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A new mathematical model for the interaction of blood flow with the arterial wall surrounded by cerebral spinal fluid is developed
with applications to intracranial saccular aneurysms. The blood pressure acting on the inner arterial wall is modeled via a Fourier
series, the arterial wall is modeled as a spring-mass system incorporating growth and remodeling, and the surrounding cerebral
spinal fluid is modeled via a simplified one-dimensional compressible Euler equation with inviscid flow and negligible nonlinear
effects. The resulting nonlinear coupled fluid-structure interaction problem is analyzed and a perturbation technique is employed
to derive the first-order approximation solution to the system. An analytical solution is also derived for the linearized version of
the problem using Laplace transforms. The solutions are validated against related work from the literature and the results suggest
the biological significance of the inclusion of the growth and remodeling effects on the rupture of intracranial aneurysms.

1. Introduction

Intracranial saccular aneurysm is a focal dilatation of the
arterial wall that can be found in the circle of Willis which is
a network of vessels at the base of the brain. The aneurysm
which is a soft tissue interacts with a variety of flows
including the blood as well as the cerebral spinal fluid.
Based on the influence of various biomechanical factors,
the growing aneurysm can potentially rupture that leads to
either a neurological disorder or death. About 80% to 90%
of ruptured aneurysms lead to death [1]. One of the invasive
treatments for intracranial saccular aneurysms is to employ
surgical procedures which may be associated with risk and
death [2].

Over the last two decades, there have been several efforts
to investigate the genesis of this disease and to develop a way
for prediction of rupture through mathematical modeling
[3–6]. Different groups of researchers had identified the
elastodynamics of the arterial wall interaction with the blood
flow to be the main reason for the rupture of an aneurysm
[7–9]. A coupled fluid-structure model to understand the
elastodynamics better was later studied more extensively
[10–13]. These models introduced mathematical models of
increasing complexity for intracranial saccular aneurysms

that described the coupled interaction between blood, arterial
wall, and cerebral spinal fluid (CSF). In [11], the CSF was
modeled using simplified Navier-Stokes equations, whereas
the arterial wall structure was modeled using a spring-mass
system. A Fourier series was used to model the interaction
between blood pressure and inner wall. While the model
developed yielded good insight into understanding rupture,
this model did not accommodate growth and remodeling
effects of the soft-tissue wall.

There are three main constituents of the artery wall,
namely, the elastin, the collagen, and the smooth muscle
[14, 15]. The elastin is a stable protein and is considered the
most load bearing element that functions as resistance to the
formation of an aneurysm,whereas the collagen is the protein
that is responsible for preventing rupture after formation
of an aneurysm. The growth of the aneurysm is associated
with deficiency of elastin and weakening of the artery wall
[16]. Hence, elastin and collagen should be incorporated into
the modeling of arterial wall in order to obtain an accurate
biological model of the aneurysm that maybe can lead to
better interpretation and prediction for this disease. This is
one of the main contributions of this work. In the model we
will consider in this paper wewill assume elastin and collagen
to be one-dimensional passive fibers and also, for simplicity,
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Figure 1: Model of an aneurysm in an arterial wall with blood inside and CSF outside.

we will not consider the effects of the smooth muscle for this
work.

In Section 2, we will describe the mathematical model
that we will consider to solve a coupled fluid-structure
problem. Section 3 discusses the nonlinear analysis and
perturbation solution for the model. In Section 4, the lin-
earization of the growth and remodeling model is considered
and solved analytically using Laplace transformation. After
that, some important computational results and comparisons
are discussed in Section 5. Finally, we conclude by some
biological interpretation of the results and suggestion for
future work.

2. Models and Background

The mathematical modeling of intracranial saccular aneu-
rysm builds on models developed in [11, 12] which included
a simple mathematical model of a thin-walled, spherical
intracranial aneurysm surrounded by cerebral spinal fluid
which is referred to as CSF (see Figure 1).

The model was based on three separate components:
modeling the blood pressure acting on the inner wall of the
arteries,modeling theCSF that is located outside thewall, and
modeling the arterial wall itself. Combining the various com-
ponents yields a coupled fluid-structure interaction model.
This model assumed a simple spring-mass model for the wall
and the focus of this paper is to enhance this wall model to
incorporate realistic nonlinear soft-tissue behavior.

2.1. Model of the Blood Pressure. The blood pressure is
modeled using finite Fourier series since we consider the
behavior to be pulsatile [10, 17, 18]:

𝑃
𝐵 (𝑡) = 𝑃𝑚 +

𝑁

∑

𝑛=1

(𝐴
𝑛
cos (𝑛𝑤𝑡) + 𝐵𝑛 sin (𝑛𝑤𝑡)) , (1)

where 𝑃
𝑚
is the mean blood pressure, 𝑤 is the fundamental

circular frequency, and𝐴
𝑛
and 𝐵

𝑛
are the Fourier coefficients

for𝑁 harmonic.

2.2. Model of the Arterial Wall. We consider the arterial
wall to be modeled using a simple spring-mass system that
incorporates the elastin and collagen effects in the outer wall
of the arteries. The force of this system may be denoted by 𝐹

𝑆

which is given by

𝐹S = 𝐾𝐸𝐴𝐸 (𝑡) 𝜎𝐸 (𝜖𝐸) + 𝐾𝐶𝐴𝐶 (𝑡) 𝜎𝐶 (𝜖𝐶) − 𝑎𝑃𝐵 (𝑡) , (2)

where 𝐾
𝐸
and 𝐾

𝐶
are the scaling coefficients, 𝐴

𝐸
(𝑡) and

𝐴
𝐶
(𝑡) are the cross-sectional areas, and 𝜎

𝐸
(𝜖
𝐸
) and 𝜎

𝐶
(𝜖
𝐶
) are

the stresses for elastin and collagen, respectively. 𝐹
𝑆
may be

considered the force exerted on the outer wall. It is expressed
in terms of the respective forces in the elastin and collagen
along with the force from the blood pressure in the opposite
direction. Each of the respective forces from the elastin and
collagen is proportional to the respective stresses 𝜎

𝐸
and 𝜎

𝐶
.

These forces help to balance the force expressed by the blood
flow on the inner wall.

In this work we assume that these stresses are related
to the respective strains through linear constitutive laws
(material linearity) given by

𝜎
𝐸
= 𝜖
𝐸
,

𝜎
𝐶
= 𝜖
𝐶

(3)

and the strains are assumed to be nonlinear (geometric
nonlinearity) given by

𝜖
𝐸
=
2𝐿𝑢 + 𝑢

2

2𝐿2
,

𝜖
𝐶
=

2𝐿𝑢 + 𝑢
2
+ 𝐿
2
(1 − 𝑟

2
)

2𝐿2𝑟2
,

(4)

where 𝐿 denotes the length of the unstrained tissue, 𝑢 its
extension, and 𝑟 is the stretched factor of unstrained tissue
of collagen fiber [6].

2.3.Model of the Cerebral Spinal Fluid. Themodel of CSF that
is considered in this paper is the simplified one-dimensional
compressible Euler equation with inviscid flow. Assuming
negligible nonlinear effects and a constitutive relationship for
the pressure [11], one can derive the following wave equation:

V
𝑡
= 𝑐
2
𝑢
𝑥𝑥
,

𝑢
𝑡
= V.

(5)

Here 𝑢(𝑥, 𝑡) is assumed to be the displacement of the CSF
with V(𝑥, 𝑡) as the velocity. Since we are looking to find the
movement of outer wall due to the interaction with CSF, we
consider 𝑥 = 0 to denote the outer wall and therefore we are
interested in finding the solution to (5) at 𝑥 = 0 that will
describe the movement of the wall at any time 𝑡 ≥ 0. In order
to solve the system, we will assume that the displacement and
velocity of the CSF is zero initially. This is given by the initial
conditions:

𝑢 (𝑥, 0) = V (𝑥, 0) = 0. (6)
The boundary conditions will be described later after the
discussion of the modeling of the blood pressure and the
arterial wall.
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2.4. Governing Equation of Motion. In order to solve system
(5), we need two boundary conditions. The first boundary
condition is at point 𝑥 = 0, and it can be derived from the
model of blood pressure and the arterial wall that we have
discussed. Note that the force balance equation at 𝑥 = 0may
be written as

𝐹
𝑇
= 𝐹
𝐹
− 𝐹
𝑆
. (7)

Here,

𝐹
𝑇
= 𝑚𝑢
𝑡𝑡 (0, 𝑡) (8)

is the total force, where 𝑚 is the mass of the wall. Consider
that

𝐹
𝐹
= −𝑃𝑎 = 𝜌𝑐

2
𝑢
𝑥 (0, 𝑡) 𝑎 (9)

is the force of the fluid which is the product of the pressure 𝑃
and the cross-sectional area 𝑎. The pressure is given by 𝑃 =
−𝜌𝑐
2
𝑢
𝑥
, where 𝜌 is the density of the CSF which is assumed

to be slightly compressible [11]. The total force of the spring
from (2) is given by

𝐹
𝑆
= 𝐾
𝐸
𝐴
𝐸
𝜖
𝐸
+ 𝐾
𝐶
𝐴
𝐶
𝜖
𝐶
− 𝑎𝑃
𝐵 (𝑡) . (10)

Then, substituting (8), (9), and (10) into (7) we obtain the first
boundary condition at 𝑥 = 0:

𝑚𝑢
𝑡𝑡 (0, 𝑡) = 𝜌𝑐

2
𝑎𝑢
𝑥 (0, 𝑡) − 𝐾𝐸𝐴𝐸𝜖𝐸 − 𝐾𝐶𝐴𝐶𝜖𝐶

+ 𝑎𝑃
𝑚

+

𝑁

∑

𝑛=1

(𝑎𝐴
𝑛
cos (𝑛𝑤𝑡) + 𝑎𝐵𝑛 sin (𝑛𝑤𝑡)) .

(11)

The second boundary condition can be obtained using the
plane wave approximation that states that the waves from the
wall will die down some fixed distance away from the wall. If
this can be applied at point 𝑥 = 𝐿, then the second boundary
condition becomes [11]

V (𝐿, 𝑡) = −𝑐𝑢𝑥 (𝐿, 𝑡) . (12)

Combining (5), (6), (11), and (12), we obtain the following
coupled fluid-structure interaction problem:

𝑢
𝑡𝑡
= 𝑐
2
𝑢
𝑥𝑥
,

𝑢 (𝑥, 0) = 𝑢𝑡 (𝑥, 0) = 0,

𝑚𝑢
𝑡𝑡 (0, 𝑡) = 𝑎𝑃𝐵 (𝑡) + 𝜌𝑐

2
𝑎𝑢
𝑥 (0, 𝑡)

+ (
−𝐾
𝐸
𝐴
𝐸

𝐿
−
𝐾
𝐶
𝐴
𝐶

𝐿𝑟2
) 𝑢 (0, 𝑡)

+ (
−𝐾
𝐸
𝐴
𝐸

2𝐿2
−
𝐾
𝐶
𝐴
𝐶

2𝐿2𝑟2
) 𝑢
2
(0, 𝑡)

−

𝐾
𝐶
𝐴
𝐶
(1 − 𝑟

2
)

2𝑟2
,

𝑢
𝑡 (𝐿, 𝑡) = −𝑐𝑢𝑥 (𝐿, 𝑡) .

(13)

Solving the above coupled system will yield 𝑢(𝑥, 𝑡) which is
the displacement of the fluid in the domain [0, 𝐿]. Note that
the displacement of the outer boundary of the wall is the
same as 𝑢(0, 𝑡) which is the displacement of the fluid at the
left end boundary of its domain. As described in [11], we will
also study the movement of the outer wall, namely, 𝑢(0, 𝑡), to
be an indicator of the potential for rupture of the aneurysm.
The higher the value of 𝑢(0, 𝑡), the more the potential for
rupture. However, one must solve nonlinear coupled system
(13) which does not admit an exact solution. One must
therefore apply other approaches to obtain this solution.Next,
we will employ a nonlinear analysis and perturbationmethod
in thismodel to obtain an approximate solution to system (13)
which is one of the central contributions of this work.

3. Nonlinear Dynamics and Analysis

Nonlinear analysis and perturbation method techniques are
powerful tools to study the behavior of complex nonlinear
models and help to obtain an approximate solution to these
models. In this work, the nonlinear phase analysis and
perturbation technique for (13) will be presented. We will
employ the following steps. First we will convert (13) which is
an initial-boundary value partial differential equation system
into an initial value ordinary differential equation system.
Following this we will perform a phase analysis of the newly
obtained initial value differential equation.Wewill then apply
the perturbation techniques to the resulting equations.These
steps are described next.

3.1. Converting the PDE System into Initial Value Differential
Equation. Since the governing equation of system (13) is a
one-dimensional wave equation, it has a unique solution of
the form [19]

𝑢 (𝑥, 𝑡) = 𝑓̃ (𝑥 − 𝑐𝑡) + 𝑔̃ (𝑥 + 𝑐𝑡) . (14)

Differentiating the above solution with respect to variables 𝑥
and 𝑡 yields

𝑢
𝑡 (𝑥, 𝑡) = −𝑐𝑓̃

󸀠

(𝑥 − 𝑐𝑡) + 𝑐𝑔̃
󸀠
(𝑥 + 𝑐𝑡) , (15)

𝑢
𝑡𝑡 (𝑥, 𝑡) = 𝑐

2
𝑓̃
󸀠󸀠

(𝑥 − 𝑐𝑡) + 𝑐
2
𝑔̃
󸀠󸀠
(𝑥 + 𝑐𝑡) , (16)

𝑢
𝑥 (𝑥, 𝑡) = 𝑓̃

󸀠

(𝑥 − 𝑐𝑡) + 𝑔̃
󸀠
(𝑥 + 𝑐𝑡) , (17)

𝑢
𝑥𝑥 (𝑥, 𝑡) = 𝑓̃

󸀠󸀠

(𝑥 − 𝑐𝑡) + 𝑔̃
󸀠󸀠
(𝑥 + 𝑐𝑡) . (18)

Substituting (15)–(17) in the boundary condition at 𝑥 = 𝐿 of
system (13) yields

− 𝑐𝑓̃
󸀠

(𝐿 − 𝑐𝑡) + 𝑐𝑔̃
󸀠
(𝐿 + 𝑐𝑡)

= −𝑐𝑓̃
󸀠

(𝑥 − 𝑐𝑡) − 𝑐𝑔̃
󸀠
(𝑥 + 𝑐𝑡) .

(19)

This yields 𝑔̃󸀠(𝐿 + 𝑐𝑡) = 0 and therefore

𝑔̃ (𝐿 + 𝑐𝑡) = 𝐷, (20)
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where𝐷 is arbitrary constant. Using (14), the unique solution
of the wave equation becomes

𝑢 (𝑥, 𝑡) = 𝑓̃ (𝑥 − 𝑐𝑡) + 𝐷. (21)

Since 𝐷 is an arbitrary constant, it can be absorbed inside
the function 𝑓̃(𝑥 − 𝑐𝑡). Therefore, the general solution of the
system is

𝑢 (𝑥, 𝑡) = 𝑓 (𝑥 − 𝑐𝑡) . (22)

Since our goal is to determine the solution 𝑢(0, 𝑡), next we
substitute (22) into the boundary condition at 𝑥 = 0 of system
(13) which yields

𝑚𝑐
2
𝑓
󸀠󸀠
(−𝑐𝑡) = 𝑎𝑃𝐵 (𝑡) + 𝜌𝑐

2
𝑎𝑓
󸀠
(−𝑐𝑡)

+ (
−𝐾
𝐸
𝐴
𝐸

𝐿
−
𝐾
𝐶
𝐴
𝐶

𝐿𝑟2
)𝑓 (−𝑐𝑡)

+ (
−𝐾
𝐸
𝐴
𝐸

2𝐿2
−
𝐾
𝐶
𝐴
𝐶

2𝐿2𝑟2
)𝑓
2
(−𝑐𝑡)

−

𝐾
𝐶
𝐴
𝐶
(1 − 𝑟

2
)

2𝑟2

(23)

which can be rewritten as
𝑚𝑐
2
𝑓
󸀠󸀠
(−𝑐𝑡) − 𝜌𝑐

2
𝑎𝑓
󸀠
(−𝑐𝑡) + 𝐷1𝑓 (−𝑐𝑡)

+ 𝐷
2
𝑓
2
(−𝑐𝑡) = 𝑎𝑃𝐵 (𝑡) + 𝐷3

(24)

with the following initial condition: 𝑓(0) = 0, 𝑓󸀠(0) = 0.
Here,

𝑃
𝐵 (𝑡) = 𝑃𝑚 +

𝑁

∑

𝑛=1

(𝐴
𝑛
cos (𝑛𝑤𝑡) + 𝐵𝑛 sin (𝑛𝑤𝑡)) ,

𝐷
1
=
𝐾
𝐸
𝐴
𝐸

𝐿
+
𝐾
𝐶
𝐴
𝐶

𝐿𝑟2
,

𝐷
2
=
𝐾
𝐸
𝐴
𝐸

2𝐿2
+
𝐾
𝐶
𝐴
𝐶

2𝐿2𝑟2
,

𝐷
3
= −

𝐾
𝐶
𝐴
𝐶
(1 − 𝑟

2
)

2𝑟2
.

(25)

Lemma 1. Nonlinear differential equation (24) can be rewrit-
ten as the following nonlinear second-order differential equa-
tion:
𝑚𝑤
2
ℎ
󸀠󸀠
(𝑡) + (𝜌𝑐𝑤𝑎) ℎ

󸀠
(𝑡) + 𝐷1ℎ (𝑡) + 𝐷2ℎ

2
(𝑡)

= 𝑎𝑃
𝑚
+ 𝐷
3
+ 𝑎

𝑁

∑

𝑛=1

(𝐴
𝑛
cos (𝑛𝑡) + 𝐵𝑛 sin (𝑛𝑡)) .

(26)

Proof. To prove this, we will use a change of variable. Let us
define𝑇 = −𝑐𝑡 and substitute this in differential equation (24)
to obtain
𝑚𝑐
2
𝑓
󸀠󸀠
(𝑇) − 𝜌𝑐

2
𝑎𝑓
󸀠
(𝑇) + 𝐷1𝑓 (𝑇) + 𝐷2𝑓

2
(𝑇)

= 𝑎𝑃
𝑚
+ 𝑎

𝑁

∑

𝑛=1

(𝐴
𝑛
cos(𝑛𝑤𝑇

−𝑐
) + 𝐵
𝑛
sin(𝑛𝑤𝑇

−𝑐
))

+ 𝐷
3
.

(27)

Next, we will choose another change of variable and let 𝑡̃ =
𝑤𝑇/−𝑐. Also define a new function ℎ(̃𝑡) = 𝑓(𝑇). Then apply-
ing chain rule, we have

ℎ
󸀠
(̃𝑡) =

−𝑐

𝑤
𝑓
󸀠
(𝑇) ,

ℎ
󸀠󸀠
(̃𝑡) = (

−𝑐

𝑤
)

2

𝑓
󸀠󸀠
(𝑇) .

(28)

Using these relations and renaming 𝑡̃ = 𝑡, (27) can be
rewritten as

𝑚𝑤
2
ℎ
󸀠󸀠
(𝑡) + (𝜌𝑐𝑤𝑎) ℎ

󸀠
(𝑡) + 𝐷1ℎ (𝑡) + 𝐷2ℎ

2
(𝑡)

= 𝑎𝑃
𝑚
+ 𝐷
3
+ 𝑎

𝑁

∑

𝑛=1

(𝐴
𝑛
cos (𝑛𝑡) + 𝐵𝑛 sin (𝑛𝑡)) .

(29)

Note that the last summation term in (29) is now 2𝜋 periodic.

3.2. Phase Analysis of the Initial Value Differential Equation.
Consider the homogeneous case for (29). Dividing through-
out by𝑚𝑤2 yields

ℎ
󸀠󸀠
(𝑡) + 𝑄1ℎ

󸀠
(𝑡) + 𝑄2ℎ (𝑡) + 𝑄3ℎ

2
(𝑡) = 0, (30)

where

𝑄
1
=
𝜌𝑐𝑎

𝑚𝑤
,

𝑄
2
=
𝐷
1

𝑚𝑤2
,

𝑄
3
=
𝐷
2

𝑚𝑤2
.

(31)

Defining a new vector,

𝐻(𝑡) = [

ℎ̃
1 (𝑡)

ℎ̃
2 (𝑡)

] , (32)

where ℎ̃
1
(𝑡) = ℎ(𝑡) and ℎ̃

2
(𝑡) = ℎ

󸀠
(𝑡); we can now rewrite (30)

into two first-order equations as follows:

ℎ̃
󸀠

1
= ℎ̃
2
,

ℎ̃
󸀠

2
= −𝑄
1
ℎ̃
2
− 𝑄
2
ℎ̃
1
− 𝑄
3
ℎ̃
2

1
.

(33)

It is trivial to note from the system above that there are two
equilibrium points, namely, the origin (0, 0) and the point
(−𝑄
2
/𝑄
3
, 0).

Considering the first equilibrium point, that is (0, 0),
system (33) can be rewritten in a matrix form as

𝐻
󸀠
(𝑡) = 𝐴𝐻 (𝑡) + 𝑔 (𝑡) , (34)
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where

𝐻
󸀠
(𝑡) = [

[

ℎ̃
󸀠

1

ℎ̃
󸀠

2

]

]

,

𝐴 = 𝐷h̃ (0, 0) = [
0 1

−𝑄
2
−𝑄
1

] ,

h̃ = [
[

ℎ̃
2

−𝑄
1
ℎ̃
2
− 𝑄
2
ℎ̃
1
− 𝑄
3
ℎ̃
2

1

]

]

,

𝐻 (𝑡) = [

ℎ̃
1

ℎ̃
2

] ,

𝑔 (𝑡) = [

0

−𝑄
3
ℎ̃
2

1
(𝑡)

] .

(35)

The linearized part of (34) is

𝐻
󸀠
(𝑡) = 𝐴𝐻 (𝑡) . (36)

The eigenvalues of thematrix𝐴 are twonegative real numbers
that can be calculated using

𝜆
1,2
=

−𝑄
1
± √𝑄

2

1
− 4𝑄
2

2

(37)

and since none of the eigenvalues of 𝐴 has zero real part,
the equilibrium point is hyperbolic. Hence, the behavior
of nonlinear system (34) is topologically equivalent to the
behavior of linearized system (36), and the approximate solu-
tion for this linear system will be good first approximation
for nonlinear system (34) [20]. Note that we will restrict the
values of 𝜌, 𝑐, 𝑎, 𝑚, 𝑤, 𝐾

𝐸
, 𝐾
𝐶
, 𝐴
𝐸
, 𝐴
𝐶
, 𝐿, and 𝑟 in order to

have two distinct real eigenvalues. This means that

𝑄
2

1
> 4𝑄
2
. (38)

This condition as we will see later has biological significance
in relation to the displacement of the outer wall. Analyzing
the behavior of linear system, it can be seen that the origin
(0, 0) is a stable node (sink) for linear system (36). Thus, it is
a stable node for nonlinear system (34) aswell [20].Therefore,
in area around the origin the solution is supposed to approach
the equilibrium point (see Figure 2).

In order to study the behavior of the nonlinear solution
near the second equilibrium point, that is (−𝑄

2
/𝑄
3
, 0), this

equilibrium point has to be translated to the origin using the
following transformation:

ℎ̂
1
= ℎ̃
1
+
𝑄
2

𝑄
3

,

ℎ̂
2
= ℎ̃
2
.

(39)

Using above transformation, the new system can be rewritten
as

ℎ̂
1

󸀠

= ℎ̂
2
,

ℎ̂
2

󸀠

= −𝑄
1
ℎ̂
2
+ 𝑄
2
ℎ̂
1
− 𝑄
3
ℎ̂
1

2

.

(40)

Cursor (−5.11, 3.12)

−4
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−1

0

1

2
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2

h̃
󳰀

1 = h̃2

h̃
󳰀

2 = −Q1h̃2 − Q2h̃1 − Q3h̃
2

1

Figure 2: Phase portrait of the system.

This can be written in matrix form as

𝐻(𝑡)
󸀠

= 𝐴̂𝐻 (𝑡) + 𝑔 (𝑡), (41)

where

𝐻(𝑡)
󸀠

= [

[

ℎ̂
1

󸀠

ℎ̂
2

󸀠

]

]

,

𝐴̂ = 𝐷ĥ (0, 0) = [
0 1

𝑄
2
−𝑄
1

] ,

ĥ = [
[

ℎ̂
2

−𝑄
1
ℎ̂
2
+ 𝑄
2
ℎ̂
1
− 𝑄
3
ℎ̂
1

2

]

]

,

𝐻 (𝑡) = [

ℎ̂
1

ℎ̂
2

] ,

𝑔 (𝑡) = [

0

−𝑄
3
ℎ̂
1

2

(𝑡)

] .

(42)

The linearized part of (41) is

𝐻(𝑡)
󸀠

= 𝐴̂𝐻 (𝑡). (43)

The eigenvalues of thematrix 𝐴̂ are two distinct real numbers
with opposite signs and can be calculated using

𝜆
1,2
=

−𝑄
1
± √𝑄

2

1
+ 4𝑄
2

2
.

(44)

Therefore, the behavior of nonlinear system (41) is topolog-
ically equivalent to the behavior of linearized system (43).
We have found that this equilibrium point (−𝑄

2
/𝑄
3
, 0) is

unstable saddle for the linear system; therefore, it is also an
unstable saddle for the nonlinear system [20].
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3.3. Existence of the Solution to Perturbed Nonlinear Non-
homogeneous System. Let us consider again the following
second-order nonhomogeneous weakly nonlinear ODE:

ℎ
󸀠󸀠
(𝑡) + 𝑄1ℎ

󸀠
(𝑡) + 𝑄2ℎ (𝑡) + 𝜖 (𝑄3ℎ

2
(𝑡)) = 𝐹 (𝑡) , (45)

where

𝐹 (𝑡) = 𝑄4 (𝑎𝑃𝑚 + 𝐷3)

+ 𝑎𝑄
4

𝑁

∑

𝑛=1

[𝐴
𝑛
cos (𝑛𝑡) + 𝐵𝑛 sin (𝑛𝑡)]

(46)

is 2𝜋 periodic Fourier series and 𝑄
4
= 1/𝑚𝑤

2. This system
can be written in vector form as

ℎ̃
󸀠

1
= ℎ̃
2
,

ℎ̃
󸀠

2
= −𝑄
1
ℎ̃
2
− 𝑄
2
ℎ̃
1
+ 𝐹 (𝑡) − 𝜖 (𝑄3ℎ̃

2

1
) ,

(47)

where ℎ̃
1
(𝑡) = ℎ(𝑡) and ℎ̃

2
(𝑡) = ℎ

󸀠
(𝑡).

The associated reduced system when 𝜖 = 0 is

ℎ̃
󸀠

1
= ℎ̃
2
,

ℎ̃
󸀠

2
= −𝑄
1
ℎ̃
2
− 𝑄
2
ℎ̃
1
+ 𝐹 (𝑡) .

(48)

A particular solution of reduced system (48) is expressed as

𝜓 (𝑡) =

{{{

{{{

{

𝑄
4
(𝑎𝑃
𝑚
+ 𝐷
3
)

𝑄
2

0

}}}

}}}

}

+

𝑁

∑

𝑛=1

1

(𝑄
2
− 𝑛2)
2
+ (𝑛𝑄

1
)
2
[{

𝑎
∗

𝑛

𝑛𝑏
∗

𝑛

} cos (𝑛𝑡)

+ {

𝑏
∗

𝑛

−𝑛𝑎
∗

𝑛

} sin (𝑛𝑡)] ,

(49)

where

𝑎
∗

𝑛
= (𝑄
2
− 𝑛
2
)𝑄
4
𝐴
𝑛
− (𝑛𝑄

1
𝑄
4
) 𝐵
𝑛
,

𝑏
∗

𝑛
= (𝑛𝑄

1
𝑄
4
) 𝐴
𝑛
+ (𝑄
2
− 𝑛
2
)𝑄
4
𝐵
𝑛
.

(50)

Note that, from here, we can obtain all the general solutions
for (48) which will require the application of the initial
conditions ℎ̃

1
(0) = ℎ̃

2
(0) = 0 to solve for any unknown

constants in the general solution.Then, (45) has a 2𝜋 periodic
solution ℎ = ℎ(𝑡, 𝜖) that is analytic in 𝜖.Therefore, the solution
can be expressed as convergent power series [21]:

ℎ (𝑡, 𝜖) = ℎ0 (𝑡) + 𝜖ℎ1 (𝑡) + 𝜖
2
ℎ
2 (𝑡) + ⋅ ⋅ ⋅ =

∞

∑

𝑛=0

𝜖
𝑛
ℎ
𝑛 (𝑡) , (51)

where each function ℎ
𝑛
(𝑡) is 2𝜋 periodic in 𝑡.

3.4. Perturbation Technique to Find First-Order Approxima-
tion. Let us consider (24) with perturbed term:

𝑚𝑐
2
𝑓
󸀠󸀠
(−𝑐𝑡) − 𝜌𝑐

2
𝑎𝑓
󸀠
(−𝑐𝑡) + 𝐷1𝑓 (−𝑐𝑡)

+ 𝜖 (𝐷
2
𝑓
2
(−𝑐𝑡)) = 𝐹 (𝑡)

(52)

with the following initial condition: 𝑓(0) = 0, 𝑓󸀠(0) = 0,
where

𝐹 (𝑡) = 𝑎𝑃𝑚 + 𝐷3

+ 𝑎

𝑁

∑

𝑛=1

(𝐴
𝑛
cos (𝑛𝑤𝑡) + 𝐵𝑛 sin (𝑛𝑤𝑡))

(53)

and 𝜖 here is assumed to be very small. Following the ideas in
Lemma 1, the above differential equation can be rewritten as

𝑚𝑤
2
ℎ
󸀠󸀠
(𝑡) + 𝜌𝑐𝑤𝑎ℎ

󸀠
(𝑡) + 𝐷1ℎ (𝑡) + 𝜖 (𝐷2ℎ

2
(𝑡))

= 𝑎𝑃
𝑚
+ 𝐷
3
+ 𝑎

𝑁

∑

𝑛=1

(𝐴
𝑛
cos (𝑛𝑡) + 𝐵𝑛 sin (𝑛𝑡))

(54)

with ℎ(0) = 0, ℎ
󸀠
(0) = 0. Let the solution of differential

equation (54) be expressed as power series as in the previous
section. Replacing the function ℎ(𝑡) by its power series (51)
and comparing coefficients of each order, we obtain the
following [22–24].

Zeroth-Order Approximation. Consider

𝑚𝑤
2
ℎ
󸀠󸀠

0
(𝑡) + (𝜌𝑐𝑤𝑎) ℎ

󸀠

0
(𝑡) + 𝐷1ℎ0 (𝑡)

= 𝑎𝑃
𝑚
+ 𝐷
3
+ 𝑎

𝑁

∑

𝑛=1

(𝐴
𝑛
cos (𝑛𝑡) + 𝐵𝑛 sin (𝑛𝑡)) ,

ℎ
0 (0) = 0, ℎ

󸀠

0
(0) = 0.

(55)

First-Order Approximation. Consider

𝑚𝑤
2
ℎ
󸀠󸀠

1
(𝑡) + (𝜌𝑐𝑤𝑎) ℎ

󸀠

1
(𝑡) + 𝐷1ℎ1 (𝑡) + 𝐷2 (ℎ0 (𝑡))

2

= 0, ℎ
1 (0) = 0, ℎ

󸀠

1
(0) = 0.

(56)

We can now solve (55) that yields

ℎ
0 (𝑡) = 𝐵̃1𝑒

𝜆
1
𝑡
+ 𝐵̃
2
𝑒
𝜆
2
𝑡
+ 𝑎
0

+

𝑁

∑

𝑛=1

(𝑎
𝑛
cos (𝑛𝑡) + 𝑏𝑛 sin (𝑛𝑡)) ,

(57)
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where

𝜆
1,2
=

−𝜌𝑐𝑤𝑎 ± √(𝜌𝑐𝑤𝑎)
2
− 4𝑚𝑤2𝐷

1

2𝑚𝑤2
,

𝑎
0
=
𝑎𝑃
𝑚
+ 𝐷
3

𝐷
1

,

𝑎
𝑛
=

𝑎 (𝐷
1
− 𝑛
2
𝑤
2
𝑚)𝐴
𝑛
− 𝑎 (𝑛𝜌𝑤𝑎𝑐) 𝐵

𝑛

(𝐷
1
− 𝑛2𝑤2𝑚)

2
+ (𝑛𝜌𝑤𝑎𝑐)

2
,

𝑏
𝑛
=

𝑎 (𝑛𝜌𝑤𝑎𝑐)𝐴
𝑛
+ 𝑎 (𝐷

1
− 𝑛
2
𝑤
2
𝑚)𝐵
𝑛

(𝐷
1
− 𝑛2𝑤2𝑚)

2
+ (𝑛𝜌𝑤𝑎𝑐)

2
,

𝐵̃
1
=

𝜆
2
(𝑎
0
+ ∑
𝑁

𝑛=0
𝑎
𝑛
) − ∑
𝑁

𝑛=1
𝑛𝑏
𝑛

𝜆
1
− 𝜆
2

,

𝐵̃
2
=

𝜆
1
(𝑎
0
+ ∑
𝑁

𝑛=0
𝑎
𝑛
) − ∑
𝑁

𝑛=1
𝑛𝑏
𝑛

𝜆
2
− 𝜆
1

.

(58)

Since we have restriction condition from Section 3.2, that is,
𝑄
2

1
> 4𝑄
2
, this is identical to the following condition:

(𝜌𝑐𝑤𝑎)
2
> 4𝑚𝑤

2
𝐷
1
. (59)

Hence, 𝜆
1
̸= 𝜆
2
.

Using solution ℎ
0
(𝑡) from (57), we can rewrite (56) in the

form

𝑚𝑤
2
ℎ
󸀠󸀠

1
(𝑡) + (𝜌𝑐𝑤𝑎) ℎ

󸀠

1
(𝑡) + 𝐷1ℎ1 (𝑡)

+ 2𝐷
2
𝐵̃
1

𝑁

∑

𝑛=0

𝑎
𝑛
cos (𝑛𝑡) 𝑒𝜆1𝑡

+ 2𝐷
2
𝐵̃
1

𝑁

∑

𝑛=1

𝑏
𝑛
sin (𝑛𝑡) 𝑒𝜆1𝑡

+ 2𝐷
2
𝐵̃
2

𝑁

∑

𝑛=0

𝑎
𝑛
cos (𝑛𝑡) 𝑒𝜆2𝑡

+ 2𝐷
2
𝐵̃
2

𝑁

∑

𝑛=1

𝑏
𝑛
sin (𝑛𝑡) 𝑒𝜆2𝑡 + 𝐷2𝐵̃

2

1
𝑒
2𝜆
1
𝑡

+ 2𝐷
2
𝐵̃
1
𝐵̃
2
𝑒
(𝜆
1
+𝜆
2
)𝑡
+ 𝐷
2
𝐵̃
2

2
𝑒
2𝜆
2
𝑡
+ 𝐷
2
𝑎
2

0

+ 2𝐷
2
𝑎
0

𝑁

∑

𝑛=1

(𝑎
𝑛
cos (𝑛𝑡) + 𝑏𝑛 sin (𝑛𝑡))

+
𝐷
2

2

𝑁

∑

𝑛=1

𝑎
2

𝑛
+
𝐷
2

2

𝑁

∑

𝑛=1

𝑏
2

𝑛
+
𝐷
2

2

𝑁

∑

𝑛=0

𝑎
2

𝑛
cos (2𝑛𝑡)

+ 𝐷
2

𝑁

∑

𝑛=1

𝑎
𝑛
𝑏
𝑛
sin (2𝑛𝑡) −

𝐷
2

2

𝑁

∑

𝑛=0

𝑏
2

𝑛
cos (2𝑛𝑡) = 0.

(60)

Solution to (60) can be derived to be

ℎ
1 (𝑡) = (𝑋1 + 𝑆0) 𝑒

𝜆
1
𝑡
+ (𝑋
2
+𝑊
0
) 𝑒
𝜆
2
𝑡
+ 𝑈
0
+ 𝐸
0

+

𝑁

∑

𝑛=1

𝑈
𝑛
cos (𝑛𝑡) +

𝑁

∑

𝑛=1

𝑄
𝑛
sin (𝑛𝑡) + 𝑍1𝑒

2𝜆
1
𝑡

+ 𝑍
2
𝑒
2𝜆
2
𝑡
+ 𝑍
3
𝑒
(𝜆
1
+𝜆
2
)𝑡
+

𝑁

∑

𝑛=1

𝐸
𝑛
cos (2𝑛𝑡)

+

𝑁

∑

𝑛=1

𝐺
𝑛
sin (2𝑛𝑡) +

𝑁

∑

𝑛=1

𝑆
𝑛
cos (𝑛𝑡) 𝑒𝜆1𝑡

+

𝑁

∑

𝑛=1

𝑉
𝑛
sin (𝑛𝑡) 𝑒𝜆1𝑡 +

𝑁

∑

𝑛=1

𝑊
𝑛
cos (𝑛𝑡) 𝑒𝜆2𝑡

+

𝑁

∑

𝑛=1

𝑌
𝑛
sin (𝑛𝑡) 𝑒𝜆2𝑡,

(61)

where

𝑈
0
=

−𝐷
2
[𝑎
0
+ ∑
𝑁

𝑛=1
(𝑎
2

𝑛
/2) + ∑

𝑁

𝑛=1
(𝑏
2

𝑛
/2)]

𝐷
1

,

𝑆
0
=

−2𝐷
2
𝐵̃
1
𝑎
0

𝑚𝑤2𝜆
2

1
+ 𝜌𝑐𝑤𝑎𝜆

1
+ 𝐷
1

,

𝐸
0
=
−𝐷
2
𝑎
2

0

2𝐷
1

,

𝑊
0
=

−2𝐷
2
𝐵̃
2
𝑎
0

𝑚𝑤2𝜆
2

2
+ 𝜌𝑐𝑤𝑎𝜆

2
+ 𝐷
1

,

𝑈
𝑛
=

−2𝐷
2
𝑎
0
[(𝐷
1
− 𝑛
2
𝑚𝑤
2
) 𝑎
𝑛
+ (𝜌𝑐𝑎𝑛𝑤) 𝑏

𝑛
]

(𝐷
1
− 𝑛2𝑚𝑤2)

2
+ (𝜌𝑐𝑎𝑛𝑤)

2
,
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𝑄
𝑛
=

2𝐷
2
𝑎
0
[(𝜌𝑐𝑎𝑛𝑤) 𝑎

𝑛
− (𝐷
1
− 𝑛
2
𝑚𝑤
2
) 𝑏
𝑛
]

(𝐷
1
− 𝑛2𝑚𝑤2)

2
+ (𝜌𝑐𝑎𝑛𝑤)

2
,

𝑍
1
=

−𝐷
2
𝐵̃
2

1

4𝑚𝑤2𝜆
2

1
+ 2𝜌𝑐𝑤𝑎𝜆

1
+ 𝐷
1

,

𝑍
2
=

−𝐷
2
𝐵̃
2

2

4𝑚𝑤2𝜆
2

2
+ 2𝜌𝑐𝑤𝑎𝜆

1
+ 𝐷
1

,

𝑍
3
=

−2𝐷
2
𝐵̃
1
𝐵̃
2

𝑚𝑤2 (𝜆
1
+ 𝜆
2
)
2
+ 𝜌𝑐𝑤𝑎 (𝜆

1
+ 𝜆
2
) + 𝐷
1

,

𝐸
𝑛
=

𝐷
2
[((𝐷
1
− 4𝑚𝑛

2
𝑤
2
) /2) (𝑏

2

𝑛
− 𝑎
2

𝑛
) + (2𝜌𝑐𝑎𝑛𝑤) 𝑎

𝑛
𝑏
𝑛
]

(𝐷
1
− 4𝑚𝑛2𝑤2)

2
+ (2𝜌𝑐𝑎𝑛𝑤)

2
,

𝐺
𝑛
=

−𝐷
2
[((2𝜌𝑐𝑎𝑛𝑤) /2) (𝑎

2

𝑛
− 𝑏
2

𝑛
) + (𝐷

1
− 4𝑚𝑛

2
𝑤
2
) 𝑎
𝑛
𝑏
𝑛
]

(𝐷
1
− 4𝑚𝑛2𝑤2)

2
+ (2𝜌𝑐𝑎𝑛𝑤)

2
,

𝑆
𝑛
=

2𝐷
2
𝐵̃
1
[(2𝑛𝑤

2
𝑚𝜆
1
+ 𝑛𝜌𝑤𝑎𝑐) 𝑏

𝑛
− (𝑚𝑤

2
𝜆
2

1
+ 𝜌𝑐𝑤𝑎𝜆

1
+ (𝐷
1
− 𝑚𝑛
2
𝑤
2
)) 𝑎
𝑛
]

(2𝑛𝑤2𝑚𝜆
1
+ 𝜌𝑐𝑎𝑛𝑤)

2
+ (𝑚𝑤2𝜆

2

1
+ 𝜌𝑐𝑤𝑎𝜆

1
+ (𝐷
1
− 𝑚𝑛2𝑤2))

2
,

𝑉
𝑛
=

−2𝐷
2
𝐵̃
1
[(2𝑛𝑤

2
𝑚𝜆
1
+ 𝑛𝜌𝑤𝑐𝑎) 𝑎

𝑛
+ (𝑚𝑤

2
𝜆
2

1
+ 𝜌𝑐𝑤𝑎𝜆

1
+ (𝐷
1
− 𝑚𝑛
2
𝑤
2
)) 𝑏
𝑛
]

(2𝑛𝑤2𝑚𝜆
1
+ 𝜌𝑐𝑎𝑛𝑤)

2
+ (𝑚𝑤2𝜆

2

1
+ 𝜌𝑐𝑤𝑎𝜆

1
+ (𝐷
1
− 𝑚𝑛2𝑤2))

2
,

𝑊
𝑛
=

2𝐷
2
𝐵̃
2
[(2𝑛𝑤

2
𝑚𝜆
2
+ 𝜌𝑛𝑤𝑚𝑐) 𝑏

𝑛
− (𝑚𝑤

2
𝜆
2

2
+ 𝜌𝑐𝑤𝑎𝜆

2
+ (𝐷
1
− 𝑚𝑛
2
𝑤
2
)) 𝑎
𝑛
]

(2𝑛𝑤2𝑚𝜆
2
+ 𝜌𝑐𝑎𝑛𝑤)

2
+ (𝑚𝑤2𝜆

2

2
+ 𝜌𝑐𝑤𝑎𝜆

2
+ (𝐷
1
− 𝑚𝑛2𝑤2))

2
,

𝑌
𝑛
=

−2𝐷
2
𝐵̃
2
[(2𝑛𝑤𝑚𝜆

2
+ 𝑛𝜌𝑤𝑚𝑐) 𝑎

𝑛
+ (𝑚𝑤

2
𝜆
2

2
+ 𝜌𝑐𝑤𝑎𝜆

2
+ (𝐷
1
− 𝑚𝑛
2
𝑤
2
)) 𝑏
𝑛
]

(2𝑛𝑤2𝑚𝜆
2
+ 𝜌𝑐𝑎𝑛𝑤)

2
+ (𝑚𝑤2𝜆

2

2
+ 𝜌𝑐𝑤𝑎𝜆

2
+ (𝐷
1
− 𝑚𝑛2𝑤2))

2
,

𝑋
1
=
𝑃
1
+ Φ
1

𝜆
1
− 𝜆
2

,

𝑋
2
=
𝑃
2
+ Φ
2

𝜆
2
− 𝜆
1

,

(62)

where
𝑃
1
= (𝜆
2
− 2𝜆
1
) 𝑍
1
− 𝜆
2
𝑍
2
− 𝜆
1
𝑍
3
+ 𝜆
2
𝑈
0
,

Φ
1
= 𝜆
2

𝑁

∑

𝑛=1

𝑈
𝑛
−

𝑁

∑

𝑛=1

2𝑛𝐺
𝑛
+ (𝜆
2
− 𝜆
1
)

𝑁

∑

𝑛=0

𝑆
𝑛
+ 𝜆
2

𝑁

∑

𝑛=0

𝐸
𝑛

−

𝑁

∑

𝑛=1

𝑛 (𝑉
𝑛
+ 𝑌
𝑛
+ 𝑄
𝑛
) ,

𝑃
2
= −𝜆
1
𝑍
1
+ (𝜆
1
− 2𝜆
2
) 𝑍
2
− 𝜆
2
𝑍
3
+ 𝜆
1
𝑈
0
,

Φ
2
= 𝜆
1

𝑁

∑

𝑛=1

𝑈
𝑛
−

𝑁

∑

𝑛=1

2𝑛𝐺
𝑛
+ (𝜆
1
− 𝜆
2
)

𝑁

∑

𝑛=0

𝑊
𝑛

+ 𝜆
1

𝑁

∑

𝑛=0

𝐸
𝑛
−

𝑁

∑

𝑛=1

𝑛 (𝑉
𝑛
+ 𝑌
𝑛
+ 𝑄
𝑛
) .

(63)

For simplicity, we restricted the solution to be first-order
approximation, so

ℎ (𝑡) = ℎ0 (𝑡) + 𝜖ℎ1 (𝑡) (64)

and then we can have a first-order approximation of the
solution we are looking for which is given by

𝑢 (0, 𝑡) = 𝑓 (−𝑐𝑡) = 𝑓 (𝑇) = ℎ (𝑡) = ℎ0 (𝑡) + 𝜖ℎ1 (𝑡) , (65)

where ℎ
0
and ℎ

1
are defined in (57) and (61), respectively.

4. Linearization of the Growth and
Remodeling Model

Since the growth and remodeling model discussed in the
previous section is a nonlinear model that does not admit
an exact solution, it would be be beneficial to consider the



Journal of Nonlinear Dynamics 9

linearized version of this model and solve it analytically using
Laplace transform.The linearization can be done usingTaylor
series expansion of the nonlinear terms in the boundary
condition in (13) to yield

𝑢
𝑡𝑡
= 𝑐
2
𝑢
𝑥𝑥
, (66)

𝑢 (𝑥, 0) = 𝑢𝑡 (𝑥, 0) = 0, (67)

𝑚𝑢
𝑡𝑡 (0, 𝑡) = 𝑎𝑃𝐵 (𝑡) −

𝐾
𝐸
𝐴
𝐸

𝐿
𝑢 (0, 𝑡) −

𝐾
𝐶
𝐴
𝐶

𝐿𝑟2
𝑢 (0, 𝑡)

−

𝐾
𝐶
𝐴
𝐶
(1 − 𝑟

2
)

2𝑟2
+ 𝜌𝑐
2
𝑎𝑢
𝑥 (0, 𝑡) ,

(68)

𝑢
𝑡 (𝐿, 𝑡) = −𝑐𝑢𝑥 (𝐿, 𝑡) . (69)

To obtain the exact solution to this linearized system, we will
consider the Laplace transform of PDE (66) which becomes

𝑠
2
𝑈 (𝑥, 𝑠) = 𝑐

2
𝑈
𝑥𝑥 (𝑥, 𝑠) . (70)

The solution to (70) can be easily shown to be

𝑈 (𝑥, 𝑠) = 𝐶1 cosh(
𝑠𝑥

√𝑐2 + 𝑚𝑠

)

+ 𝐶
2
sinh( 𝑠𝑥

√𝑐2 + 𝑚𝑠

) .

(71)

Taking the Laplace transform of boundary conditions (68)-
(69), we obtain

𝑚𝑠
2
𝑈 (0, 𝑠) = 𝑎𝑃𝐵 −

𝐾
𝐸
𝐴
𝐸

𝐿
𝑈 (0, 𝑠) −

𝐾
𝐶
𝐴
𝐶

𝐿𝑟2
𝑈 (0, 𝑠)

−

𝐾
𝐶
𝐴
𝐶
(1 − 𝑟

2
)

2𝑟2
+ 𝜌𝑐
2
𝑎𝑈
𝑥 (0, 𝑠) ,

(72)

𝑠𝑈 (𝐿, 𝑠) = −𝑐𝑈𝑥 (𝐿, 𝑠) . (73)

In order to find the constants 𝐶
1
and 𝐶

2
, we substitute (71)

into (73) and compare the coefficient which yields

𝐶
2
= −𝐶
1
. (74)

Since we are interested in solution to displacement of cerebral
spinal fluid (CSF) at 𝑥 = 0, we take Laplace transform of
boundary condition at 𝑥 = 0 (72) and then substitute the
solution (71) into it to obtain

𝑈 (0, 𝑠) =

𝑎𝑃
𝑚
/𝑠 − 𝐾

𝐶
𝐴
𝐶
(𝑖 − 𝑟
2
) /2𝑟
2
𝑠 + ∑
𝑁

𝑛=1
(𝑎𝐴
𝑛
(𝑠/ (𝑠
2
+ 𝑛
2
𝑤
2
)) + 𝑎𝐵

𝑛
(𝑛𝑤/ (𝑠

2
+ 𝑛
2
𝑤
2
)))

𝑚𝑠2 + 𝜌𝑐𝑎𝑠 + 𝐾
𝐸
𝐴
𝐸
/𝐿 + 𝐾

𝐶
𝐴
𝐶
/𝐿𝑟2

. (75)

Taking the inverse of Laplace transformation will give us the
solution of the displacement of the CSF at 𝑥 = 0 which is
given by

𝑢 (0, 𝑡) = 𝐴1 + 𝐴2𝑒
𝑟
1
𝑡
+ 𝐴
3
𝑒
𝑟
2
𝑡
+

𝑁

∑

𝑛=1

(𝐶
𝑛
𝑒
𝑟
1
𝑡
+ 𝐷
𝑛
𝑒
𝑟
2
𝑡

+ 𝐸
𝑛
cos (𝑛𝑤𝑡) +

𝐹
𝑛

𝑛𝑤
sin (𝑛𝑤𝑡)) ,

(76)

where

𝑟
1,2

=

−𝜌𝑐𝑎 ± √𝜌2𝑐2𝑎2 − 4𝑚 (𝐾
𝐸
𝐴
𝐸
/𝐿 + 𝐾

𝐶
𝐴
𝐶
/𝐿𝑟2)

2𝑚
,

𝐴
1
=

𝑎𝑃
𝑚
− 𝐾
𝐶
𝐴
𝐶
(1 − 𝑟

2
) /2𝑟
2

𝑚𝑟
1
𝑟
2

,

𝐴
2
=

𝑎𝑃
𝑚
− 𝐾
𝐶
𝐴
𝐶
(1 − 𝑟

2
) /2𝑟
2

𝑚𝑟
1
(𝑟
1
− 𝑟
2
)

,

𝐴
3
=

𝑎𝑃
𝑚
− 𝐾
𝐶
𝐴
𝐶
(1 − 𝑟

2
) /2𝑟
2

𝑚𝑟
2
(𝑟
2
− 𝑟
1
)

,

𝐶
𝑛
=

𝑎𝐴
𝑛
𝑟
1
+ 𝑎𝐵
𝑛
𝑛𝑤

𝑚 (𝑟
1
− 𝑟
2
) (𝑟
2

1
+ 𝑛2𝑤2)

,

𝐷
𝑛
=

𝑎𝐴
𝑛
𝑟
2
+ 𝑎𝐵
𝑛
𝑛𝑤

𝑚 (𝑟
2
− 𝑟
1
) (𝑟
2

2
+ 𝑛2𝑤2)

,

𝐸
𝑛
= −𝐶
𝑛
− 𝐷
𝑛
,

𝐹
𝑛
= 𝑟
2
𝐶
𝑛
+ 𝑟
1
𝐷
𝑛
+ (𝑟
1
+ 𝑟
2
) 𝐸
𝑛
.

(77)

Equation (76) above represents a solution to the linearized
model for the movement of the outer wall for all time 𝑡 ≥
0. Obviously, the solution is the summation of exponential
terms, constant terms, and periodic terms. The form of the
solution suggests that the solution should start from the
origin since the given initial condition is 𝑢(0, 0) = 𝑓(0) = 0.
It is well known that the constant and periodic terms are
bounded. Hence, the exponential term should be analyzed in
order to understand the behavior of solution (76).

The exponential terms in above solution (76) are in the
forms 𝑒𝜆𝑡, and note that, in order for 𝑟

1,2
to be real and
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distinct, we will restrict the values of 𝜌, 𝑐, 𝑎, 𝑚, 𝐾
𝐸
, 𝐾
𝐶
,

𝐴
𝐸
, 𝐴
𝐶
, 𝐿, and 𝑟. Hence, we need

(𝜌𝑐𝑎)
2
> 4𝑚(

𝐾
𝐸
𝐴
𝐸

𝐿
+
𝐾
𝐶
𝐴
𝐶

𝐿𝑟2
) . (78)

Furthermore, from the given data for the problem and since
all the constants in 𝑟

1,2
are positive, we found that both

values of 𝑟
1,2

are negative. Therefore, the exponential terms
will act in the first few time steps only and they will go
to zero as 𝑡 becomes large. In this case, the periodic terms
and the constant will be dominant as 𝑡 approaches infinity.
This decay may be considered biologically significant in the
displacement of the outer wall which relates to the rupture of
the aneurysm.

5. Computational Experiments

In this section we perform numerical studies that will help
to validate the theory presented in this work. For our
computational experiments, the following realistic values are
utilized. For the CSF, 𝜌 = 1000 kg/m3 and 𝑐 = 1500m/s
are used. For the wall, 𝑎 = 0.01m2, 𝐾

𝐸
= 800N/m, 𝐾

𝐶
=

3.52N/m, 𝐴
𝐸
= 20m2, 𝐴

𝐶
= 10m2, 𝑟 = 2m, 𝑚 = 0.001 kg,

and 𝐿 = 1.5m are used. Finally, 𝑃
𝑚
= 8759.279403mmHg

and 𝑤 = 1 rad/s are used for the blood pressure model, and,
for the harmonics, 𝐴

1
= −7.13, 𝐴

2
= −3.08, 𝐴

3
= −0.130,

𝐴
4
= −0.205, 𝐴

5
= 0.0662, 𝐵

1
= 4.64, 𝐵

2
= −1.18,

𝐵
3
= −0.564, and 𝐵

4
= −0.346, 𝐵

5
= −0.120, all in mmHg

[11]. Note that these values meet both restrictions (59) and
(78), respectively. For example, (78) can be verified as follows:

(𝜌𝑐𝑎)
2
= [1000 (kg/m3) ∗ 1500 (m/s) ∗ 0.01 (m2

)]
2

= 2.25 ∗ 10
8
(kg2/s2) > 4𝑚(𝐾𝐸𝐴𝐸

𝐿
+
𝐾
𝐶
𝐴
𝐶

𝐿𝑟2
)

= 4 ∗ 0.001 (kg)

∗ (

800 (N) ∗ 20 (m2
)

1.5 (m)
+

3.52 (N) ∗ 10 (m2
)

1.5 (m) ∗ 22 (m)
)

= 42.6901 (kg2/s2) .

(79)

Similarly (59) can also be verified.

5.1. Validation of the Perturbation Solution. First, we compare
the first-order solution obtained in (65) using perturbation
analysis against the linearized growth and remodeling model
solution obtained analytically using Laplace transform in
(76). In Figure 3, we plot these two solutions against the
solution obtained from the linear model previously obtained
by [11].

First, it is interesting to note that the solution to the
linearized problem with growth and remodeling obtained
via Laplace transform is close to the solution for nonlinear
growth and remodeling problem obtained via perturbation
method. The figure also illustrates that solution for the
nonlinear problem obtained via the perturbation approach

Nonlinear growth and remodeling from perturbation
Linearized model of growth and remodeling from Laplace
Linear model with “no growth and remodeling” (Venuti 2010)
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Figure 3: Validation of the perturbation solution for the growth and
remodeling model.

also has the same behavior but differs from the solution
from [11]. This goes to show that the growth and remodeling
effects are important and have a significant influence on the
model. Moreover, the growth and remodeling model has the
effect of reducing the displacement of the outer wall and
preventing the aneurysm rupture consequently. In order to
understand this further, we investigate the influence of elastin
and collagen contributions in the growth and remodeling
process on the potential of rupture. This is discussed next.

5.2. Influence of Collagen and Elastin Parameters. The elastic
and collagen parameters (𝐾

𝐸
, 𝐾
𝐶
) seem to play an important

role in the modeling of the arterial wall since they are
responsible for the elasticity and strength of wall tissue. It
is known from the literature that a deficiency in elastin
and an increase in collagen are often related to the rupture
of an aneurysm. Figure 4 shows the solution of the non-
linear coupled problem using the perturbation solution for
increasing values of 𝐾

𝐸
starting from 800N/M till 300N/M.

This corresponds to simulating the effect of deficiency in
elastin and the figure clearly illustrates that as the 𝐾

𝐸
value

decreases the displacement of the outer wall increases which
can lead to rupture. Figure 5 shows that the displacement
of the outer wall increases in a steady periodic motion as
𝐾
𝐶
increases which suggests biologically that an increase in

collagen may lead to rupture. These findings are consistent
with experimental findings which suggest the robustness of
the one-dimensional model considered in this paper.

6. Conclusion and Future Work

In this work a new mathematical model was considered that
couples the elastodynamics of the blood coupled with the
arterial wall dynamics and the mechanics of cerebral spinal
fluid. This geometrically nonlinear coupled fluid-structure
problem for the first time considered the effects of growth
and remodeling and a phase analysis of the model was
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Figure 4: Influence of elastin scaling coefficient.
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Figure 5: Influence of collagen scaling coefficient.

presented. Since this nonlinear system does not admit an
exact solution, the model was analyzed using perturbation
techniques to obtain approximate solutions. Section 3 dis-
cusses the nonlinear analysis and perturbation solution for
the model. The nonlinear coupled system was also linearized
and a Laplace transform method was applied to derive
the exact solution to the linearized problem. The models
proposed in this paper compares well with similar models
published for the linear case. Our results also seem to justify
what has been experimentally observed by other research
groups regarding the rupture of an aneurysm in relation to
a deficiency in elastin and/or an increase in collagen. The
novelty of the current paper is in the formulation, analysis,
and simulation of the nonlinear coupled fluid-structure inter-
action model that incorporates growth and remodeling. The
results from the computational experiments presented give
encouragement to the authors to incorporate more features

into the existing model such as incorporating viscoelasticity
of the wall, adding nonlinear effects in the fluid model, and
obtaining a fully implicit numerical approximation to the
solution. These aspects will be considered in forthcoming
papers.
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