝑛
(𝑢)

≤ lim
𝑥→∞

lim
𝑛→∞

∫
∞

𝑥

ℎ (𝑢) 𝑑𝐺
𝑛
(𝑢) = 0,

(48)

by condition (ii) of Theorem 10. The proof of the second
statement is similar.

The results in Corollary 12 apply to the continuous time
process as well. When the sequence {𝑋

𝑘
; 𝑘 ≥ 1} represents,

say, service times in queueing model, let ℎ(𝑥) = 𝑥
2 in

Theorem 10 to, immediately, obtain the following useful
results.

Corollary 13. Let 𝐸𝑋2 = lim
𝑛→∞

𝑛
−1
∑
𝑛

𝑘=1
𝑋
2

𝑘
< ∞. Then the

following are equivalent:

(i) lim
𝛼→∞

lim
𝑛→∞

𝑛
−1
∑
𝑛

𝑘=1
𝑋
2

𝑘
1{𝑋
𝑘
> 𝛼} = 0;

(ii) lim
𝛼→∞

lim
𝑛→∞

∫
∞

𝛼
𝑥
2
𝑑𝐺
𝑛
(𝑥) = 0;

(iii) 𝐸𝑋2 = ∫∞
0
𝑥
2
𝑑𝐺(𝑥) < ∞.

Corollary 14. Suppose that either

(i) 𝐸𝑋2 = ∫∞
0
𝑥
2
𝑑𝐺(𝑥) < ∞ or

(ii) lim
𝛼→∞

lim
𝑛→∞

∑
𝑛

𝑘=1
𝑋
2

𝑘
1{𝑋
𝑘
> 𝛼} = 0. Then

lim
𝑥→∞

𝑥
2
𝐺
𝑐
(𝑥) = 0. (49)

Corollary 14 follows from Corollary 12 by letting ℎ(𝑥) =
𝑥
2. This result is used in Ayesta [28].

4. Examples and Discussion

In this section, we give three examples. The first example
shows that condition 𝐴1 is not superfluous. The second
example, a modification of the first one, shows that the new
modified process does not satisfy the uniform integrability
condition (condition 𝐴3), yet conditions 𝐴1 and 𝐴2 are
satisfied and therefore relation (5) holds. In the third example,
we verify that when condition 𝐴1 is satisfied, for a stationary
nonergodic stochastic process, even though relation (5) is
not satisfied in a stochastic setting, it remains valid for every
individual sample-path of the process.

Example 15. Consider a process {𝑋
𝑛
, 𝑛 ≥ 0} in discrete time,

and let the sequence {𝑥
𝑛
} represent one sample-path such that

𝑥
𝑛
=

{{{{{{{

{{{{{{{

{

2
𝑚
, 𝑛 = 4

𝑚
+ 3𝑘2

𝑚
− 1

𝑘 = 1, 2, . . . , 2
𝑚

𝑚 = 0, 1, . . .

0 otherwise.

(50)

For example if 𝑚 = 0, then 𝑥
1
= 0, 𝑥

2
= 0, 𝑥

3
= 1; if

𝑚 = 1, then 𝑥
4
= ⋅ ⋅ ⋅ = 𝑥

8
= 0, 𝑥

9
= 2, 𝑥

10
= ⋅ ⋅ ⋅ = 𝑥

14
=

0, 𝑥
15
= 2; if 𝑚 = 2, then 𝑥

16
= ⋅ ⋅ ⋅ = 𝑥

26
= 0, 𝑥

27
= 4,

𝑥
28
= ⋅ ⋅ ⋅ = 𝑥

38
= 0, 𝑥

39
= 4, 𝑥

40
= ⋅ ⋅ ⋅ = 𝑥

50
= 0, 𝑥

51
= 4,

𝑥
52
= ⋅ ⋅ ⋅ = 𝑥

62
= 0, 𝑥

63
= 4; if 𝑚 = 3, then 𝑥

64
= 0, . . ., and

so on. Figure 1 plots the cumulative sequence ∑𝑛
𝑗=1
𝑥
𝑗
for all

𝑛, showing the jumps at positive terms of {𝑥
𝑛
}.

Now, consider the sum of the sequence {𝑥
𝑛
} at positive

terms; then

lim sup1
𝑛
∑𝑥
𝑗
=

1

22𝑚 + 3 ⋅ 𝑘 ⋅ 2𝑚 − 1

2
2𝑚
+3𝑘⋅2

𝑚
−1

∑
𝑗=1

𝑥
𝑗

=
1 + 2
2
+ 2
4
+ ⋅ ⋅ ⋅ + 2

2(𝑚−1)
+ 𝑘 ⋅ 2

𝑚

4𝑚 + 3𝑘 ⋅ 2𝑚 − 1

=
1

3
.

(51)

Now, consider the sum just before positive terms to obtain

lim inf 1
𝑛
∑𝑥
𝑗
=

1

22𝑚 + 3 ⋅ 𝑘 ⋅ 2𝑚 − 2

2
2𝑚
+3𝑘⋅2

𝑚
−2

∑
𝑗=1

𝑥
𝑗

=
1 + 2
2
+ 2
4
+ ⋅ ⋅ ⋅ + 2

2(𝑚−1)
+ (𝑘 − 1) ⋅ 2

𝑚

4𝑚 + 3𝑘 ⋅ 2𝑚 − 2

=
1

3
+ (

1

3
)

3/2
𝑚
− 3

2𝑚 + 3𝑘 − 2/2𝑚
󳨀→

1

3

as 𝑚 󳨀→ ∞ for any fixed 𝑘.

(52)

Therefore lim inf(1/𝑛)∑𝑛
𝑗=1
𝑥
𝑗

= 1/3, and hence
lim
𝑛→∞

(1/𝑛)∑
𝑛

𝑗=1
𝑥
𝑗

= 1/3. We also conclude, using
Lemma 2, that

𝑥 = lim
𝑛→∞

∫
∞

0

𝑥𝑑𝐺
𝑛
(𝑥) =

1

3
. (53)
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0th cycle
1st cycle 2nd cycle

 2
 2

 4

 1

lope = 1/3S =

n

n

∑
j=1

xj

Figure 1: Cumulative sequence for {𝑥
𝑛
}.

The next step is to calculate the r.h.s. of relation (5) and show
that it differs from 1/3. Now

∫
∞

0

𝑥 𝑑𝐺 (𝑥) = ∫
∞

0

𝐺 (𝑥) 𝑑𝑥,

𝐺
𝑛
(𝑥) =

1

𝑛

𝑛

∑
𝑘=1

1 {𝑥
𝑘
> 𝑥} .

(54)

Successive values of 𝑚 determine successive cycles. Now
consider 𝐺

𝑛
(0) at the beginning of such cycles to obtain

𝐺
4
𝑚 (0) =

1

4𝑚

4
𝑚

∑
𝑘=1

1 {𝑥
𝑘
> 0} =

1 + 2 + 2
2
+ ⋅ ⋅ ⋅ + 2

𝑚−1

4𝑚

=
2
𝑚
− 1

4𝑚
󳨀→ 0, as 𝑚 󳨀→ ∞.

(55)

Since (1/𝑛)∑𝑛
𝑘=1

1{𝑥
𝑘
> 𝑥} decreases in 𝑛 as long as 𝑥

𝑛
= 0, it

suffices to consider 𝐺
𝑛
(0) at a subsequence of positive terms.

Then

𝐺
4
𝑚
+3𝑘⋅2

𝑚
−1
(0) =

1 + 2 + 2
2
+ ⋅ ⋅ ⋅ + 2

𝑚−1
+ 𝑘

4𝑚 + 3𝑘 ⋅ 2𝑚 − 1

=
2
𝑚
− 1 + 𝑘

4𝑚 + 3𝑘2𝑚 − 1
󳨀→ 0,

as 𝑚 󳨀→ ∞.

(56)

Therefore 𝐺
𝑛
(𝑥) → 0 as 𝑛 → ∞ for all 𝑥 ≥ 0 and

𝐺
𝑛
(𝑥) → 1 as 𝑛 → ∞ for all 𝑥 ≥ 0; that is, 𝐺(𝑥) is well

defined and 𝐺(𝑥) = lim
𝑛→∞

𝐺
𝑛
(𝑥) = 1 for all 𝑥 ≥ 0. Thus

𝑥 = 1/3 ̸= ∫
∞

0
𝐺(𝑥)𝑑𝑥 = 0, so relation (5) fails. In this

example condition 𝐴1 takes the value 1/3.
The next example gives a sequence that does not satisfy

the uniform integrability condition𝐴3, yet it satisfies relation
(5).

Example 16. Now, we modify Example 15 as follows: let

𝑧
𝑛
= 𝑥
𝑛
− 𝑥
𝑛−1
, 𝑛 = 1, 2, . . . (57)

with 𝑧
0
= 0.

Using Example 15 and the fact that |𝑧
𝑛
| = 𝑧

+

𝑛
+ 𝑧
−

𝑛
, we

conclude

lim
𝛼→∞

lim
𝑛→∞

1

𝑛

𝑛

∑
𝑘=0

󵄨󵄨󵄨󵄨𝑧𝑘
󵄨󵄨󵄨󵄨 1 {

󵄨󵄨󵄨󵄨𝑧𝑘
󵄨󵄨󵄨󵄨 > 𝛼} =

2

3
; (58)

thus the sequence {𝑧
𝑛
} does not satisfy the uniform integra-

bility condition (𝐴3). Now, using the fact that 𝑧
𝑛
= 𝑧
+

𝑛
−𝑧
−

𝑛
, we

conclude that condition𝐴1 is satisfied, and therefore relation
(5) holds.

Example 17. Let the stationary stochastic process {𝑋
𝑛
, 𝑛 ≥ 1}

be defined as

𝑃 {𝑋
1
= 𝑘} = 𝑝

𝑘
,

𝐸𝑋
1
= 𝜇 < ∞,

(59)

where 𝑝
𝑘
≥ 0, ∑∞

𝑘=0
𝑝
𝑘
= 1, and𝑋

𝑛
= 𝑋
1
for all 𝑛 ≥ 1.

The sequence {𝑋
𝑛
, 𝑛 ≥ 1} is an example of a stationary

nonergodic process (see, e.g., [29]). The sample space is
given by 𝑆 = {𝜔

0
, 𝜔
1
, . . .}, where 𝜔

𝑛
represents the sequence

{𝑛}
∞

𝑘=1
, 𝑛 = 0, 1, . . .. It is clear that 𝑋(𝜔

𝑛
) = 𝑛 and

∫
∞

−∞
𝑥 𝑑𝐺(𝑥, 𝜔

𝑛
) = 𝑛. It should be clear that none of the time

average values 𝑋(𝑤), except possibly one, is equal to 𝜇. So
relation (5) is true for every realization of the process. On the
other hand, 𝑋

𝑛
= (1/𝑛)∑

𝑛

𝑘=1
𝑋
𝑘
= 𝑋
1
is a random variable

for all 𝑛 = 1, 2, . . .. Therefore 𝑋 is a random variable, while
∫
∞

−∞
𝑥 𝑑𝐺(𝑥) = 𝐸𝑋

1
= 𝜇; thus relation (5) does not hold with

probability one.
To extend our results, that is, relation (5), to stochastic

settings an ergodicity assumption is needed; more precisely,
we need to insure that the time average 𝑋 in relation (5)
assumes a constant value, say, 𝑚, with probability one. To
illustrate, let the event 𝐴 = {𝑤 ∈ Ω : relation (5) fails},
then 𝐴 contains the following realizations: (i) sample-paths
for which the limits in relation (5) do not exist; (ii) sample-
paths forwhich the limits exist—but relation (5) does not hold
(as in Example 15); (iii) sample-paths for which relation (5)
holds, but𝑋 ̸= 𝑚.

Relation (5) holds in a stochastic setting if 𝑃(𝐴) = 0.
In contrast, in Example 17, 𝑃(𝐴) = 1. Thus the following
corollary follows:

Corollary 18. Let {𝑋(𝑡)} be a stochastic process defined on a
probability space (Ω,F, 𝑃). If there exists a constant 𝑚 such
that 𝑋 = 𝑚 with probability one, then (with probability one)
Condition 𝐴2 is satisfied iff |𝑋| < ∞, and relation (5) holds.

5. Application to Regenerative Processes

In this section, we give a simple proof of relation (5) for
regenerative processes. Consider a general process with an
imbedded point process. Here we need only to consider the
limit in condition𝐴1 at the imbedded sequence of time points
and then specialize to regenerative processes and extend a
result by Wolff [14]. Let {𝑋(𝑡), 𝑡 ≥ 0} be any process with
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{𝑇
𝑛
}, 𝑛 = 0, 1, . . . , 𝑇

0
= 0, be an imbedded point process.

Define
𝑁(𝑡) = max {𝑛 : 𝑇

𝑛
≤ 𝑡} ,

𝜆 = lim
𝑡→∞

𝑁(𝑡)

𝑡
, 𝜆 ∈ (0,∞) .

(60)

Assume that 𝑛 → ∞ iff 𝑡 → ∞. Let 𝐺
𝑇
𝑛

(𝑥) be the long-run
frequency distribution of the process {𝑋(𝑡)} at the imbedded
points 𝑇

𝑛
, and assume that 𝐺(𝑥) = lim

𝑇
𝑛
→∞

𝐺
𝑇
𝑛

(𝑥) exists.
Using the relation 𝑌 = 𝜆𝑋 [1], Corollary 5 remains valid
when condition 𝐴1 is replaced by the following equivalent
condition:

lim
𝛼→∞

lim
𝑛→∞

1

𝑛

𝑛

∑
𝑖=1

∫
𝑇
𝑖

𝑇
𝑖−1

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢 = 0,

𝑇
0
= 0.

(61)

Now, we shift attention to stochastic settings and assume that
{𝑋(𝑡), 𝑡 ≥ 0} is a stochastic regenerative process defined
on a probability space (Ω,F, 𝑃). Let the sequence {𝑌

𝑛
(𝛼)},

where 𝑌
𝑛
(𝛼) = ∫

𝑇
𝑛

𝑇
𝑛−1

ℎ(𝑋(𝑢))1{|𝑋(𝑢)| > 𝛼}𝑑𝑢, be such that
|𝐸𝑌
𝑛
(𝛼)| = |𝐸𝑌

1
(𝛼)| < ∞ for all 𝑛 = 0, 1, . . .. Then the

condition
lim
𝛼→∞

𝐸 (𝑌
1
(𝛼)) = 0 (62)

is sufficient for relation (5) to hold with probability one. Note
that 𝜆 = 1/𝐸𝑇

1
with probability one. Moreover the following

result can be easily derived.

Theorem 19. Let {𝑋(𝑡), 𝑡 ≥ 0} be a regenerative stochastic
process with regeneration points 𝑇

1
, 𝑇
2
, . . . such that 𝐸(𝑇

1
) <

∞, and 𝐸| ∫𝑇1
0
ℎ(𝑋(𝑢))𝑑𝑢| < ∞; then with probability one

lim
𝑡→∞

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 𝑑𝑢 = 𝐸𝑋
∞
, (63)

where 𝑋
∞

has distribution function 𝐺(⋅); that is, relation (5)
holds with probability one.

Proof. It follows from the regenerative processes theory, for
example,TheoremB.4 in [2], that condition𝐴1 can bewritten
as

lim
𝛼→∞

lim
𝑡→∞

𝑡
−1
∫
𝑡

0

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢

= lim
𝛼→∞

𝐸∫
𝑇
1

0
ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢

𝐸 [𝑇
1
]

= 0.

(64)

So, we need only to verify that condition (62) is satisfied.
Using the dominated convergence theorem [26] and the
hypothesis of the theorem, it follows that

lim
𝛼→∞

𝐸 (𝑌
1
(𝛼))

= 𝐸 lim
𝛼→∞

∫
𝑇
1

0

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢

= 𝐸∫
𝑇
1

0

lim
𝛼→∞

ℎ (𝑋 (𝑢)) 1 {|𝑋 (𝑢)| > 𝛼} 𝑑𝑢 = 0.

(65)

When ℎ is an identity function, Theorem 19 slightly
extends Theorem 11 of Wolff [14, page 92], in the sense that
the absolute value of 𝑋(𝑡) is not needed in the hypothesis of
the theorem.
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