Author	Title	Year
De Castro, R.J.S. et	Production and biochemical properties of proteases secreted by Aspergillus niger	(2014)
al.	under solid state fermentation in response to different agroindustrial substrates	
De Castro, R.J.S.	Production and biochemical characterization of protease from Aspergillus oryzae: An	(2014)
et al.	evaluation of the physical-chemical parameters using agroindustrial wastes as	
	supports	
De Castro, R.J.S. et	Advantages of an acid protease from Aspergillus oryzae over commercial preparations	(2014)
al.	for production of whey protein hydrolysates with antioxidant activities	
Abidi, F.	Purification and biochemical characterization of a novel alkaline protease from	(2014)
et al.	Aspergillus niger. Use in antioxidant peptides production	
Li, C.	Production optimization, purification, and characterization of a novel acid	(2014)
et al.	protease from a fusant by Aspergillus oryzae and Aspergillus niger	
Sukumprasertsri, M. et	Fuzzy logic control of rotating drum bioreactor for improved production of amylase	(2013)
al.	and protease enzymes by Aspergillus oryzae in solid-state fermentation.	
Castro-Ochoa, D.	Evaluation of strategies to improve the production of alkaline protease PrtA from	(2013)
et al.	Aspergillus nidulans	
Belmessikh, A.	Statistical optimization of culture medium for neutral protease production by	(2013)
et al.	Aspergillus oryzae. Comparative study between solid and submerged fermentations on	
	tomato pomace	
Niyonzima, F.N.	Screening and optimization of cultural parameters for an alkaline protease	(2013)
et al.	production by Aspergillus terreus Gr. under submerged fermentation	
Rodrigues da Silva, R.	Production and partial characterization of serine and metallo peptidases secreted	(2013)
et al.	by Aspergillus fumigatus Fresenius in submerged and solid state fermentation	
Dhingra, S.	VeA regulates conidiation, gliotoxin production, and protease activity in the	(2012)
et al.	opportunistic human pathogen Aspergillus fumigatus	
Roja Rani, M.	Screening and selection of Aspergillus flavus strain for alkaline protease	(2012)
et al.	production by submerged fermentation	
Siala, R.	Optimization of acid protease production by Aspergillus niger I1 on shrimp peptone	(2012)
et al.	using statistical experimental design	
Lashari, S.	Optimization of culture condition for protease production by Aspergillus niger	(2011)
et al.		
Castro, A.M.	Multiresponse optimization of inoculum conditions for the production of amylases	(2011)
et al.	and proteases by Aspergillus awamori in solid-state fermentation of babassu cake	
Leng, XW.	Improvement of acid protease production by a mixed culture of Aspergillus niger and	(2011)
et al.	Aspergillus oryzae using solid-state fermentation technique	
Kumura, H.	Production and partial purification of proteases from Aspergillus oryzae grown in a	(2011)
et al.	medium based on whey protein as an exclusive nitrogen source	
Morya, V.K.	Production and partial characterization of neutral protease by an indigenously	(2010)
et al.	isolated strain of Aspergillus tubingensis NIICC-08155	
Chellapandi, P.	Production and preliminary characterization of alkaline protease from Aspergillus	(2010)
	flavus and Aspergillus terreus	1

Author	Title	Year
Vishwanatha, K.S. et	Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC	(2010)
al.	5341: Optimization of process parameters	
Bhatnagar, D.	Amylase and acid protease production by solid state fermentation using Aspergillus	(2010)
et al.	niger from mangrove swamp	
Hwang, J.Y.	Optimal conditions for the production of salt-tolerant protease from Aspergillus	(2009)
et al.	sp. 101 and its characteristics	
Mukhtar, H.	Production of acid protease by Aspergillus niger using solid state fermentation	(2009)
et al.		
Rajmalwar, S.	Production of protease by Aspergillus sp. using solid-state fermentation	(2009)
et al.		
Chutmanop, J.	Protease production by Aspergillus oryzae in solid-state fermentation using	(2008)
et al.	agroindustrial substrates	
Hajji, M.	Optimization of alkaline protease production by Aspergillus clavatus ES1 in	(2008)
et al.	Mirabilis jalapa tuber powder using statistical experimental design	
Basu, B.R.	Production and characterization of extracellular protease of mutant Aspergillus	(2008)
et al.	niger AB100 grown on fish scale	
Anandan, D.	Isolation, characterization and optimization of culture parameters for production	(2007)
et al.	of an alkaline protease isolated from Aspergillus tamarii	
Srinu Babu, G.	Optimization of protease production from Aspergillus oryzae sp. using Box-Behnken	(2007)
et al.	experimental design	
Srinubabu, G.	Screening of nutritional parameters for the production of protease from Aspergillus	(2007)
et al.	oryzae	
Wu, T.Y.	Investigations on protease production by a wild-type Aspergillus terreus strain	(2006)
et al.	using diluted retentate of pre-filtered palm oil mill effluent (POME) as substrate	
Negi, S.	Optimization of amylase and protease production from Aspergillus awamori in single	(2006)
et al.	bioreactor through EVOP factorial design technique	
Sunil Kumar, O.	Studies on cultural conditions and nutritional parameters for the production of	(2006)
et al.	protease enzyme by Aspergillus oryzae	
Ramanathan, T.	Alkaline protease production and optimization in estuary isolate of Aspergillus sp	(2005)
et al.		
Te Biesebeke, R.	Branching mutants of Aspergillus oryzae with improved amylase and protease	(2005)
et al.	production on solid substrates	
Sandhya, C.	Comparative evaluation of neutral protease production by Aspergillus oryzae in	(2005)
et al.	submerged and solid-state fermentation	
Tremacoldi, C.R.	Production of extracellular alkaline proteases by Aspergillus clavatus	(2005)
et al.		
Wang, R.	Protease production and conidiation by Aspergillus oryzae in flour fermentation	(2005)
et al.		
Tremacoldi, C.R.	Production of extracellular acid proteases by Aspergillus clavatus	(2004)
et al.		

Supplementary data 1

Author	Title	Year
Nehra, K.S.	Production and characterization of alkaline protease from Aspergillus sp. and its	(2004)
et al.	compatibility with commercial detergents	
Hara, Y. et al.	The effect of electrolyzed water on production of soybean functional low-molecular	(2003)
	weight peptide by an Aspergillus oryzae protease	
Papagianni, M.	Comparative studies on extracellular protease secretion and glucoamylase production	(2002)
et al.	by free and immobilized Aspergillus niger cultures	
Aguilar, C.N.	Culture conditions dictate protease and tannase production in submerged and solid-	(2002)
et al.	state cultures of Aspergillus niger Aa-20	
Nehra, K.S.	Production of alkaline protease by Aspergillus sp. under submerged and solid	(2002)
et al.	substrate fermentation	
Boer, C.G.	Production of extracellular protease by Aspergillus tamarii	(2000)
et al.		
Samarntarn, W.	Production of alkaline protease by a genetically engineered Aspergillus oryzae	(1999)
et al.	U1521	
Mulimani, V.H.	Production of protease by Aspergillus flavus under solid state fermentation	(1999)
et al		
Channe, P.S.	Continuous production of cheese by immobilized milk-clotting protease from	(1998)
et al.	Aspergillus niger MC4	
Yang, FC.	Production of acid protease using thin stillage from a rice-spirit distillery by	(1998)
et al.	Aspergillus niger	
Nehra, K.S.	Production of Alkaline Protease by Immobilized Aspergillus Mycelia	(1998)
et al.		
Yang, YK.	The hybrid formation between Aspergillus oryzae var. oryzae and Penicillium	(1998)
et al.	chrysogenum by nuclear transfer and the production of alkaline protease	
Sapunova, L.I.	Conditions of synthesis of pectinases and proteases by Aspergillus alliaceus and	(1997)
et al.	production of a complex macerating preparation	
Taragano, V.	Combined effect of water activity depression and glucose addition on pectinases and	(1997)
et al.	protease production by Aspergillus niger	
Ogawa, A.	Production of neutral protease by membrane-surface liquid culture of Aspergillus	(1995)
et al.	oryzae IAM2704	
Yasuhara, A.	Production of neutral protease from Aspergillus oryzae by a novel cultivation	(1994)
et al	method on a microporous membrane	
Singh, A.	Production of thermostable acid protease by Aspergillus niger	(1994)
et al.		
Battaglino, R.A.	Culture requirements for the production of protease by Aspergillus oryzae in solid	(1991)
et al.	state fermentation	
Malathi, S.	Production of alkaline protease by a new Aspergillus flavus isolate under solid-	(1991)
et al.	substrate fermentation conditions for use as a depilation agent	
Fukushima, Y.	Stimulation of protease production by Aspergillus oryzae with oils in continuous	(1991)
et al.	culture	

Supplementary data 1

Author	Title	Year
Fukushima, Y.	Continuous protease production in a carbon-limited chemostat culture by salt	(1989)
et al.	tolerant Aspergillus oryzae	
Pourrat, H.	Production of semi-alkaline protease by Aspergillus niger	(1988)
et al.		
Singh, D.P.	Effect of pH, temperature, nitrogen source and glucose concentrations on acid	(1975)
et al.	protease production by Aspergillus niger mutant	
Barwald, G.	Microbiologic production of a protease with a fibrinolytic action on Aspergillus	(1974)
et al.	ochraceus	

Determination of water activity

For water activity determination, petri plate containing 3g of wheat bran wetted with Czapek-Dox at the maximum absorption capacity (moisture 475%) were placed jointly with different glycerol standard solutions in a hermetic chamber. After preparation, the system was incubated at 28°C for 7 day and the residual moisture was determined by gravimetric measure.

eryceror standard solution					
Water activity	Water (g)	Glycerol (g)			
1	25	0.00			
0.98	23	2.40			
0.96	21	4.48			
0.94	19	6.21			
0.9	16	9.10			
0.86	14	11.66			
0.82	12	13.48			
0.7	8	17.54			

Glycerol standard solution

Maximum absorption capacity

The maximum absorption capacity was performed according (Soares de Castro and Sato, 2014a)

Multifactor ANOVA-Hydrolysis Index (HI)

Dependent variable: HI Factors: A.Strain (Asperguillus strins) pH Day

Number of complete cases: 144

This procedure performs a multifactor analysis of variance for HI. It constructs various tests and graphs to determine which factors have a statistically significant effect on HI. It also tests for significant interactions amongst the factors, given sufficient data. The F-tests in the ANOVA table will allow you to identify the significant factors. For each significant factor, the Multiple Range Tests will tell you which means are significantly different from which others.

Analysis of variance(AnovA) for m - Type m Sums of Squares							
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value		
MAIN EFFECTS							
A:A.Strain	94.7878	11	8.61707	71.33	0.0000		
B:pH	6.98286	3	2.32762	19.27	0.0000		
C:Day	2.05265	2	1.02633	8.50	0.0003		
RESIDUAL	15.3421	127	0.120804				
TOTAL (CORRECTED)	119.165	143					

|--|

All F-ratios are based on the residual mean square error.

The ANOVA table decomposes the variability of HI into contributions due to various factors. Since Type III sums of squares have been chosen, the contribution of each factor is measured having removed the effects of all other factors. The P-values test the statistical significance of each of the factors. Since 3 P-values are less than 0.05, these factors have a statistically significant effect on HI at the 95.0% confidence level.

			Stnd.	Lower	Upper
Level	Count	Mean	Error	Limit	Limit
GRAND MEAN	144	1.42549			
A.Strain					
1	12	0.0	0.100334	-0.198544	0.198544
2	12	2.1775	0.100334	1.97896	2.37604
3	12	1.20167	0.100334	1.00312	1.40021
4	12	2.07917	0.100334	1.88062	2.27771
5	12	1.0525	0.100334	0.853956	1.25104
6	12	0.263333	0.100334	0.0647893	0.461877
7	12	0.249167	0.100334	0.0506226	0.447711
8	12	2.185	0.100334	1.98646	2.38354
9	12	1.96167	0.100334	1.76312	2.16021
10	12	1.76583	0.100334	1.56729	1.96438
11	12	1.86083	0.100334	1.66229	2.05938
12	12	2.30917	0.100334	2.11062	2.50771
рН					
6	36	1.80583	0.0579281	1.6912	1.92046
7	36	1.31778	0.0579281	1.20315	1.43241
8	36	1.27278	0.0579281	1.15815	1.38741
9	36	1.30556	0.0579281	1.19093	1.42019
Day					
2	48	1.25667	0.0501672	1.15739	1.35594
4	48	1.50729	0.0501672	1.40802	1.60656
6	48	1.5125	0.0501672	1.41323	1.61177

Table of Least Squares Means for HI with 95.0% Confidence Intervals

This table shows the mean HI for each level of the factors. It also shows the standard error of each mean, which is a measure of its sampling variability. The rightmost two columns show 95.0% confidence intervals for each of the means.

Multiple Range Tests for HI by A.Strain

Method: 9	5.0 percen	t LSD		
A.Strain	Count	LS Mean	LS Sigma	Homogeneous Groups
1	12	0.0	0.100334	Х
7	12	0.249167	0.100334	Х
6	12	0.263333	0.100334	Х
5	12	1.0525	0.100334	Х
3	12	1.20167	0.100334	Х
10	12	1.76583	0.100334	Х
11	12	1.86083	0.100334	XX
9	12	1.96167	0.100334	XXX
4	12	2.07917	0.100334	XXX
2	12	2.1775	0.100334	XX
8	12	2.185	0.100334	XX
12	12	2.30917	0.100334	Х

Contrast	Sig.	Difference	+/- Limits
1 - 2	*	-2.1775	0.280784
1 - 3	*	-1.20167	0.280784
1 - 4	*	-2.07917	0.280784
1 - 5	*	-1.0525	0.280784
1 - 6		-0.263333	0.280784
1 - 7		-0.249167	0.280784
1 - 8	*	-2.185	0.280784
1 - 9	*	-1.96167	0.280784
1 - 10	*	-1.76583	0.280784
1 - 11	*	-1.86083	0.280784
1 - 12	*	-2.30917	0.280784
2 - 3	*	0.975833	0.280784
2 - 4		0.0983333	0.280784
2 - 5	*	1.125	0.280784
2 - 6	*	1.91417	0.280784
2 - 7	*	1.92833	0.280784
2 - 8		-0.0075	0.280784
2 - 9		0.215833	0.280784
2 - 10	*	0.411667	0.280784
2 - 11	*	0.316667	0.280784
2 - 12		-0.131667	0.280784
3 - 4	*	-0.8775	0.280784
3 - 5		0.149167	0.280784
3 - 6	*	0.938333	0.280784
3 - 7	*	0.9525	0.280784
3 - 8	*	-0.983333	0.280784
3 - 9	*	-0.76	0.280784
3 - 10	*	-0.564167	0.280784
3 - 11	*	-0.659167	0.280784
3 - 12	*	-1.1075	0.280784
4 - 5	*	1.02667	0.280784
4 - 6	*	1.81583	0.280784
4 - 7	*	1.83	0.280784
4 - 8		-0.105833	0.280784
4 - 9		0.1175	0.280784
4 - 10	*	0.313333	0.280784
4 - 11		0.218333	0.280784
4 - 12		-0.23	0.280784
5 - 6	*	0.789167	0.280784

5 - 7	*	0.803333	0.280784
5 - 8	*	-1.1325	0.280784
5 - 9	*	-0.909167	0.280784
5 - 10	*	-0.713333	0.280784
5 - 11	*	-0.808333	0.280784
5 - 12	*	-1.25667	0.280784
6 - 7		0.0141667	0.280784
6 - 8	*	-1.92167	0.280784
6 - 9	*	-1.69833	0.280784
6 - 10	*	-1.5025	0.280784
6 - 11	*	-1.5975	0.280784
6 - 12	*	-2.04583	0.280784
7 - 8	*	-1.93583	0.280784
7 - 9	*	-1.7125	0.280784
7 - 10	*	-1.51667	0.280784
7 - 11	*	-1.61167	0.280784
7 - 12	*	-2.06	0.280784
8 - 9		0.223333	0.280784
8 - 10	*	0.419167	0.280784
8 - 11	*	0.324167	0.280784
8 - 12		-0.124167	0.280784
9 - 10		0.195833	0.280784
9 - 11		0.100833	0.280784
9 - 12	*	-0.3475	0.280784
10 - 11		-0.095	0.280784
10 - 12	*	-0.543333	0.280784
11 - 12	*	-0.448333	0.280784

* denotes a statistically significant difference.

This table applies a multiple comparison procedure to determine which means are significantly different from which others. The bottom half of the output shows the estimated difference between each pair of means. An asterisk has been placed next to 49 pairs, indicating that these pairs show statistically significant differences at the 95.0% confidence level. At the top of the page, 6 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure. With this method, there is a 5.0% risk of calling each pair of means significantly different when the actual difference equals 0.

Proteolytic extract from strain 4

Design of experiment matrix and activity results

	1	1		1
Experiment	pН	Temperature °C	Activity (U/mL)	Activity (U/mL)
1	6.0	30.0	17.17	20.17
2	8.0	30.0	23.50	27.25
3	6.0	50.0	24.00	23.83
4	8.0	50.0	14.33	14.83
5	5.6	40.0	22.25	21.92
6	8.4	40.0	29.58	27.67
7	7.0	25.9	15.83	17.25
8	7.0	54.1	8.42	16.75
9	7.0	40.0	28.75	32.00
10	7.0	40.0	27.67	25.17
11	7.0	40.0	27.67	25.25

Analysis of variance for activity

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
A:pH	10.9526	1	10.9526	1.75	0.2083
B:Temperature	31.0428	1	31.0428	4.97	0.0441
AA	11.965	1	11.965	1.91	0.1897
AB	128.641	1	128.641	20.59	0.0006
BB	466.304	1	466.304	74.62	0.0000
Lack-of-fit	37.1071	3	12.369	1.98	0.1669
Pure error	81.2335	13	6.24873		
Total (corr.)	764.437	21			

R-squared = 84.5192 percent

R-squared (adjusted for d.f.) = 79.6815 percent Standard Error of Est. = 2.49975Mean absolute error = 1.90762Durbin-Watson statistic = 1.93975 (P=0.4634)

Lag 1 residual autocorrelation = 0.00325524

The ANOVA table partitions the variability in Activity into separate pieces for each of the effects. It then tests the statistical significance of each effect by comparing the mean square against an estimate of the experimental error. In this case, 3 effects have P-values less than 0.05, indicating that they are significantly different from zero at the 95.0% confidence level.

The lack of fit test is designed to determine whether the selected model is adequate to describe the observed data, or whether a more complicated model should be used. The test is performed by comparing the variability of the current model residuals to the variability between observations at replicate settings of the factors. Since the P-value for lack-of-fit in the ANOVA table is greater or equal to 0.05, the model appears to be adequate for the observed data at the 95.0% confidence level.

The R-Squared statistic indicates that the model as fitted explains 84.5192% of the variability in Activity. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 79.6815%. The standard error of the estimate shows the standard deviation of the residuals to be 2.49975. The mean absolute error (MAE) of 1.90762 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the P-value is greater than 5.0%, there is no indication of serial autocorrelation in the residuals at the 5.0% significance level.

Model and regression coeffs. for activity

Coefficient	Estimate
Constant	-237.991
A:pH	31.2773
B:Temperature	6.00624
AA	-1.02928
AB	-0.308462
BB	-0.0380208

This panel displays the regression equation which has been fitted to the data. The equation of the fitted model is

$Activity = -237.991 + 31.2773*pH + 6.00624*Temperature - 1.02928*pH^2 - 0.308462*pH*Temperature - 0.0380208*Temperature^2$

Where the values of the variables are specified in their original units.

Optimized response

Optimum value = 28.8046 (U/mL)

Factor	Low	High	Optimum
pН	5.58579	8.41421	8.41421
Temperature	33.6152	70.3848	44.8533

This table shows the combination of factor levels which maximizes activity over the indicated region.

Trial	pH	Temperature °C	Experimental (U/mL)	Predicted (U/mL)
1	8.4	25.8	13.8	15.0
2	8.4	33.6	18.8	23.9
3	8.4	40	25.3	27.9
Pearson correlation coefficient (R)			0.	96

Proteolytic extract from strain 8

Design of experiment matrix and activity results

Experiment	pН	Temperature °C	Activity (U/mL)	Activity (U/mL)
1	6.0	39.0	43.1	37.9
2	8.0	39.0	33.9	30.4
3	6.0	65.0	11.33*	10.08*
4	8.0	65.0	5.9	6.3
5	5.6	52.0	47.0	47.5
6	8.4	52.0	13.8	12.9
7	7.0	33.6	27.8	25.3
8	7.0	70.4	6.7	5.8
9	7.0	52.0	47.0	45.9
10	7.0	52.0	44.2	40.9
11	7.0	52.0	44.2	41.5

* Outliers points

Analysis of variance for activity

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
A:pH	1282.77	1	1282.77	254.85	0.0001
B:Temperature	731.405	1	731.405	145.31	0.0003
AA+block	341.196	1	341.196	67.79	0.0012
AB	100.295	1	100.295	19.93	0.0111
BB+block	1699.45	1	1699.45	337.64	0.0001
Blocks	18.432	1	18.432	3.66	0.1282
Lack-of-fit	150.287	9	16.6986	3.32	0.1301
Pure error	20.1333	4	5.03333		
Total (corr.)	4890.4	19			

R-squared = 96.5152 percent R-squared (adjusted for d.f.) = 94.9068 percent Standard Error of Est. = 2.24351Mean absolute error = 2.50531Durbin-Watson statistic = 1.05564 (P=0.0115) Lag 1 residual autocorrelation = 0.440936

The ANOVA table partitions the variability in Activity into separate pieces for each of the effects. It then tests the statistical significance of each effect by comparing the mean square against an estimate of the experimental error. In this case, 5 effects have P-values less than 0.05, indicating that they are significantly different from zero at the 95.0% confidence level.

The lack of fit test is designed to determine whether the selected model is adequate to describe the observed data, or whether a more complicated model should be used. The test is performed by comparing the variability of the current model residuals to the variability between observations at replicate settings of the factors. Since the P-value for lack-of-fit in the ANOVA table is greater or equal to 0.05, the model appears to be adequate for the observed data at the 95.0% confidence level.

The R-Squared statistic indicates that the model as fitted explains 96.5152% of the variability in Activity. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 94.9068%. The standard error of the estimate shows the standard deviation of the residuals to be 2.24351. The mean absolute error (MAE) of 2.50531 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the P-value is less than 5.0%, there is an indication of possible serial correlation at the 5.0% significance level.

Model and regression coeffs. for activity

Regression coeffs. for Activity				
Coefficient	Estimate			
Constant	-463.439			
A:pH	88.4276			
B:Temperature	9.61254			
AA	-5.75234			
AB	-0.352064			
BB	-0.0745077			

The StatAdvisor

This pane displays the regression equation which has been fitted to the data. The equation of the fitted model is

$Activity = -463.439 + 88.4276*pH + 9.61254*Temperature - 5.75234*pH^2 - 0.352064*pH*Temperature - 0.0745077*Temperature^2$

Where the values of the variables are specified in their original units.

Optimized response

Optimum value = 48.921 (U/mL)						
Factor	Low	High	Optimum			
pН	5.6	8.4	6.15718			
Temperature	25.9	54.1	49.9589			

This table shows the combination of factor levels which maximizes activity over the indicated region.

Trial	pН	Temperature	Experimental	Predicted
	1	°С	(U/mL)	(U/mL)
1	6.4	29.5	29.5	30.1
2	6.4	51.6	51.6	48.1
3	6.4	70.4	6.9	15.7
Pearson correlation coefficient (R)			0.9	99

Proteolytic extract from strain 9

Experiment	Ph	Temperature °C	Activity (U/mL)	Activity (U/mL)
1	6.0	30.0	29.67	27.00
2	8.0	30.0	17.50	20.42
3	6.0	50.0	49.75*	48.25
4	8.0	50.0	9.08	9.33
5	5.6	40.0	43.92	43.83
6	8.4	40.0	15.67	17.42
7	7.0	25.9	15.58	16.42
8	7.0	54.1	15.50	17.42
9	7.0	40.0	39.17	37.67
10	7.0	40.0	37.75	37.67
11	7.0	40.0	36.33	33.83

Design of experiment matrix and activity results

* Outliers points

Analysis of variance for activity

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
A:pH	866.961	1	866.961	250.15	0.0001
B:Temperature	839.184	1	839.184	242.13	0.0001
AA+block	91.4708	1	91.4708	26.39	0.0068
AB	258.081	1	258.081	74.47	0.0010
BB+block	1074.68	1	1074.68	310.08	0.0001
Blocks	1.01154	1	1.01154	0.29	0.6177
Lack-of-fit	71.0904	9	7.89893	2.28	0.2220
Pure error	13.8632	4	3.4658		
Total (corr.)	2774.29	19			

R-squared = 96.9378 percent R-squared (adjusted for d.f.) = 95.5245 percent Standard Error of Est. = 1.86167Mean absolute error = 1.56887Durbin-Watson statistic = 2.46733 (P=0.7725) Lag 1 residual autocorrelation = -0.35041

The StatAdvisor

The ANOVA table partitions the variability in Activity into separate pieces for each of the effects. It then tests the statistical significance of each effect by comparing the mean square against an estimate of the experimental error. In this case, 5 effects have P-values less than 0.05, indicating that they are significantly different from zero at the 95.0% confidence level.

The lack of fit test is designed to determine whether the selected model is adequate to describe the observed data, or whether a more complicated model should be used. The test is performed by comparing the variability of the current model residuals to the variability between observations at replicate settings of the factors. Since the P-value for lack-of-fit in the ANOVA table is greater or equal to 0.05, the model appears to be adequate for the observed data at the 95.0% confidence level.

The R-Squared statistic indicates that the model as fitted explains 96.9378% of the variability in Activity. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 95.5245%. The standard error of the estimate shows the standard deviation of the residuals to be 1.86167. The mean absolute error (MAE) of 1.56887 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since

the P-value is greater than 5.0%, there is no indication of serial autocorrelation in the residuals at the 5.0% significance level.

Model and regression coeffs. for activity

Coefficient	Estimate
Constant	-387.131
A:pH	57.9181
B:Temperature	12.8527
AA	-2.93254
AB	-0.68845
BB	-0.0993071

This panel displays the regression equation which has been fitted to the data. The equation of the fitted model is:

Activity = -387.131 + 57.9181*pH + 12.8527*Temperature - 2.93254*pH^2 - 0.68845*pH*Temperature - 0.0993071*Temperature^2

Where the values of the variables are specified in their original units.

Optimized response

Optimum value = 49.0394 (U/mL)						
Factor Low High Optimum						
pН	5.6	8.4	5.6			
Temperature	25.9	54.1	45.3051			

This table shows the combination of factor levels which maximizes activity over the indicated region.

Trial	лЦ	Temperature	Experimental	Predicted
IIIai	рп	°C	(U/mL)	(U/mL)
1	5.6	25.8	13.3	11.5
2	5.6	33.6	24.6	35.5
3	5.6	40	32.0	46.2
Pearson correlation coefficient (R)			0.	99

Proteolytic extract from strain 12

Design of experiment matrix and activity results

Experiment	pH	Temperature °C	Activity (U/mL)	Activity (U/mL)
1	6.0	39.0	56.8	60.8
2	8.0	39.0	39.1	33.4
3	6.0	65.0	15.1*	15.3*
4	8.0	65.0	6.4	6.5
5	5.6	52.0	64.2	59.4
6	8.4	52.0	27.7	27.7
7	7.0	33.6	33.0	32.6
8	7.0	70.4	9.8	10.5
9	7.0	52.0	66.1	63.3
10	7.0	52.0	56.8	61.7
11	7.0	52.0	56.8	59.6

* Outliers points

Analysis of Variance for Activity

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
A:pH	2031.41	1	2031.41	125.89	0.0004
B:Temperature	1219.03	1	1219.03	75.54	0.0010
AA+block	583.995	1	583.995	36.19	0.0038
AB	35.8033	1	35.8033	2.22	0.2106
BB+block	3867.01	1	3867.01	239.64	0.0001
blocks	0.072	1	0.072	0.00	0.9499
Lack-of-fit	145.112	9	16.1235	1.00	0.5446
Pure error	64.5467	4	16.1367		
Total (corr.)	8752.88	19			

R-squared = 97.6047 percent R-squared (adjusted for d.f.) = 96.4992 percent Standard Error of Est. = 4.01705Mean absolute error = 2.62582Durbin-Watson statistic = 2.20327 (P=0.6196) Lag 1 residual autocorrelation = -0.114815

The StatAdvisor

The ANOVA table partitions the variability in Activity into separate pieces for each of the effects. It then tests the statistical significance of each effect by comparing the mean square against an estimate of the experimental error. In this case, 4 effects have P-values less than 0.05, indicating that they are significantly different from zero at the 95.0% confidence level.

The lack of fit test is designed to determine whether the selected model is adequate to describe the observed data, or whether a more complicated model should be used. The test is performed by comparing the variability of the current model residuals to the variability between observations at replicate settings of the factors. Since the P-value for lack-of-fit in the ANOVA table is greater or equal to 0.05, the model appears to be adequate for the observed data at the 95.0% confidence level.

The R-Squared statistic indicates that the model as fitted explains 97.6047% of the variability in Activity. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 96.4992%. The standard error of the estimate shows the standard deviation of the residuals to be 4.01705. The mean absolute error (MAE) of 2.62582 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the P-value is greater than 5.0%, there is no indication of serial autocorrelation in the residuals at the 5.0% significance level.

Model and regression coeffs. for activity

Regression coeffs. for Activity				
Coefficient	Estimate			
constant	-556.483			
A:pH	103.195			
B:Temperature	12.3857			
AA	-7.52571			
AB	-0.21035			
BB	-0.112392			

The StatAdvisor

This pane displays the regression equation which has been fitted to the data. The equation of the fitted model is

Activity = -556.483 + 103.195*pH + 12.3857*Temperature - 7.52571*pH^2 - 0.21035*pH*Temperature - 0.112392*Temperature^2

Where the values of the variables are specified in their original units

Optimized response

Optimum value = 67.1965

Factor	Low	High	Optimum
pН	5.6	8.4	6.16687
Temperature	25.9	54.1	49.3299

This table shows the combination of factor levels which maximizes activity over the indicated region.

Trial	pH	Temperature	Experimental	Predicted
		°C	(U/mL)	(U/mL)
1	6.4	33.6	36.4	39.8
2	6.4	52.0	71.9	65.9
3	6.4	70.4	11.3	15.9
Pearson correlation coefficient (R)			0.	99

Strain	4	8	9	12
Ea/R	-2624 ± 172.6	-4647 ± 392.9	-3808 ± 224.9	-4006 ± 402.9
InA	11.87 ± 0.5591	18.59 ± 1.264	16.52 ± 0.7288	17.12 ± 1.305
R²	0.9788	0.9722	0.9896	0.9705

SDS-PAGE for casein and gelatin hydrolyzed using protease extracts from A. sojae. MW: Molecular weight marker Arcoiris PB-L productos Bio-Lógicos[®]

