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We study the existence and uniqueness of mild solutions for neutral stochastic integrodifferential equations with Poisson jumps
under global and local Carathéodory conditions on the coefficients by means of the successive approximation. Furthermore, we
give the continuous dependence of solutions on the initial value. Finally, an example is provided to illustrate the effectiveness of the
obtained results.

1. Introduction

Stochastic evolution equations (SEEs) are well known to
model problems frommany areas of science and engineering,
wherein quite often the future state of such systems depends
not only on the present state but also on its past history (delay)
leading to stochastic functional differential equations and it
has played an important role in many ways such as the model
of the systems in physics, chemistry, biology, economics, and
finance from various points of the view (see, e.g., [1, 2]).

Recently, SEEs in infinite dimensional spaces have been
extensively studied by many authors (see, e.g., [3, 4] and the
references therein). There is much interest in studying qual-
itative properties: existence and uniqueness, stability, invari-
ant measure, and so forth for SEEs with Wiener process (see,
e.g., [3, 5, 6]). Particularly, the existence and stability results
of solution to SEEs and integrodifferential systems have also
been considered in the literature (see, e.g., [7, 8]). Further-
more, the problemof the existence anduniqueness of solution
for neutral stochastic partial functional differential equation
in the case where the coefficients do not satisfy the global
Lipschitz conditionwas investigated byCao et al. [9], Bao and
Hou [10], and recently Govindan [11] and Diop et al. [12].

On the other hand, there have not been many studies
of SEEs driven by jumps processes while these have begun
to gain attention recently. To be more precise, Röckner
and Zhang [13] showed by successive approximations the
existence, uniqueness, and large deviation principle of SEEs
with jumps. Luo and Taniguchi [14] considered the existence

and uniqueness of mild solutions to SEEs with finite delay
and Poisson jumps by the Banach fixed point theorem. For
SEEs with jumps one can see recent monograph [15] as
well as papers ([9, 13, 14, 16] and the references therein).
Motivated by the previously mentioned problems, we will
extend some such results for the following neutral stochastic
integrodifferential equations with Poisson jumps:

𝑑 [𝑥 (𝑡) − Γ (𝑡, 𝑥
𝑡
)]

= 𝐴 [𝑥 (𝑡) − Γ (𝑡, 𝑥
𝑡
)] 𝑑𝑡

+ [∫

𝑡

0

𝐾 (𝑡 − 𝑠) [𝑥 (𝑠) − Γ (𝑠, 𝑥
𝑠
)] 𝑑𝑠 + 𝐹 (𝑡, 𝑥

𝑡
)] 𝑑𝑡

+ Σ (𝑡, 𝑥
𝑡
) 𝑑𝑊 (𝑡) + ∫

U

𝐿 (𝑡, 𝑥
𝑡
, V) �̃� (𝑑𝑡, 𝑑V) ,

𝑡 ∈ [0, 𝑇] ,

𝑥 (𝑡) = 𝜑 (𝑡) , − 𝑟 ≤ 𝑡 ≤ 0, 𝑟 > 0,

(1)

with an initial function 𝑥(𝑡) = 𝜑 = {𝜑(𝑡) : −𝑟 ≤ 𝑡 ≤ 0} ∈

C𝑏

F0
([−𝑟, 0];H); that is,𝜑 is anF

0
-measurable,C([−𝑟, 0];H)-

value random variable such that E‖𝜑‖2C < ∞, and𝐴 : 𝐷(𝐴) ⊂

H → H, 𝐾(𝑡) : 𝐷(𝐾(𝑡)) ⊂ H → H are linear, closed, and
densely defined operators in a Hilbert space H; 𝑥

𝑡
(𝜃) = 𝑥(𝑡 +

𝜃) for 𝜃 ∈ [−𝑟, 0]. Let the functions 𝐹 : R+
× C → H, Σ :

R+
× C → L(K;H), and 𝐿 : R+

× C × U → H be Borel
measurable and let Γ : R+

×C → H be continuous.
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The aim of our paper is to establish existence, uniqueness,
and stability results for mild solution of (1) under global
and local Carathéodory conditions in the Hilbert space
based on successive approximationmethod. Ourmain results
concerning (1) rely essentially on techniques using strongly
continuous family of operators {𝑅(𝑡), 𝑡 ≥ 0}, defined on the
Hilbert space H and called their resolvent (for the precise
definition we can refer to Grimmer [17]).

The rest of this paper is organized as follows: In Section 2,
we will give some necessary notations, concepts, and basic
results about the Wiener process, Poisson jumps process,
and deterministic integrodifferential equations. Section 3 is
devoted to prove the existence and uniqueness of the solution.
In Section 4, we study stability through the continuous
dependence on the initial values. An example is given in
Section 5 to illustrate the theory.

2. Preliminaries Results

This section is concerned with some basic concepts, nota-
tions, definitions, lemmas, and preliminary facts which are
used through this paper. For more details on this section, we
refer the reader to [3, 17–19].

Let (Ω,F, (F
𝑡
)
𝑡⩾0

,P) be a complete probability space
equipped with some filtration (F

𝑡
)
𝑡⩾0

satisfying the usual
conditions (i.e., it is right continuous andF

0
contains all P-

null sets). Let (H, ‖ ⋅ ‖H, ⟨⋅, ⋅⟩) and (K, ‖ ⋅ ‖K, ⟨⋅, ⋅⟩) denote two
real separable Hilbert spaces, with their vectors norms and
their inner products, respectively. We denote byL(K;H) the
set of all linear bounded operators from K into H, which is
equipped with the usual operator norm ‖ ⋅ ‖.

Let 𝑟 > 0 and C fl 𝐶([−𝑟, 0];H) denotes the family of
all right continuous functions with left-hand limits (càdlàg)
from [−𝑟, 0] toH.The spaceC is assumed to be equippedwith
the norm ‖𝜍‖C fl sup

−𝑟≤𝑡≤0
‖𝜍(𝑡)‖H, 𝜍(𝑡) ∈ C.

We also assume that C𝑏

F0
([−𝑟, 0];H) denotes the family

of all almost surely bounded, F
0
-measurable, C([−𝑟, 0];H)-

valued random variables. Further, we consider the Banach
space B

𝑇
of all H-valued F

𝑡
-adapted càdlàg process 𝑥(𝑡)

defined on [0, 𝑇], 𝑇 > 0 with 𝑥(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−𝑟, 0] such
that

‖𝑥‖
2

B𝑇 fl E sup
0≤𝑡≤𝑇

‖𝑥 (𝑡)‖
2

H < ∞. (2)

Let 𝑊(𝑡) be a K-valued (F
𝑡
)
𝑡⩾0

-Wiener process defined
on the probability space (Ω,F,P) with covariance operator
𝑄, where 𝑄 is a positive, self-adjoint, trace class operator on
K. Let L

2
fl L

2
(𝑄

1/2K;H) denote the space of all Hilbert-
Schmidt operators from𝑄

1/2K intoHwith the inner product
⟨𝜓, 𝜙⟩L2

= tr(𝜓𝑄𝜙∗).
Let 𝑝 = 𝑝(𝑡), 𝑡 ∈ 𝐷

𝑝
(the domain of 𝑝(𝑡)), be a stationary

F
𝑡
-Poisson point process taking its value in a measurable

space (U,B(U)) with 𝜎-finite intensity measure 𝜆(𝑑V) by
𝑁(𝑑𝑡, 𝑑V), the Poisson counting measure associated with 𝑝;
that is, 𝑁(𝑡,U) = ∑

𝑠∈𝐷𝑝 ,𝑠≤𝑡
IU(𝑝(𝑠)) for any measurable set

U ∈ B(K− {0}), which denotes the Borel 𝜎-field of (K− {0}).
Let �̃�(𝑑𝑡, 𝑑V) fl 𝑁(𝑑𝑡, 𝑑V) − 𝜆(𝑑V)𝑑𝑡 be the compensated
Poisson measure that is independent of 𝑊(𝑡). Denote by

P2
([0, 𝑇] × U;H) the space of all predictable mappings 𝐿 :

[0, 𝑇] × U → H for which ∫
𝑡

0
∫
U
E‖𝐿(𝑡, V)‖2H𝜆(𝑑V)𝑑𝑡 <

∞. We may then define the H-valued stochastic integral
∫
𝑡

0
∫
U
𝐿(𝑡, V)�̃�(𝑑𝑡, 𝑑V), which is a centered square-integrable

martingale. For the construction of this kind of integral, we
can refer to Peszat and Zabczyk [15].

Next, to be able to access existence, uniqueness, and
stability of mild solutions for (1) we need to introduce partial
integrodifferential equations and resolvent operators.

Let𝑋,𝑍 be two Banach spaces such that ‖𝑧‖
𝑍
fl ‖𝐴𝑧‖

𝑋
+

‖𝑧‖
𝑋
for all 𝑧 ∈ 𝑍; 𝐴 and 𝐾(𝑡) are closed linear operators on

𝑋 and satisfy the following assumptions:

(H1) The operator 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑋 is the infinitesimal
generator of a strongly continuous semigroup on𝑋.

(H2) For all 𝑡 ≥ 0, 𝐾(𝑡) : 𝐷(𝐾(𝑡)) ⊆ 𝑋 → 𝑋 is a closed
linear operator, 𝐷(𝐴) ⊆ 𝐷(𝐾(𝑡)), and 𝐾(𝑡) ∈ B(𝑍,𝑋)

are the set of all bounded linear operators from𝑍 into
𝑋. For any 𝑧 ∈ 𝑍, the map 𝑡 → 𝐾(𝑡)𝑧 is bounded,
differentiable and the derivative 𝑡 → 𝑑𝐾(𝑡)𝑧/𝑑𝑡 is
bounded uniformly continuous on R+

.

ByTheorem 2.3 in [17], we can see that (H1) and (H2) imply
the integrodifferential abstract Cauchy problem

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝐴𝑥 (𝑡) + ∫

𝑡

0

𝐾 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠,

𝑥 (0) = 𝑥
0
∈ 𝑋,

(3)

has an associated resolvent operator of bounded linear
operators 𝑅(𝑡), 𝑡 ≥ 0, on 𝑋. Hence, we can give the mild
solution for the integrodifferential equation

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝐴𝑥 (𝑡) + ∫

𝑡

0

𝐾 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠 + 𝜅 (𝑡) ,

𝑥 (0) = 𝑥
0
∈ 𝑋,

𝑥 (𝑡) = 𝑅 (𝑡) 𝑥
0
+ ∫

𝑡

0

𝑅 (𝑡 − 𝑠) 𝜅 (𝑠) 𝑑𝑠, ∀𝑡 ≥ 0,

(4)

where 𝜅 : [0, +∞) → 𝑋 is a continuous function.
Let us give the definition of mild solution for (1).

Definition 1. A càdlàg stochastic process 𝑥 : [−𝑟, 𝑇] → H,
0 < 𝑇 < +∞, is called a mild solution of (1) on [−𝑟, 𝑇] if

(i) 𝑥(𝑡) isF
𝑡
-adapted, for all 𝑡 ∈ [−𝑟, 𝑇],

(ii) for arbitrary 𝑡 ∈ [0, 𝑇], P{𝜔 : ∫
𝑇

0
‖𝑥(𝑠)‖

2

H𝑑𝑠 < +∞} =

1, and 𝑥(𝑡) satisfies the following integral equation:

𝑥 (𝑡) = 𝑅 (𝑡) [𝜑 (0) − Γ (0, 𝜑)] + Γ (𝑡, 𝑥
𝑡
)

+ ∫

𝑡

0

𝑅 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑅 (𝑡 − 𝑠) Σ (𝑠, 𝑥
𝑠
) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

∫
U

𝑅 (𝑡 − 𝑠) 𝐿 (𝑠, 𝑥
𝑠
, V) �̃� (𝑑𝑠, 𝑑V) ,

(5)
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(iii) 𝑥(𝑡) = 𝜑(𝑡), −𝑟 ≤ 𝑡 ≤ 0.

Throughout this paper, we always assume the following
assumptions are satisfied.

(H3)

(i) The growth condition: there exists a nonnega-
tive real valued function 𝛾 : [0, 𝑇] × R+

→ R+,
(𝑡, 𝑢) → 𝛾(𝑡, 𝑢), which is locally integrable in
𝑡 ≥ 0 for any fixed 𝑢 ≥ 0 and is continuous
monotone nondecreasing in 𝑢 for any fixed 𝑡 ∈

[0, 𝑇]. Furthermore, for any fixed 𝑠 ∈ [0, 𝑇]

and 𝑥
𝑠
∈ 𝐿

2
(Ω,C), the following inequality is

satisfied:

E(
𝐹 (𝑠, 𝑥

𝑠
)

2

H
+
Σ (𝑠, 𝑥

𝑠
)

2

L2

+ ∫
U

𝐿 (𝑠, 𝑥𝑠, V)

2

H
𝜆 (𝑑V))

≤ 𝛾(𝑠, (E sup
𝑟∈[0,𝑠]

𝑥𝑟

2

C
)) .

(6)

(ii) For arbitrary nonnegative numbers 𝛽 and 𝑤
0
,

the integral equation

𝑤 (𝑡) = 𝑤
0
+ 𝛽∫

𝑡

0

𝛾 (𝑠, 𝑤 (𝑠)) 𝑑𝑠 (7)

has a global solution on [0, 𝑇].

(H4)

(i) The global condition: there exists a nonnegative
real valued function 𝛾 : [0, 𝑇] × R+

→ R+,
(𝑡, 𝑢) → 𝛾(𝑡, 𝑢), which is locally integrable in
𝑡 ≥ 0 for any fixed 𝑢 ≥ 0 and is continuous
monotone nondecreasing in 𝑢 for any fixed 𝑡 ∈

[0, 𝑇]. Furthermore 𝛾(𝑡, 0) ≡ 0 and for any fixed
𝑠 ∈ [0, 𝑇] and 𝑥

𝑠
, 𝑧
𝑠
∈ 𝐿

2
(Ω,C), the following

inequality is satisfied:

E(
𝐹 (𝑠, 𝑥

𝑠
) − 𝐹 (𝑠, 𝑧

𝑠
)

2

H
+
Σ (𝑠, 𝑥

𝑠
) − Σ (𝑠, 𝑧

𝑠
)

2

L2

+ ∫
U

𝐿 (𝑠, 𝑥𝑠, V) − 𝐿 (𝑠, 𝑧
𝑠
, V)

2

H
𝜆 (𝑑V))

≤ 𝛾(𝑠,E( sup
𝑟∈[0,𝑠]

𝑥𝑟 − 𝑧
𝑟


2

C
)) .

(8)

(ii) If there exists a nonnegative continuous func-
tion 𝑦(𝑡) satisfying 𝑦(0) = 0 and

𝑦 (𝑡) ≤ 𝛽∫

𝑡

0

𝛾 (𝑠, 𝑦 (𝑠)) 𝑑𝑠, ∀𝑡 ∈ [0, 𝑇] , (9)

then 𝑦(𝑡) ≡ 0 on [0, 𝑇], where 𝛽 is a positive
number.

(H5)

(i) The local condition: for any integer 𝑐 > 0 there
exists a nonnegative real valued function 𝛾

𝑐
:

[0, 𝑇] × R+
→ R+, (𝑡, 𝑢) → 𝛾

𝑐
(𝑡, 𝑢), which is

locally integrable in 𝑡 ≥ 0 for any fixed 𝑢 ≥ 0

and is continuousmonotone nondecreasing in 𝑢
for any fixed 𝑡 ∈ [0, 𝑇]. Furthermore 𝛾

𝑐
(𝑡, 0) ≡ 0

and for any fixed 𝑠 ∈ [0, 𝑇] and𝑥
𝑠
, 𝑧
𝑠
∈ 𝐿

2
(Ω,C)

with E(sup
𝑟∈[0,𝑠]

‖𝑥
𝑟
‖C) ∨ E(sup

𝑟∈[0,𝑠]
‖𝑧
𝑟
‖C) ≤ 𝑐,

the following inequality is satisfied:

E(
𝐹 (𝑠, 𝑥

𝑠
) − 𝐹 (𝑠, 𝑧

𝑠
)

2

H
+
Σ (𝑠, 𝑥

𝑠
) − Σ (𝑠, 𝑧

𝑠
)

2

L2

+ ∫
U

𝐿 (𝑠, 𝑥𝑠, V) − 𝐿 (𝑠, 𝑧
𝑠
, V)

2

H
𝜆 (𝑑V))

≤ 𝛾
𝑐
(𝑠,E( sup

𝑟∈[0,𝑠]

𝑥𝑟 − 𝑧
𝑟


2

C
)) .

(10)

(ii) If there exists a nonnegative continuous func-
tion 𝑦(𝑡) satisfying 𝑦(0) = 0 and

𝑦 (𝑡) ≤ 𝛽∫

𝑡

0

𝛾
𝑐
(𝑠, 𝑦 (𝑠)) 𝑑𝑠, ∀𝑡 ∈ [0, 𝑇] , (11)

then 𝑦(𝑡) ≡ 0 on [0, 𝑇], where 𝛽 is a positive
number.

(H6) The contractivemapping: themapping Γ(𝑡, 𝑢) satisfies
that there exists a positive 𝛿 ∈ (0, 1) such that, for any
𝑥, 𝑧 ∈ C and 𝑡 ≥ 0,

‖Γ (𝑡, 𝑥) − Γ (𝑡, 𝑧)‖H ≤ 𝛿 ‖𝑥 − 𝑧‖C. (12)

Remark 2. The function 𝛾(𝑡, 𝑢) fl 𝛼(𝑡)𝜙(𝑢), 𝑡 ≥ 0, 𝑢 ∈ R+,
where 𝛼(𝑡) is nonnegative and locally integrable and 𝜙(𝑡) is
a concave, continuous function, satisfies Osgood’s condition;
that is, it is a nondecreasing function with 𝜙(0) = 0 and
𝜙(𝑢) > 0, ∀𝑢 > 0, such that ∫

0
+
(1/𝜙(𝑢))𝑑𝑢 = ∞. Then we

can show that the function 𝛾(𝑡, 𝑢) satisfies assumption (H4)-
(ii) (cf. [6]).

To illustrate this remark, we give two examples which
satisfy the conditions of 𝜙 in Remark 2. Let 𝜀 ∈ (0, 1). Set

𝜙
1
(𝑢) =

{

{

{

𝑢 log(1
𝑢
) if 0 ≤ 𝑢 ≤ 𝜀,

𝜙
1
(𝜀) + 𝜙



1
(𝜀−) (𝑢 − 𝜀) if 𝑢 > 𝜀,

𝜙
2
(𝑢) =

{

{

{

𝑢 log(1
𝑢
) log log(1

𝑢
) if 0 ≤ 𝑢 ≤ 𝜀,

𝜙
2
(𝜀) + 𝜙



2
(𝜀−) (𝑢 − 𝜀) if 𝑢 > 𝜀,

(13)

where 𝜀 is sufficiently small and 𝜙


𝑖
, 𝑖 = 1, 2, is the left

derivative of𝜙
𝑖
, 𝑖 = 1, 2, at the point 𝜀.Then𝜙

1
and𝜙

2
are both

concave nondecreasing functions definition onR+ satisfying
∫
0
+
(1/𝜙

𝑖
(𝑥))𝑑𝑥 = ∞, 𝑖 = 1, 2.
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Remark 3. (1) If there exists a positive constant 𝜎, such that
𝛾(𝑡, 𝑢) = 𝜎𝑢, 𝑢 ∈ H, then assumption (H4)-(i) implies the
Lipschitz condition.

(2) From assumption (H5), for any fixed integer 𝑐 > 0,
there exists 𝜂

𝑐
> 0 such that 𝛾

𝑐
(𝑡, 𝑢) = 𝜂

𝑐
𝑢, 𝑢 ∈ H; then

assumption (H5)-(i) implies the local Lipschitz condition.

We now remark that for the proof of our main results we
need the following lemmas.

Lemma 4 (see [2]). For 𝑥, 𝑦 ∈ H and 𝜖 ∈ (0, 1), the following
inequality is true:

‖𝑥‖
2

H ≤
1

1 − 𝜖

𝑥 − 𝑦

2

H
+
1

𝜖

𝑦

2

H
. (14)

Lemma 5 (see [3, Proposition 7.3]). Suppose that Φ(𝑡), 𝑡 ≥

0, is L
2
-valued predictable process and let 𝑊Φ

𝐴
= ∫

𝑡

0
𝑆(𝑡 −

𝑠)Φ(𝑠)𝑑𝑊(𝑠), 𝑡 ∈ [0, 𝑇]. Then for any arbitrary 𝑝 > 2 there
exists a constant 𝐶(𝑝, 𝑇) > 0 such that

E sup
𝑡∈[0,𝑇]


𝑊

Φ

𝐴



𝑝

H

≤ 𝐶 (𝑝, 𝑇) sup
𝑡∈[0,𝑇]

‖𝑆 (𝑡)‖
𝑝 E∫

𝑇

0

‖Φ (𝑠)‖
𝑝
𝑑𝑠.

(15)

Moreover, if E∫
𝑇

0
‖Φ(𝑠)‖

𝑝
𝑑𝑠 < +∞, then there exists a

continuous version of the process {𝑊
Φ

𝐴
}
𝑡≥0

. If (𝑆(𝑡))
𝑡≥0

is a
contraction semigroup, then the above result is true for 𝑝 ≥ 2.

Lemma 6 (see [20, Proposition 1.3]). Let Φ(𝑡) : R+
× Ω ×

U → H be a predictable function satisfying ∫
𝑇

0
∫
U
‖Φ(𝑠,

𝑢)‖
2
𝜆(𝑑V)𝑑𝑠 < +∞ for all 𝑡 ≥ 0 P almost surely. Let 𝑍(𝑡) =

∫
𝑡

0
∫
U
𝑆(𝑡 − 𝑠)Φ(𝑠, V)�̃�(𝑑𝑠, 𝑑V). If (𝑆(𝑡))

𝑡≥0
is a contraction

semigroup, then ∀𝑝 ∈ (0, 2] there exists a constant 𝐶(𝑝, 𝑇) > 0

such that

E sup
𝑡∈[0,𝑇]

‖𝑍 (𝑡)‖
𝑝

H

≤ 𝐶 (𝑝, 𝑇)E(∫

𝑇

0

∫
U
‖Φ (𝑠, 𝑢)‖

2
𝜆 (𝑑V) 𝑑𝑠)

𝑝/2

.

(16)

3. Existence and Uniqueness of Solution

In this section, we will investigate the existence and unique-
ness of the mild solution to (1) under the non-Lipschitz
condition and a weakened linear growth condition.

We introduce the successive approximations to (5) as
follows:

𝑥
0
(𝑡) =

{

{

{

𝜑 (𝑡) , for 𝑡 ∈ [−𝑟, 0] ,

𝑅 (𝑡) 𝜑 (0) , for 𝑡 ∈ [0, 𝑇] ,

(17)

and 𝑥
𝑛 for 𝑛 ≥ 1 is defined by

𝑥
𝑛
(𝑡)

=

{{

{{

{

𝜑 (𝑡) , for 𝑡 ∈ [−𝑟, 0] ,

𝑅 (𝑡) [𝜑 (0) − Γ (0, 𝜑)] + Γ (𝑡, 𝑥
𝑛

𝑡
) + ∫

𝑡

0

𝑅 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑥
𝑛−1

𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑅 (𝑡 − 𝑠) Σ (𝑠, 𝑥
𝑛−1

𝑠
) 𝑑𝑊 (𝑠) + ∫

𝑡

0

∫
U

𝑅 (𝑡 − 𝑠) 𝐿 (𝑠, 𝑥
𝑛−1

𝑠
, V) �̃� (𝑑𝑠, 𝑑V) , ∀𝑡 ∈ [0, 𝑇] .

(18)

Theorem 7. Assume the assumptions of (H1)–(H4) and (H6)
hold. Then, there exists a unique mild solution to (1) in B

𝑇
.

Proof. The proof is split into the following three steps.

Step 1. We claim that the sequence {𝑥
𝑛
(𝑡)}

𝑛≥0
is bounded.

Obviously, 𝑥0(𝑡) ∈ B
𝑇
. Moreover, we easily show that 𝑥𝑛(𝑡) ∈

B
𝑇
, for 𝑡 ∈ [0, 𝑇] and 𝑛 = 1, 2, . . .. In fact, from (18), for

𝑡 ∈ [0, 𝑇], using the basic inequality |𝑎 + 𝑏 + 𝑐 + 𝑑|
2
≤ 4|𝑎|

2
+

4|𝑏|
2
+ 4|𝑐|

2
+ 4|𝑑|

2, we can get

E sup
𝑠∈[0,𝑡]

𝑥
𝑛
(𝑠) − Γ (𝑠, 𝑥

𝑛

𝑠
)

2

H
≤ 4E

⋅ sup
𝑠∈[0,𝑡]

𝑅 (𝑠) [𝜑 (0) − Γ (0, 𝜑)]

2

H
+ 4 [E

⋅ sup
𝑠∈[0,𝑡]


∫

𝑠

0

𝑅 (𝑠 − 𝑟) 𝐹 (𝑟, 𝑥
𝑛−1

𝑟
) 𝑑𝑟



2

H

+ E

⋅ sup
𝑠∈[0,𝑡]


∫

𝑠

0

𝑅 (𝑠 − 𝑟) Σ (𝑟, 𝑥
𝑛−1

𝑟
) 𝑑𝑊 (𝑟)



2

H

+ E

⋅ sup
𝑠∈[0,𝑡]


∫

𝑠

0

∫
U

𝑅 (𝑠 − 𝑟) 𝐿 (𝑟, 𝑥
𝑛−1

𝑟
, V) �̃� (𝑑𝑟, 𝑑V)



2

H

]

š 4 (𝐼
1
+ 𝐼

2
) .

(19)

By assumption (H6), with 𝑀 := sup
𝑠∈[0,𝑡]

‖𝑅(𝑠)‖
2

H, it follows
that

𝐼
1
≤ 𝑀(1 + 𝛿)

2 E 𝜑

2

C
. (20)

Note that E(sup
𝑠∈[0,𝑡]

‖𝑥
𝑛−1

𝑠
‖
2

C) ≤ E(sup
𝑠∈[0,𝑡]

‖𝑥
𝑛−1

(𝑠)‖
2

H) +

E‖𝜑‖2C.
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By using theHölder inequality and Lemmas 5 and 6, then,
associated with assumption (H3) for the term 𝐼

2
, we obtain

𝐼
2
≤ 𝐶

1
∫

𝑡

0

𝛾 [𝑠,E( sup
𝑟∈[0,𝑠]


𝑥
𝑛−1

(𝑟)


2

H
+
𝜑

2

C
)]𝑑𝑠, (21)

where 𝐶
1
is a positive constant.

Hence, putting (20) and (21) into (19) yields

E sup
𝑠∈[0,𝑡]

𝑥
𝑛
(𝑠) − Γ (𝑠, 𝑥

𝑛

𝑠
)

2

H

≤ 4𝑀 (1 + 𝛿)
2 E 𝜑


2

C

+ 4𝐶
1
∫

𝑡

0

𝛾 [𝑠,E( sup
𝑟∈[0,𝑠]


𝑥
𝑛−1

(𝑟)


2

H
+
𝜑

2

C
)]𝑑𝑠.

(22)

While, by Lemma 4, it follows that

E( sup
𝑠∈[0,𝑡]

𝑥
𝑛
(𝑠)


2

H
+
𝜑

2

C
)

≤ [
4𝑀 (1 + 𝛿)

2

(1 − 𝛿)
2

+
1

1 − 𝛿
]E 𝜑


2

C
+

4𝐶
1

(1 − 𝛿)
2

⋅ ∫

𝑡

0

𝛾 [𝑠,E( sup
𝑟∈[0,𝑠]


𝑥
𝑛−1

(𝑟)


2

H
+
𝜑

2

C
)]𝑑𝑠.

(23)

From assumption (H3)-(ii) we show that there is a solution 𝑢
𝑡

that satisfies

𝑢
𝑡
= 𝐶

2
E 𝜑


2

C
+ 𝐶

3
∫

𝑡

0

𝛾 (𝜔, 𝑢
𝜔
) 𝑑𝜔, (24)

where 𝐶
2

fl 4𝑀(1 + 𝛿)
2
/(1 − 𝛿)

2
+ 1/(1 − 𝛿); 𝐶

3
fl

4𝐶
1
/(1 − 𝛿)

2
.

On the other hand, since E‖𝜑‖2C < ∞, we deduce that

E( sup
𝑠∈[0,𝑡]

𝑥
𝑛
(𝑠)


2

H
) ≤ 𝑢

𝑡
≤ 𝑢

𝑇
< ∞. (25)

Hence, 𝑥𝑛(𝑡) ∈ B
𝑇
, for 𝑡 ∈ [0, 𝑇] and 𝑛 = 1, 2, . . .. This proves

the boundedness of {𝑥𝑛(𝑡)}
𝑛≥0

.

Step 2. We claim that the sequence {𝑥
𝑛
(𝑡)}

𝑛≥0
is a Cauchy

sequence in B
𝑇
. For 𝑚, 𝑛 ≥ 0 and 𝑡 ∈ [0, 𝑇], from (18), (H4),

and Step 1, we can show that there exists a positive constant
𝐶
4
such that

E sup
𝑠∈[0,𝑡]


𝑥
𝑛+1

(𝑠) − Γ (𝑠, 𝑥
𝑛+1

𝑠
) − 𝑥

𝑚+1
(𝑠) + Γ (𝑠, 𝑥

𝑚+1

𝑠
)


2

H
≤ 3E

⋅ sup
𝑠∈[0,𝑡]


∫

𝑠

0

𝑅 (𝑠 − 𝑟) [𝐹 (𝑟, 𝑥
𝑛

𝑟
) − 𝐹 (𝑟, 𝑥

𝑚

𝑟
)] 𝑑𝑟



2

H

+ 3E

⋅ sup
𝑠∈[0,𝑡]


∫

𝑠

0

𝑅 (𝑠 − 𝑟) [Σ (𝑟, 𝑥
𝑛

𝑟
) − Σ (𝑟, 𝑥

𝑚

𝑟
)] 𝑑𝑊 (𝑟)



2

H

+ 3E

⋅ sup
𝑠∈[0,𝑡]


∫

𝑠

0

∫
U

𝑅 (𝑠 − 𝑟) [𝐿 (𝑟, 𝑥
𝑛

𝑟
, V) − 𝐿 (𝑟, 𝑥

𝑚

𝑟
, V)] �̃� (𝑑𝑟, 𝑑V)



2

H

≤ 𝐶
4
∫

𝑡

0

𝛾(𝑠,E( sup
𝑟∈[0,𝑠]

𝑥
𝑛
(𝑟) − 𝑥

𝑚
(𝑟)


2

H
))𝑑𝑠.

(26)

Therefore applying Lemma 4 and assumption (H6) again, we
obtain

E sup
𝑠∈[0,𝑡]


𝑥
𝑛+1

(𝑠) − 𝑥
𝑚+1

(𝑠)


2

H
≤

𝐶
4

(1 − 𝛿)
2

⋅ ∫

𝑡

0

𝛾(𝑠,E( sup
𝑟∈[0,𝑠]

𝑥
𝑛
(𝑟) − 𝑥

𝑚
(𝑟)


2

H
))𝑑𝑠.

(27)

Let

𝑦 (𝑡) fl lim
𝑛,𝑚→+∞

sup(E sup
𝑠∈[0,𝑡]

𝑥
𝑛
(𝑠) − 𝑥

𝑚
(𝑠)


2

H
) . (28)

From (25), condition (H4)-(ii), and the Fatou lemma, we have

𝑦 (𝑡) ≤ 𝐶
5
∫

𝑡

0

𝛾 (𝑠, 𝑦 (𝑠)) 𝑑𝑠, (29)

where 𝐶
5
fl 𝐶

4
/(1 − 𝛿)

2
.

By condition (H4)-(ii) we get 𝑦(𝑡) = 0, which implies that

lim
𝑛,𝑚→+∞

(E sup
𝑠∈[0,𝑡]

𝑥
𝑛
(𝑠) − 𝑥

𝑚
(𝑠)


2

H
) = 0. (30)

This shows that sequence {𝑥𝑛(𝑡)}
𝑛≥0

is Cauchy sequence inB
𝑇
.

Step 3. We claim the existence and uniqueness of the solution
to (1).

Existence. By Step 2, we known that {𝑥𝑛(𝑡)}
𝑛≥0

is a Cauchy
sequence in B

𝑇
; then the standard Borel-Cantelli lemma

argument can be used to show that, as 𝑛 → ∞, 𝑥𝑛(𝑡) → 𝑥(𝑡)

holds uniformly for 𝑡 ∈ [0, 𝑇]. So, taking limits on both sides
of (18) we obtain that 𝑥(𝑡) is a solution to (1). This shows the
existence.

Uniqueness. Let both 𝑥(𝑡) and 𝑧(𝑡) be two mild solutions of
(1) in B

𝑇
; then by the same way as Step 2, we can show that

there exists a positive constant 𝐶
6
such that

E sup
𝑠∈[0,𝑡]

‖𝑥 (𝑠) − 𝑧 (𝑠)‖
2

H

≤ 𝐶
6
∫

𝑡

0

𝛾(𝑠,E( sup
𝑟∈[0,𝑠]

‖𝑥 (𝑟) − 𝑧 (𝑟)‖
2

H))𝑑𝑠.

(31)

We can apply (H4)-(ii) again and infer that E sup
𝑠∈[0,𝑡]

‖𝑥(𝑠) −

𝑧(𝑠)‖
2

H = 0, which further implies 𝑥(𝑠) ≡ 𝑧(𝑠) almost surely
for any 0 ≤ 𝑠 ≤ 𝑇.This completes the proof ofTheorem 7.

Next, we present the existence and uniqueness of mild
solutions for (1) with the local Carathéodory conditions.

Theorem 8. Assume the assumptions of (H1)–(H3) and (H5)
and (H6) with 𝛿 ∈ (0, 1/2) hold. Then, there exists a unique
mild solution to (1) in B

𝑇
.
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Proof. Let 𝑐 be a natural integer and let 𝑇 ∈ (0, 𝑇).We define
the sequence of the functions {𝐹

𝑐
}, {Σ

𝑐
}, and {𝐿

𝑐
} as follows:

𝐹
𝑐
(𝑡, 𝑥

𝑡
)

=

{{{{

{{{{

{

𝐹 (𝑡, 𝑥
𝑡
) if E( sup

𝑠∈[0,𝑡]

𝑥𝑠
C) ≤ 𝑐,

𝐹(𝑡,
𝑐𝑥

𝑡

E (sup
𝑠∈[0,𝑡]

𝑥𝑠
C)

) if E( sup
𝑠∈[0,𝑡]

𝑥𝑠
C) > 𝑐,

Σ
𝑐
(𝑡, 𝑥

𝑡
)

=

{{{{

{{{{

{

Σ (𝑡, 𝑥
𝑡
) if E( sup

𝑠∈[0,𝑡]

𝑥𝑠
C) ≤ 𝑐,

Σ(𝑡,
𝑐𝑥

𝑡

E (sup
𝑠∈[0,𝑡]

𝑥𝑠
C)

) if E( sup
𝑠∈[0,𝑡]

𝑥𝑠
C) > 𝑐,

𝐿
𝑐
(𝑡, 𝑥

𝑡
, V)

=

{{{{

{{{{

{

𝐿 (𝑡, 𝑥
𝑡
, V) if E( sup

𝑠∈[0,𝑡]

𝑥𝑠
C) ≤ 𝑐,

𝐿(𝑡,
𝑐𝑥

𝑡

E (sup
𝑠∈[0,𝑡]

𝑥𝑠
C)

, V) if E( sup
𝑠∈[0,𝑡]

𝑥𝑠
C) > 𝑐.

(32)

Then, the functions {𝐹
𝑐
}, {Σ

𝑐
}, and {𝐿

𝑐
} satisfy assumption

(H3) and the following inequality:

E(
𝐹𝑐 (𝑠, 𝑥𝑠) − 𝐹

𝑐
(𝑠, 𝑧

𝑠
)

2

H

+
Σ𝑐 (𝑠, 𝑥𝑠) − Σ

𝑐
(𝑠, 𝑧

𝑠
)

2

L0
2

+ ∫
U

𝐿𝑐 (𝑠, 𝑥𝑠, V) − 𝐿
𝑐
(𝑠, 𝑧

𝑠
, V)

2

H
𝜆 (𝑑V))

≤ 𝛾
𝑐
(𝑠,E( sup

𝑟∈[0,𝑠]

𝑥𝑟 − 𝑧
𝑟


2

C
)) ,

(33)

where 𝑥
𝑠
, 𝑧
𝑠
∈ 𝐿

2
(Ω,C), 𝑠 ∈ [0, 𝑇].

Thus, byTheorem 7, there exists a unique solution 𝑥𝑐(𝑡) ∈
B
𝑇
and 𝑥𝑐+1(𝑡) ∈ B

𝑇
, respectively, to the following equations:

𝑥
𝑐
(𝑡)

= 𝑅 (𝑡) [𝜑 (0) − Γ (0, 𝜑)] + Γ (𝑡, 𝑥
𝑐

𝑡
)

+ ∫

𝑡

0

𝑅 (𝑡 − 𝑠) 𝐹
𝑐
(𝑠, 𝑥

𝑐

𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑅 (𝑡 − 𝑠) Σ
𝑐
(𝑠, 𝑥

𝑐

𝑠
) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

∫
U

𝑅 (𝑡 − 𝑠) 𝐿
𝑐
(𝑠, 𝑥

𝑐

𝑠
, V) �̃� (𝑑𝑠, 𝑑V) ,

𝑥
𝑐+1

(𝑡)

= 𝑅 (𝑡) [𝜑 (0) − Γ (0, 𝜑)] + Γ (𝑡, 𝑥
𝑐+1

𝑡
)

+ ∫

𝑡

0

𝑅 (𝑡 − 𝑠) 𝐹
𝑐+1

(𝑠, 𝑥
𝑐+1

𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑅 (𝑡 − 𝑠) Σ
𝑐+1

(𝑠, 𝑥
𝑐+1

𝑠
) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

∫
U

𝑅 (𝑡 − 𝑠) 𝐿
𝑐+1

(𝑠, 𝑥
𝑐+1

𝑠
, V) �̃� (𝑑𝑠, 𝑑V) .

(34)

Now define the stopping times

𝜏
𝑐
fl 𝑇 ∧ inf {𝑡 ∈ [0, 𝑇] | E( sup

𝑠∈[0,𝑡]

𝑥
𝑐

𝑠

C) ≥ 𝑐} ,

𝜏
𝑐+1

fl 𝑇

∧ inf {𝑡 ∈ [0, 𝑇] | E( sup
𝑠∈[0,𝑡]


𝑥
𝑐+1

𝑠

C
) ≥ 𝑐 + 1} ,

𝜏
𝑐
fl 𝜏

𝑐
∧ 𝜏

𝑐+1
.

(35)

We claim that 𝑥𝑐+1(𝑡) = 𝑥
𝑐
(𝑡), for all 𝑡 ∈ [0, 𝑇 ∧ 𝜏

𝑐
], a.s. 𝜔.

By (34) and for 𝑠 ∈ [0, 𝜏
𝑐
],

𝐹
𝑐+1

(𝑠, 𝑥
𝑐

𝑠
) = 𝐹

𝑐
(𝑠, 𝑥

𝑐

𝑠
) ,

Σ
𝑐+1

(𝑠, 𝑥
𝑐

𝑠
) = Σ

𝑐
(𝑠, 𝑥

𝑐

𝑠
) ,

𝐿
𝑐+1

(𝑠, 𝑥
𝑐

𝑠
) = 𝐿

𝑐
(𝑠, 𝑥

𝑐

𝑠
) ,

(36)

and estimated as above we infer that there exist positive
constants 𝐶

7
, 𝐶

8
such that

E sup
𝑠∈[0,𝑡∧𝜏𝑐]


𝑥
𝑐+1

(𝑠) − 𝑥
𝑐
(𝑠)



2

H
≤ 4𝛿

2E sup
𝑠∈[0,𝑡∧𝜏𝑐]


𝑥
𝑐+1

(𝑠)

− 𝑥
𝑐
(𝑠)



2

H
+ 4𝑀𝑇∫

𝑡∧𝜏𝑐

0


𝐹
𝑐+1

(𝑠, 𝑥
𝑐+1

𝑠
)

− 𝐹
𝑐+1

(𝑠, 𝑥
𝑐

𝑠
)


2

H
𝑑𝑠 + 𝐶

7
∫

𝑡∧𝜏𝑐

0


Σ
𝑐+1

(𝑠, 𝑥
𝑐+1

𝑠
)

− Σ
𝑐+1

(𝑠, 𝑥
𝑐

𝑠
)


2

H
𝑑𝑠

+ 𝐶
8
∫

𝑡∧𝜏𝑐

0

∫
U


𝐿
𝑐+1

(𝑠, 𝑥
𝑐+1

𝑠
, V) − 𝐿

𝑐+1
(𝑠, 𝑥

𝑐

𝑠
, V)



2

H

⋅ 𝜆 (𝑑V) 𝑑𝑠.

(37)
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Hence, by assumption (H5)-(i)we have the following inequal-
ities:

E sup
𝑠∈[0,𝑡]


𝑥
𝑐+1

(𝑠 ∧ 𝜏
𝑐
) − 𝑥

𝑐
(𝑠 ∧ 𝜏

𝑐
)


2

H
≤

4𝑀𝑇

1 − 4𝛿2

⋅ ∫

𝑡

0


𝐹
𝑐+1

(𝑠 ∧ 𝜏
𝑐
, 𝑥

𝑐+1

𝑠∧𝜏𝑐
) − 𝐹

𝑐+1
(𝑠

∧ 𝜏
𝑐
, 𝑥

𝑐

𝑠∧𝜏𝑐
)


2

H
𝑑𝑠 +

𝐶
7

1 − 4𝛿2
∫

𝑡

0


Σ
𝑐+1

(𝑠

∧ 𝜏
𝑐
, 𝑥

𝑐+1

𝑠∧𝜏𝑐
) − Σ

𝑐+1
(𝑠 ∧ 𝜏

𝑐
, 𝑥

𝑐

𝑠∧𝜏𝑐
)


2

H
𝑑𝑠

+
𝐶
8

1 − 4𝛿2
∫

𝑡

0

∫
U


𝐿
𝑐+1

(𝑠 ∧ 𝜏
𝑐
, 𝑥

𝑐+1

𝑠∧𝜏𝑐
, V)

− 𝐿
𝑐+1

(𝑠 ∧ 𝜏
𝑐
, 𝑥

𝑐

𝑠∧𝜏𝑐
, V)



2

H
𝜆 (𝑑V) 𝑑𝑠

≤
4𝑀𝑇 + 𝐶

7
+ 𝐶

8

1 − 4𝛿2
∫

𝑡

0

𝛾
𝑐+1

(𝑠 ∧ 𝜏
𝑐
,

E( sup
𝑟∈[0,𝑠]


𝑥
𝑐+1

(𝑟 ∧ 𝜏
𝑐
) − 𝑥

𝑐
(𝑟 ∧ 𝜏

𝑐
)


2

H
))𝑑𝑠.

(38)

For all 𝑡 ∈ [0, 𝑇], by assumption (H5)-(ii) we obtain that

E sup
𝑠∈[0,𝑡]


𝑥
𝑐+1

(𝑠 ∧ 𝜏
𝑐
) − 𝑥

𝑐
(𝑠 ∧ 𝜏

𝑐
)


2

H
= 0. (39)

This means that, for all 𝑡 ∈ [0, 𝑇 ∧ 𝜏
𝑐
], we always have

𝑥
𝑐+1

(𝑡) = 𝑥
𝑐
(𝑡) , a.s. 𝜔. (40)

For each 𝜔 ∈ Ω, there exists 𝑐
0
(𝜔) > 0, such that 𝑇 ∈

(0, 𝜏
𝑐0
]. For all 𝑡 ∈ [0, 𝑇], define 𝑥(𝑡) by

𝑥 (𝑡) = 𝑥
𝑐0 (𝑡) . (41)

Since 𝑥(𝑡 ∧ 𝜏
𝑐
) = 𝑥

𝑐
(𝑡 ∧ 𝜏

𝑐
), it holds that

𝑥 (𝑡 ∧ 𝜏
𝑐
)

= 𝑅 (𝑡) [𝜑 (0) − Γ (0, 𝜑)] + Γ (𝑡, 𝑥
𝑐

𝑡
)

+ ∫

𝑡∧𝜏𝑐

0

𝑅 (𝑡 − 𝑠) 𝐹
𝑐
(𝑠, 𝑥

𝑐

𝑠
) 𝑑𝑠

+ ∫

𝑡∧𝜏𝑐

0

𝑅 (𝑡 − 𝑠) Σ
𝑐
(𝑠, 𝑥

𝑐

𝑠
) 𝑑𝑊 (𝑠)

+ ∫

𝑡∧𝜏𝑐

0

∫
U

𝑅 (𝑡 − 𝑠) 𝐿
𝑐
(𝑠, 𝑥

𝑐

𝑠
, V) �̃� (𝑑𝑠, 𝑑V)

= 𝑅 (𝑡) [𝜑 (0) − Γ (0, 𝜑)] + Γ (𝑡, 𝑥
𝑡
)

+ ∫

𝑡∧𝜏𝑐

0

𝑅 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∫

𝑡∧𝜏𝑐

0

𝑅 (𝑡 − 𝑠) Σ (𝑠, 𝑥
𝑠
) 𝑑𝑊 (𝑠)

+ ∫

𝑡∧𝜏𝑐

0

∫
U

𝑅 (𝑡 − 𝑠) 𝐿 (𝑠, 𝑥
𝑠
, V) �̃� (𝑑𝑠, 𝑑V) .

(42)

Letting 𝑐 → ∞, for all 𝑡 ∈ [0, 𝑇], we infer that

𝑥 (𝑡) = 𝑅 (𝑡) [𝜑 (0) − Γ (0, 𝜑)] + Γ (𝑡, 𝑥
𝑡
)

+ ∫

𝑡

0

𝑅 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑅 (𝑡 − 𝑠) Σ (𝑠, 𝑥
𝑠
) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

∫
U

𝑅 (𝑡 − 𝑠) 𝐿 (𝑠, 𝑥
𝑠
, V) �̃� (𝑑𝑠, 𝑑V) .

(43)

The uniqueness is obtained by stopping our process. The
proof for Theorem 8 is thus complete.

4. Stability of Solution

In this section, we study the stability through the continuous
dependence of mild solutions on the initial value. From now
on, we will use 𝑥𝜑(𝑡) to represent the mild solution of (1) to
emphasize that the solution depends on the initial value 𝜑.
We need the following assumption:

(H7) For all 𝑡 ∈ [0, 𝑇], 𝑥, 𝑧 ∈ C, there exists a positive
constant Λ such that

‖𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑧)‖
2

H + ‖Σ (𝑡, 𝑥) − Σ (𝑡, 𝑧)‖
2

L2

+ ∫
U
‖𝐿 (𝑡, 𝑥, V) − 𝐿 (𝑡, 𝑧, V)‖2H 𝜆 (𝑑V)

≤ Λ ‖𝑥 − 𝑧‖
2

C .

(44)

Theorem 9. Let assumptions (H1), (H2), (H6) with 𝛿 ∈

(0, 1/√5), and (H7) be satisfied. Then the mild solution of (1)
is continuous in the initial value 𝜑 (with respect to the strong
topology on H).

Proof. Let 𝑥𝜑1(𝑡) and 𝑥
𝜑2(𝑡) be two mild solutions of (1) with

initial values 𝜑
1
and 𝜑

2
, respectively. Then, for all 𝑡 ∈ [0, 𝑇]

we can show that there exists a positive constant 𝐶
9
such that

E sup
𝑠∈[0,𝑡]

𝑥
𝜑1 (𝑠) − 𝑥

𝜑2 (𝑠)

2

H
≤ 5E sup

𝑠∈[0,𝑡]

𝑅 (𝑠) [𝜑
1
(0) − 𝜑

2
(0) − [Γ (0, 𝜑

1
) − Γ (0, 𝜑

2
)]]


2

H

+ 5E sup
𝑠∈[0,𝑡]

Γ (𝑠, 𝑥
𝜑1

𝑠
) − Γ (𝑠, 𝑥

𝜑2

𝑠
)

2

H
+ 5E sup

𝑠∈[0,𝑡]


∫

𝑠

0

𝑅 (𝑠 − 𝑟) [𝐹 (𝑟, 𝑥
𝜑1

𝑟
) − 𝐹 (𝑟, 𝑥

𝜑2

𝑟
)] 𝑑𝑟



2

H
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+ 5E sup
𝑠∈[0,𝑡]


∫

𝑠

0

𝑅 (𝑠 − 𝑟) [Σ (𝑟, 𝑥
𝜑1

𝑟
) − Σ (𝑟, 𝑥

𝜑2

𝑟
)] 𝑑𝑊 (𝑟)



2

H

+ 5E sup
𝑠∈[0,𝑡]


∫

𝑠

0

∫
U

𝑅 (𝑠 − 𝑟) [𝐿 (𝑟, 𝑥
𝜑1

𝑟
, V) − 𝐿 (𝑟, 𝑥

𝜑2

𝑟
, V)] �̃� (𝑑𝑟, 𝑑V)



2

H

≤ 10𝑀 (1 + 𝛿)
2 E 𝜑1 − 𝜑

2


2

C
+ 5𝛿

2E sup
𝑠∈[0,𝑡]

𝑥
𝜑1 (𝑠) − 𝑥

𝜑2 (𝑠)

2

H

+ 𝐶
9
∫

𝑡

0

E sup
𝑟∈[0,𝑠]

𝑥
𝜑1 (𝑠) − 𝑥

𝜑2 (𝑠)

2

H
𝑑𝑠.

(45)

Thus,

E sup
𝑠∈[0,𝑡]

𝑥
𝜑1 (𝑠) − 𝑥

𝜑2 (𝑠)

2

H

≤
10𝑀 (1 + 𝛿)

2

1 − 5𝛿2
E 𝜑1 − 𝜑

2


2

C

+
𝐶
9

1 − 5𝛿2
∫

𝑡

0

E sup
𝑟∈[0,𝑠]

𝑥
𝜑1 (𝑠) − 𝑥

𝜑2 (𝑠)

2

H
𝑑𝑠.

(46)

Applying Gronwall’s inequality, we have

E sup
𝑠∈[0,𝑡]

𝑥
𝜑1 (𝑠) − 𝑥

𝜑2 (𝑠)

2

H

≤
10𝑀 (1 + 𝛿)

2

1 − 5𝛿2
𝑒
(𝐶9/(1−5𝛿

2
))𝑡E 𝜑1 − 𝜑

2


2

C
,

(47)

which means the mild solution is continuous in the initial
value. This completes the proof of Theorem 9.

5. Application

In this section, an example is provided to illustrate the
obtained theory.We consider the following neutral stochastic
integrodifferential equations with Poisson jumps of the form:

𝜕

𝜕𝑡
[𝑢 (𝑡, 𝜉) − ∫

0

−𝑟

Υ (𝑡, 𝑢 (𝑡 + 𝜃, 𝜉)) 𝑑𝜃]

=
𝜕
2

𝜕𝜉2
[𝑢 (𝑡, 𝜉) − ∫

0

−𝑟

Υ (𝑡, 𝑢 (𝑡 + 𝜃, 𝜉)) 𝑑𝜃]

+ ∫

𝑡

0

𝑘 (𝑡 − 𝑠)
𝜕
2

𝜕𝜉2
[𝑢 (𝑠, 𝜉) − ∫

0

−𝑟

Υ (𝑠, 𝑢 (𝑠 + 𝜃, 𝜉)) 𝑑𝜃] 𝑑𝑠

+ ∫

0

−𝑟

𝑓 (𝑡, 𝑢 (𝑡 + 𝜃, 𝜉)) 𝑑𝜃 + 𝜎 (𝑡, 𝑢 (𝑡 + 𝜃, 𝜉)) 𝑑𝑊 (𝑡)

+ ∫
U

𝑢 (𝑡 + 𝜃, 𝜉) V�̃� (𝑑𝑡, 𝑑V) for 𝑡 ≥ 0, 𝜉 ∈ [0, 𝜋] ,

𝑢 (𝑡, 0) − ∫

0

−𝑟

Υ (𝑡, 𝑢 (𝑡 + 𝜃, 0)) 𝑑𝜃 = 0 for 𝑡 ≥ 0,

𝑢 (𝑡, 𝜋) − ∫

0

−𝑟

Υ (𝑡, 𝑢 (𝑡 + 𝜃, 𝜋)) 𝑑𝜃 = 0 for 𝑡 ≥ 0,

𝑢 (𝜃, 𝜉) = 𝑢
0
(𝜃, 𝜉) for 𝜃 ∈ [−𝑟, 0] , 𝜉 ∈ [0, 𝜋] ,

(48)

where 𝑊(𝑡) is a standard one-dimensional Wiener process,
U = {V ∈ R : 0 < ‖V‖R ≤ 𝑎, 𝑎 > 0}; Υ, 𝑓 : R+

× R → R and
𝜎 : R+

× R → L(R) are continuous function; 𝑘 : R+
→ R

is continuous; and 𝑢
0
: [−𝑟, 0] × [0, 𝜋] → R is given càdlàg

function such that 𝑢
0
(⋅) ∈ 𝐿

2
([0, 𝜋]) is F

0
-measurable and

satisfies E‖𝑢
0
‖
2

C < ∞.

Let 𝑝 = 𝑝(𝑡), 𝑡 ∈ 𝐷
𝑝
, be a K-valued 𝜎-finite stationary

Poisson point process (independent of 𝑊(𝑡)) on a complete
probability space with the usual condition (Ω,F, (F

𝑡
)
𝑡⩾0

,P).
Let �̃�(𝑑𝑠, 𝑑V) fl 𝑁(𝑑𝑠, 𝑑V) − 𝜆(𝑑V)𝑑𝑠, with the characteristic
measure 𝜆(𝑑V) onU ∈ B(K−{0}).Assume that ∫

U
V2𝜆(𝑑V) <

∞.

To rewrite (48) into the abstract form of (1) we consider
the space H = 𝐿

2
([0, 𝜋]) with the norm ‖ ⋅ ‖. Let 𝑒

𝑛
fl

√2/𝜋 sin 𝑛𝑥, 𝑛 = 1, 2, 3, . . ., denote the completed orthonor-
mal basics in H and 𝑊(𝑡) = ∑

∞

𝑛=1
√𝜆

𝑛
𝛽
𝑛
(𝑡)𝑒

𝑛
, 𝑡 ≥ 0, 𝜆

𝑛
>

0, where {𝛽
𝑛
(𝑡)}

𝑛≥0
are one-dimensional standard Brownian

motionsmutually independent on a usual complete probabil-
ity space (Ω,F, (F

𝑡
)
𝑡⩾0

,P).
Defining𝐴 : H → H by𝐴 = 𝜕

2
/𝜕𝑥

2, with domain𝐷(𝐴) =

H2
([0, 𝜋]) ∩ H1

0
([0, 𝜋]), here H1

0
([0, 𝜋]) = {𝑤 ∈ 𝐿

2
([0, 𝜋]) :

𝜕𝑤/𝜕𝑧 ∈ 𝐿
2
([0, 𝜋]), 𝑤(0) = 𝑤(𝜋) = 0}, and H2

([0, 𝜋]) =

{𝑤 ∈ 𝐿
2
([0, 𝜋]) : 𝜕𝑤/𝜕𝑧, 𝜕

2
𝑤/𝜕𝑧

2
∈ 𝐿

2
([0, 𝜋])}. Then 𝐴𝑥 =

−∑
∞

𝑛=1
𝑛
2
⟨𝑥, 𝑒

𝑛
⟩𝑒
𝑛
, 𝑥 ∈ 𝐷(𝐴), where 𝑛 = 1, 2, 3, . . . is also

the orthonormal set of eigenvector of 𝐴. It is well known
that 𝐴 is the infinitesimal generator of a strongly continuous
semigroup {𝑆(𝑡)}

𝑡≥0
onH and is given (see Pazy [18, page 70])

by 𝑆(𝑡)𝑥 = ∑
∞

𝑛=1
𝑒
−𝑛
2
𝑡
⟨𝑥, 𝑒

𝑛
⟩𝑒
𝑛
, 𝑥 ∈ H.Thus, (H1) is true.

Let 𝐾(𝑡) : 𝐷(𝐴) ⊂ H → H be the operator defined by
𝐾(𝑡)(𝑧) = 𝑘(𝑡)𝐴𝑧 for 𝑡 ≥ 0 and 𝑧 ∈ 𝐷(𝐴).
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Now we assume the following.

(i) There exists a constant 𝐶
Υ
, 0 < 𝑟𝐶

Υ
√𝜋 < 1/√5, such

that for 𝑡 ≥ 0 and ]
1
, ]
2
∈ R

Υ (𝑡, ]
1
) − Υ (𝑡, ]

2
)
 ≤ 𝐶

Υ

]1 − ]
2

 . (49)

(ii) There exists a constant 𝐶
𝑓
, 0 < 𝑟𝐶

𝑓
√𝜋 < 1, such that

for 𝑡 ≥ 0 and ]
1
, ]
2
∈ R

𝑓 (𝑡, ]
1
) − 𝑓 (𝑡, ]

2
)

2

≤ 𝐶
𝑓
𝛾 (𝑡,

]1 − ]
2


2

) , (50)

(iii) For 𝑡 ≥ 0 and ]
1
, ]
2
∈ R : |𝜎(𝑡, ]

1
) − 𝜎(𝑡, ]

2
)|
2
≤

𝛾(𝑡, |]
1
− ]

2
|
2
).

Let C = C([−𝑟, 0];H), for 𝜉 ∈ [0, 𝜋], 𝜙 ∈ C and define
the operators Γ, 𝐹 : R+

× C → H, Σ : R+
× C → L(K;H),

and 𝐿 : R+
×C ×U → H by

Γ (𝑡, 𝜙) (𝜉) = ∫

0

−𝑟

Υ (𝑡, 𝜙 (𝜃) (𝜉)) 𝑑𝜃,

𝐹 (𝑡, 𝜙) (𝜉) = ∫

0

−𝑟

𝑓 (𝑡, 𝜙 (𝜃) (𝜉)) 𝑑𝜃,

Σ (𝑡, 𝜙) (𝜉) = 𝜎 (𝑡, 𝜙 (𝜃) (𝜉)) ,

𝐿 (𝑡, 𝜙 (𝜉) , V) = 𝜙 (𝜉) V.

(51)

If we put

𝑥 (𝑡) = 𝑢 (𝑡, 𝜉) , for 𝑡 ≥ 0, 𝜉 ∈ [0, 𝜋] ,

𝜑 (𝜃) (𝜉) = 𝑢
0
(𝜃, 𝜉) , for 𝜃 ∈ [−𝑟, 0] , 𝜉 ∈ [0, 𝜋] ,

(52)

then (48) takes the following abstract form:

𝑑 [𝑥 (𝑡) − Γ (𝑡, 𝑥
𝑡
)]

= 𝐴 [𝑥 (𝑡) − Γ (𝑡, 𝑥
𝑡
)] 𝑑𝑡

+ [∫

𝑡

0

𝐾 (𝑡 − 𝑠) [𝑥 (𝑠) − Γ (𝑠, 𝑥
𝑠
)] 𝑑𝑠 + 𝐹 (𝑡, 𝑥

𝑡
)] 𝑑𝑡

+ Σ (𝑡, 𝑥
𝑡
) 𝑑𝑊 (𝑡) + ∫

U

𝐿 (𝑡, 𝑥
𝑡
, V) �̃� (𝑑𝑡, 𝑑V) ,

𝑡 ∈ [0, 𝑇]

𝑥 (𝑡) = 𝜑 (𝑡) , − 𝑟 ≤ 𝑡 ≤ 0, 𝑟 > 0.

(53)

Moreover, if 𝑘 is bounded and 𝐶
1 function, where 𝐶

stand for the space of all continuous functions such that 𝑘 is
bounded and uniformly continuous, then (H1) and (H2) are
satisfied and hence there exists a resolvent operator (𝑅(𝑡))

𝑡≥0

on H. As a consequence of the continuity of Υ, 𝑓, it follows
that Γ,𝐹 are continuous onR+

×Cwith values inH, and from
the continuity of 𝜎 it follows that Σ is continuous on R+

×C
with values in L(K,H). Thus, (48) can be expressed as (1)
with 𝐴, Γ,𝐾, 𝐹, Σ, and 𝐿 as defined above.

By assumption (i), we have ‖Γ(𝑡, 𝜙
1
) − Γ(𝑡, 𝜙

2
)‖
𝐿
2
([0,𝜋])

≤

𝑟𝐶
Υ
√𝜋‖𝜙

1
− 𝜙

2
‖C.

Further, by assumptions (ii) and (iii),
𝐹 (𝑡, 𝜙

1
) − 𝐹 (𝑡, 𝜙

2
)

2

𝐿
2
([0,𝜋])

≤ 𝑟𝐶
𝑓
√𝜋𝛾 (𝑡,

𝜙1 − 𝜙
2


2

C
) ,

Σ (𝑡, 𝜙
1
) − Σ (𝑡, 𝜙

2
)
L2

≤ 𝛾 (𝑡,
𝜙1 − 𝜙

2


2

C
) .

(54)

On the other hand, in hypotheses (ii) and (iii) above, if there
exists a positive constant 𝜌, such that 𝛾(𝑡, 𝑢) = 𝜌𝑢, then
there exists a positive constant Λ such that assumption (H7)
is established. Hence, all the assumptions of Theorems 7 and
9 are fulfilled. Therefore, there exists a unique mild solution
of (48) byTheorem 7. Furthermore, this solution depends on
the initial value byTheorem 9.
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