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This study deals with the influence of radial body forces on FGM and non-FGM pressure vessels. It contains an extended overview
of pressure vessels made from both kinds of material. Furthermore, full mathematical development of stress-strain field for both
kinds of cylindrical vessels while being influenced by body forces has been performed. In addition, a new power law model for
FGMmaterials was suggested and discussed. Finally, tables of composed plastic-elastic states are discussed.

1. Introduction

Pressure vessels have many engineering applications in many
aspects of life, like energy, electronics, mechanics, and
biomedical engineering as described by the author and others
[1–3]. In continuation to the author previous essay [1], a
unique group of pressure vessels made from special materials
will be discussed here. These pressure vessels are often called
FGM pressure vessels. FGM is a well-known shortcut to
functionally graded materials, from which many structures
and constructions including pressure vessels are made.These
materials are heterogeneous (nonhomogenous) while its
materials constituent’s composition is varying continuously
gradually in the microscopic phase. These materials have
been proved to have special thermomechanical properties.
However, their applications are numerous, especially, for mil-
itary and aerospace applications industry, thermal loading,
heat resistance, and so forth. Recent researchers and studies
on this field are well described by Kalali and Hadidi-Moud
[2], Ansari Sadrabadi and Rahimi [3], and Sadeghian and
Ekhteraei Toussi [4]. In more detail, Kalali and Hadidi-Moud
have developed an analytical method for predicting elastic-
plastic stress distribution in cylindrical and spherical pressure
vesselsmade from a ceramic/metal functionally gradedmate-
rial, while the vessel was subjected to plane-stress conditions
and von Mises yield criterion was considered. Also, small
strains have been assumed andHencky’s stress-strain relation

was used to obtain the governing differential equations for
the plastic region. Other study in this field was presented last
year by Ansari Sadrabadi and Rahimi. They examined thick-
walled cylindrical vessels made from functionally graded
material under internal pressure with the presence of a
temperature gradient, while material parameters have been
modeled using power functions. They have shown that
material distribution parameters and temperature gradient
play an important role in FGM elastoplastic behavior. It
should be noted that calculation of loading effect has been
determined in the first yield point. Another study that was
mentioned above has been done by Sadeghian and Ekhteraei
Toussi in 2012.Their study includes an axisymmetric thermal
elastoplastic stress analysis of FGM cylindrical vessels based
on Tresca’s yield criterion and small deformation theory.
The investigation of temperature distribution effect upon the
evolution and growth of the plastic zone was their study
uniqueness. They proved that the interface line between
elastic and plastic regions may take shape in different radii
while being dependent on the thermomechanical composi-
tion properties of the FG material.

Moreover, other structures of beam and spherical shapes
have been examined by Eraslan and Akis [5], Nemat-Alla et
al. [6], Akis [7], Kanlıkama et al. [8], and Chandel et al. [9],
respectively. For instance, Eraslan and Akis have developed
plane strain analytical solutions to functionally graded elastic
and elastic-plastic pressurized tube under small deformation.
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Also, plastic behavior and Tresca’s yield criterion were con-
sidered. They also assumed radial change of tube material
elasticity modulus based on a two-parameter model in a
general parabolic form. Field equations exact solutions for
elastic and plastic deformations have been obtained together
with elastoplastic response which was proved to be affected
by the radial variation of the modulus of elasticity. Moreover,
nonhomogeneous solution was found to be sensitive to
the choice of material parameters. In continuation to the
latter study, Kanlıkama et al. [8] have investigated coupled
thermoelastic phenomenon determining the stress-strain
relations in thick-walled pressurized vessel and a reactor
pressure vessel exposed to an inner moderator pressure
and thermal loads. Good agreement was found between
reactor and classical pressure vessels solutions. Furthermore,
Chandel et al. [9] have presented recently a general analysis of
thermal stresses and strains in a thin rotating circular FGM
disk. For more information on their study, see [9].

In general, physical behavior of non-FGM thick-walled
pressure vessels has been investigated in the last decade
by several researchers, like Sinclair and Helms [10] who
have performed a fundamental review study of elastic hoop
stress formulas in cylindrical and spherical pressure vessels.
Other researchers like Zhao et al. [11] have proposed a
technique for elastic-plastic analysis of a thick-walled elastic-
plastic cylinder under internal pressure. Their calculation
was based on two parametric functions including piecewise
linearization of the stress-strain curve. They have found that
the required strain energy value of deformation is found to be
dependent on initial or final geometry choice where bound-
ary conditions are satisfied. Moreover, it was found that, in
case of low work-hardening solid, the difference is significant
and cannot be ignored. Finally, the researchers have shown
that the new formulation is appropriate for elastic-plastic
fracture calculations. Another research that would be men-
tioned concerns nonlinear kinematic hardening behavior of
pressure cylinder and was studied by Nayebi [12]. He dealt
with Bree’s cylinder which was used to simulate different
material properties under constant mechanical and cyclic
thermal gradient loadings. Nayebi reconsidered Bree’s theory
by using nonlinear kinematic hardening material model.
Two-dimensional model including Poisson’s effect was also
assumed. After comparison with Bree’s model, it was found
that Bree’s one-dimensional model is relatively conservative
and the bidimensional diagram did not correspond to the
complete model. However, calculation of stress-strain field in
cylinder or other shapes using finite element method (FEM)
is discussed broadly by Szabó et al. [13]. Briefly described,
they developed FEM solution for small-strain elastic-plastic
stress problems by using p-version elements.

When dealingwith plastic behavior of non-FGMpressure
vessels, one cannot ignore the autofrettage phenomenon.
Autofrettage is a process that is intended mainly to enhance
pressure vessels fatigue life and to reduce the vessel weight.
The method works by creating plastic expansion (yielding)
of the inner wall thickness by overloading the vessel inner
diameter or just a portion of it. As a result, compressive
residual stresses are being created in the inner diameter (ID)
region while in response residual tensile hoop stresses are

being created in the outer diameter as was explained in
detail by Gibson [14]. The idea of thick wall prestressing
is aimed at having a beneficial distribution of tensile hoop
stress and compressive stress on the outer diameter (OD)
when the pressure is released, while Gibson has investigated
autofrettage phenomenon with the appropriate processes. As
mentioned in his study, two methods of autofrettage exist:
hydraulic and swage. He has made a comparison between
both methods using FE model of hydraulic autofrettage. He
has found good agreement between the obtained solutions
and existing analytical and numerical models. According to
Gibson, bilinear material representation is preferred to be
used formodeling over othermaterials since radial position is
dependent on the nonlinear material behavior. In the second
step, he has developed full model of swage autofrettage. One
year later, Lee et al. [15] have published their own study on
autofrettage process analysis of a compound cylinder based
on the elastic-perfectly plastic material behavior and strain
hardening stress-strain curve. They showed that compound
cylinder resistance ability is higher than a one layer cylinder
while both kinds of cylinders have the same size. Additionally,
they found that shrink fit is a relatively efficient way to
extend compressive residual stress. Moreover, they found
that Bauschinger effect has significant impact on compressive
residual stress of the strain-hardening model, such that the
stress is smaller than elastic-perfectly plastic case. According
to the last studies, an obvious question should be asked: what
are the limits of autofrettage process or what is the optimum
autofrettage process under a given pressure? An answer was
given byWahi et al. [16].They performed a research about the
influence of optimum autofrettage on the pressure limits of
thick-walled cylinder.The tradeoff that researchers have dealt
with was between strength-weight ratio increase and fatigue
life extending. Their main target is to solve this apparent
contradiction by using optimal autofrettage procedure while
they have found the required autofrettage pressure for given
various levels of allowable pressure. Consequently, three dis-
tinguished cases of thick-walled cylinders design have been
created. It should bementioned that, according to their study,
the optimal autofrettage is achieved only if both minimum
equivalent stress and maximum fatigue life conditions are
fulfilled. During the years 2012–2014, various fresh studies
have been published on the subject while only few researches
among them will be pointed out here. For instance, Hu and
Puttagunta [17] have presented numerical investigation study
of thick-walled cylinder under overloading internal pressure
involved in autofrettage process while the Bauschinger effect
was considered inside the elastoplastic material. Moreover,
they have found the optimal autofrettage pressure and the
maximum reduction percentage of the vonMises stress under
the elastic-limit working pressure. In addition, comparison
between Bauschinger and the non-Bauschinger effect model
has been made by the authors [17]. One year later, fresh
study which includes most of the latter subjects together
with new approaches has been presented by Trojnacki and
Krasinski [18]. They have developed analytic expressions for
calculating the autofrettage pressure based on both Tresca
and von Mises yield criteria including the Bauschinger
effect. The results have been compared with FEM and other
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analytical models whereas experimental data and analytical
model were dealing with multilinear kinematic hardening.
The authors have concluded that the autofrettage technique
is the preferred technology to use over other technologies
discussed.Thoroughmathematical analysis of pressure vessel
during autofrettage processwhich also concerns the optimum
operation conditions has been published in 2013 by R. Zhu
and G. Zhu [19]. Moreover, autofrettage compounded tube
had been modeled according to Huang’s model which con-
siders the Bauschinger effect as was introduced by Bhatnagar
[20]. He has found that compounded tube advantages include
maximumpressure, fatigue life, andmanufacturing economy.
In 2014, short review on autofrettage process in cylindrical
pressure vessels was presented by Gupta and Vora [21].
During the past year of 2015, new studies and approaches have
come out. For example, a new process to create autofrettage
by applying thermal stresses on the cylinder wall has been
performed by Kamal and Dixit [22]. Last fresh study on
the autofrettage subject that would be mentioned here has
been performed by Kumar and Moulick [23]. They made
comparative stress analysis based on FEM for both elliptical
and cylindrical pressure vessel with and without autofrettage.
Formore information relating to autofrettage process in FGM
vessels one should read [2–4]. Buckling of FGM and non-
FGMmaterials is summarized by Patil et al. [24]. Specifically,
post buckling of FGM plate and shells has been investigated
by Shen [25]. In 2006, Kadoli and Ganesan [26] have made
analysis research of linear thermal buckling and free vibration
of FG cylindrical shells with clamped-clamped BC based on
temperature-dependent material properties. Two years later,
Shariyat [27] has presented a study about dynamic thermal
buckling due to temperature heat shock on FGM cylindrical
shells, while a combination of axial compression and external
pressure was applied. During his research he has found
that buckling behavior is dependent on the volume fraction
index and the differences between the thermal stresses in
the outer and the inner surfaces. Moreover, he has revealed
that temperature gradient and initial material imperfections
effects are relatively small on the buckling phenomenon
of a shell subjected to a pure external pressure. In 2009,
Huang and Han [28] have performed nonlinear buckling
and postbuckling examinations for axially compressed FG
cylindrical shells by using the Ritz energy method and the
nonlinear large deflection theory. One year later, Sofiyev
[29] has presented buckling analysis of the simply supported
truncated conical shell made of FGM. One of his main
findings on this area relates to cylindrical shell stress-strain
analysis including buckling analysis based on parametric
examination. During the current year of 2015, another study
has been published by Zhao and Liew [30, 31] on the subject
of buckling response of FG ceramic-metal cylindrical shell
panels while axial compression and thermal load are applied.
Their model is based on the first-order shear deformation
shell theory and element-free kp-Ritzmethod. One year later,
Huang et al. [32] published their research on Buckling of
FGM cylindrical shells subjected to pure bending load. Their
findings under the appropriate assumptions indicate that the
materials inhomogeneity is significant for buckling of FGM
cylindrical shells.

In the current essay, stress-strain relations mathemati-
cal development of FGM and non-FGM cylindrical vessels
behavior in the presence of physical phenomena like mag-
netic, gravitation, rotational, and electrical charge will be
performed. Firstly, general model including body forces of
FGMand non-FGMwill be introduced for elastic phase. Next
step, general model of the plastic phase based on von Mises
criterion will be brought up. Additionally, a new power law
model was suggested and discussed with the relevant litera-
ture studies. Moreover, the elastoplastic states conditions of
the FGM and non-FGM vessels will be introduced here are
as follows:

(i) FGM: elastic-plastic.
(ii) FGM: plastic-elastic.
(iii) FGM: plastic-elastic-plastic.
(iv) FGM: elastic-plastic-elastic.
(v) Non-FGM: elastic-plastic.
(vi) Non-FGM: plastic-elastic.
(vii) Non-FGM: plastic-elastic-plastic.

However, the case of elastic-plastic-elastic in non-FGM
pressure vessels will not be discussed, since it is not phys-
ically valid due to vessels material homogenously structure
which results in inability to create elastic state interface. The
developed model in this essay demonstrates a body rotating
around itself while another body with the same length applies
magnetic, gravity, and electrical forces. In other words, pos-
sible application or model for this study could be expressed
by hollow rotating cylinder affected by gravity, magnetic,
and electrical fields caused by inner rotating cylinder. Notice
that content of this chapter is based on the author’s previous
knowledge and publications [1, 33].

2. General Elastic Stress-Strain Relations
with Thermal and Body Forces Influence of
Non-FGM Pressure Vessels

General polar equations of element equilibrium including
radial and tangential forces as shown in Figure 1 are as follows
[1]:
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where 𝜎
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acting normal to the sides of the element in steady state (𝑡 →
∞) as shown in Figure 1, respectively. Body forces acting in
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Figure 1: Stress element in polar coordinate system using [1].

Now, according to Hooke’s law including thermal effects,
strains behave like
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where 𝑢 is the displacement in the radial direction. 𝐸, 𝐺, and
𝜐 represent Young’s modulus, shear modulus, and Poisson’s
ratio, respectively. Solving algebraically relations (3) for the
stress field yields the following relations:
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Substituting the above relations (4) into equilibrium (2)
results in the following radial displacement equation:
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The homogenous and the particular solution parts of (5) are
expressed by
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Accordingly, the stress field (4) will be written as

𝜎

𝑟
=

𝐸

1 − 𝜐

2
(

𝜕𝑢

𝜕𝑟

+ 𝜐

𝑢

𝑟

) −

𝐸𝛼𝑇

1 − 𝜐

=

𝐸

1 − 𝜐

2
[𝑎

1
(1 + 𝜐) +

𝑎

2

𝑟

2
(𝜐 − 1) + 𝑢

󸀠

𝑝
+ 𝜐

𝑢

𝑝

𝑟

]

−

𝐸𝛼𝑇

1 − 𝜐

,

𝜎

𝜃
=

𝐸

1 − 𝜐

2
(

𝑢

𝑟

+ 𝜐

𝜕𝑢

𝜕𝑟

) −

𝐸𝛼𝑇

1 − 𝜐

=

𝐸

1 − 𝜐

2
[𝑎

1
(1 + 𝜐) +

𝑎

2

𝑟

2
(1 − 𝜐) +

𝑢

𝑝

𝑟

+ 𝜐𝑢

󸀠

𝑝
]

−

𝐸𝛼𝑇

1 − 𝜐

.

(9)

Now, in order to find coefficients 𝑎
1
and 𝑎
2
, the following BC

will be used:
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Subtracting first and second expressions (11) from each other
leads to the following equation which is dependent on the
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From here, 𝑎
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𝑟

𝑖

−

𝑢

󸀠

𝑝

󵄨

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑖

1 + 𝜐

+ ⋅ ⋅ ⋅

+

((1 − 𝜐) /𝐸) (𝑝

𝑜
− 𝑝

𝑖
) + (𝜐/ (1 + 𝜐)) (𝑢

𝑝

󵄨

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑜

/𝑟

𝑜
− 𝑢

𝑝

󵄨

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑖

/𝑟

𝑖
) + (𝑢

󸀠

𝑝

󵄨

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑜

− 𝑢

󸀠

𝑝

󵄨

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑖

) / (1 + 𝜐) − 𝛼 (𝑇|

𝑟=𝑟𝑜
− 𝑇|

𝑟=𝑟𝑖
)

𝑟

2

𝑖
/𝑟

2

𝑜
− 1

.

(14)

In the next section, the elastic stress-strain relations of
FGM pressure vessels including the body forces effect will be
developed.

3. General Elastic Stress-Strain Relations
with Thermal and Body Forces Influence of
FGM Pressure Vessels

Here, elastic stress-strain relations will be developed using
Sadeghian and Ekhteraei Toussi [4] and Eraslan and Akis [5]
models. Accordingly, the total general stress-strain relation-
ships under axisymmetric assumption are as follows:

𝜀

𝑟,𝑇
=

1 − 𝜐

2

𝐸

[𝜎

𝑟
−

𝜐

1 − 𝜐

𝜎

𝜃
] + 𝜀

𝑟,𝑝
+ (1 + 𝜐) 𝛼𝑇

=

𝜕𝑢

𝜕𝑟

,

(15a)

𝜀

𝜃,𝑇
=

1 − 𝜐

2

𝐸

[𝜎

𝜃
−

𝜐

1 − 𝜐

𝜎

𝑟
] + 𝜀

𝜃,𝑝
+ (1 + 𝜐) 𝛼𝑇

=

𝑢

𝑟

.

(15b)

𝛼(𝑟) and 𝐸(𝑟) are being dependent on 𝑟 coordinate and
represent the elasticmodulus and heat expansion coefficients,
respectively. Applying simple algebraic manipulations on
((15a) and (15b)) leads to

𝜎

𝑟
=

𝐸

(1 + 𝜐) (1 − 2𝜐)

[(1 − 𝜐)

𝜕𝑢

𝜕𝑟

+ 𝜐

𝑢

𝑟

] −

𝛼𝐸𝑇

1 − 2𝜐

, (16a)

𝜎

𝜃
=

𝐸

(1 + 𝜐) (1 − 2𝜐)

[𝜐

𝜕𝑢

𝜕𝑟

+ (1 − 𝜐)

𝑢

𝑟

] −

𝛼𝐸𝑇

1 − 2𝜐

. (16b)

The differential equation of displacement (also called Navier
equation) is derived by substitution of ((16a) and (16b)) into
(2) by the form

𝐸

𝜕

2

𝑢

𝜕𝑟

2

1 − 𝜐

(1 + 𝜐) (1 − 2𝜐)

+

𝜕𝑢

𝜕𝑟

[𝐸 ((1 − 𝜐) /𝑟) + (𝜕𝐸/𝜕𝑟) (1 − 𝜐)]

(1 + 𝜐) (1 − 2𝜐)

+ ⋅ ⋅ ⋅

+

𝑢

(1 + 𝜐) (1 − 2𝜐)

(

𝜐

𝑟

𝜕𝐸

𝜕𝑟

− 𝜐

𝐸

𝑟

2
+

2𝜐 − 1

𝑟

2
𝐸)

− (

1

1 − 2𝜐

)

𝜕 (𝛼𝑇𝐸)

𝜕𝑟

+ 𝐹

𝑟
= 0.

(17)

Equation (17) is a nonlinear differential equation with vari-
able coefficients. The next step is to define the appropriate
formof𝛼(𝑟) and𝐸(𝑟) such that simplified solution of (17) will
be obtained. Dividing (17) by 𝐸((1 − 𝜐)/(1 + 𝜐)(1 − 2𝜐)) leads
to the following equilibrium form:

𝜕

2

𝑢

𝜕𝑟

2
+

𝜕𝑢

𝜕𝑟

(

1

𝑟

+

1

𝐸

𝜕𝐸

𝜕𝑟

) + 𝑢(

𝜐

1 − 𝜐

1

𝐸𝑟

𝜕𝐸

𝜕𝑟

−

1

𝑟

2
)

−

1

𝐸

𝜕 (𝛼𝑇𝐸)

𝜕𝑟

(

1 + 𝜐

1 − 𝜐

) +

𝐹

𝑟

𝐸

(

1 + 𝜐

1 − 𝜐

) (1 − 2𝜐)

= 0.

(18)

Analysis of (18) will be done here using the following
coefficients examination.The guideline of this analysis will be
based on the requirement to have one nonlinear differential
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Table 1: Elasticity modulus functions suggestions.

Suggestions/properties Φ 𝐸

Sadeghian and Ekhteraei Toussi [4] (𝑛/𝑟)𝑟

𝑜
𝐸

0
(𝑟/𝑟

𝑜
)

𝑛

Eraslan and Akis [5] −(𝑚𝑛/𝑟

𝑜
)(𝑟/𝑟

𝑜
)

𝑚−1

/(1 − 𝑛(𝑟/𝑟

𝑜
)

𝑚

) 𝐸

0
[1 − 𝑛(𝑟/𝑟

𝑜
)

𝑚

]

Author’s suggestion (𝑚𝑛/𝑟

𝑜
)(𝑟/𝑟

𝑜
)

𝑚−1

𝐸

0
(𝑚(𝑟/𝑟

𝑜
))

𝑛

equation dependent on the radial direction. Thereby, it is
obtained that

1

𝑟

+

1

𝐸

𝜕𝐸

𝜕𝑟

= 𝑔 (𝑟) ,

𝜐

1 − 𝜐

1

𝑟

𝜕𝐸

𝜕𝑟

−

1

𝑟

2
= ℎ (𝑟)

(19)

while both ℎ(𝑟) and 𝑔(𝑟) functions are dependent on 𝑟 where
ℎ(𝑟) ̸= 𝑔(𝑟). This leads to conclusion about the shape of the
elastic modulus 𝐸:

𝐸 (𝑟) = 𝑒

∫Φ𝑑𝑟

.
(20)

Φ(𝑟) is general function dependent on 𝑟 coordinate. Litera-
ture and author suggestions for Φ and 𝐸 function forms are
presented in Table 1.

Eraslan and Akis model for modulus of elasticity as
shown in Table 1 is an improved model of Horgan and Chan
[34]; a decade later, it has also been used by Sadeghian and
Ekhteraei Toussi [4]. The idea of using power law model in
order to represent elasticity modulus quality is derived due
to nonlinearity of the material behavior. In order to enhance
themodel flexibility, it has been expanded to be dependent on
two parameters (𝑚, 𝑛) instead of one. Moreover, by setting 𝑛
parameter to be zero (𝑛 = 0), all of the model suggestions
above are satisfied (𝐸 = 𝐸

0
) and homogenous solution is

being obtained. In this current essay, new model of elasticity
modulus is being suggested by the author and developed
based on modulus of elasticity general form (20) inspiration.
This model is based on power function and embedded with
the properties of the two former models. Here, it will be
assumed that elasticity modulus should have the following
form:

𝐸 = 𝐸

0
(𝑚

𝑟

𝑟

𝑜

)

𝑛

. (21)

Moreover, we will assume that all other properties like
heat expansion coefficient, yielding stress, heat conduction,
density function, electric constant, and vacuum permeability
behave according to the following power law approximation
along the radial distance, normalized by the outer radius:

𝛼 = 𝛼

0
(𝑚

1

𝑟

𝑟

𝑜

)

𝑛1

,

𝑘 = 𝑘

0
(𝑚

2

𝑟

𝑟

𝑜

)

𝑛2

,

𝜎

𝑦
= 𝜎

𝑦0
(𝑚

3

𝑟

𝑟

𝑜

)

𝑛3

,

𝜌

1
= 𝜌

0
(𝑚

4

𝑟

𝑟

𝑜

)

𝑛4

,

𝜀

0
= 𝜀

1
(𝑚

5

𝑟

𝑟

𝑜

)

𝑛5

,

𝜇

0
=

1

𝑐

2
𝜀

0

=

𝜇

1

(𝑚

5
(𝑟/𝑟

𝑜
))

𝑛5
,

𝜇

1
=

1

𝑐

2
𝜀

1

.

(22)

𝛼

0
, 𝑘
0
, 𝜎
𝑦0
, 𝜌
0
, 𝜀
1
, and 𝜇

1
represent the reference data for the

physical properties mentioned above. 𝑛
𝑖
, 𝑖 = 1, 2, 3, 4, 5, and

𝑚

𝑗
, 𝑗 = 1, 2, 3, 4, 5, represent the power law constants and the

internal function constants, respectively, while 𝑐 represents
the speed of light coefficient in vacuum. It should be noted
that Nemat-Alla et al. [6] and Çallıoğlu et al. [35] have also
used similar power law model for the yielding stress during
their study. In addition, Wang et al.’s [36] analytical study
deals with FGM vessel consisting of a finite length hollow
cylinder and two closed ends subjected to thermomechanical
loadings based on power law model. Moreover, Nejad and
Rahimi [37] have used power lawmodel for the density distri-
bution. However, vacuum permeability behaves according to
the power law model based on Bhangale and Ganesan study
[38]. One step before solving (18) is to define the temperature
function. The thermal equation will be brought up in the
following form, based on Nowacki [39]:

1

𝑟

𝜕

𝜕𝑟

(𝑘𝑟

𝜕𝑇

𝜕𝑟

) = 0 where 𝑡 󳨀→ ∞. (23)

𝑇 represent the temperature and 𝑘 is the heat conduction
coefficient. Now, considering the thermal coefficient value
possibilities, there are two main solutions:

𝑘 is variable [3]:

𝑇 =

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

𝑟

−𝑛2
− 𝑇

𝑖

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

+ 𝑇

𝑜
. (24a)

𝑘 is constant [6]:

𝑇 = 𝑇

𝑖
+ (𝑇

𝑜
− 𝑇

𝑖
)

ln 𝑟/𝑟
𝑖

ln 𝑟
𝑜
/𝑟

𝑖

. (24b)



Journal of Composites 7

Note that (24a) has no dependency on the constants 𝑘
0
and

𝑚

2
. According to the appropriate boundary conditions,

𝑇 (𝑟 = 𝑟

𝑖
) = 𝑇

𝑖
,

𝑇 (𝑟 = 𝑟

𝑜
) = 𝑇

𝑜
.

(25)

It should be remarked that Sadeghian and Ekhteraei Toussi
BC includes the thermal convection effect with the appro-
priate factors. In this essay, this effect will not be discussed
despite the fact that it can be easily obtained by redetermina-
tion the constants 𝑇

𝑖
and 𝑇

𝑜
. In addition, the body force 𝐹

𝑟

will be defined by the following expression:

𝐹

𝑟

= 𝜌

1
𝜔

2

𝑟

⏟⏟⏟⏟⏟⏟⏟⏟⏟

Centrifugal Force

− 𝐺

𝜌

1
𝜌

2

𝑟

2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Gravity Force

+

𝑄𝜌

2𝜋𝑟𝜀

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Electric Field of a Uniformly Charged Wire

+ 𝑄V
𝜇

0
𝐼

2𝜋𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Electric Field of a Uniformly Charged Wire due to Magnetic Force

,

(26)

where 𝜔 and 𝜌
1
represent the angular velocity and the vessel

material density, respectively. Additionally, 𝐺, 𝜌
1
, and 𝜌

2

are the gravitational constant, vessel material density, and
the another body mass density, respectively. Also, 𝑄, 𝜌, 𝜀

0
,

V, 𝐼, and 𝜇

0
represent the total charge, charge density per

unit length, electric permittivity, charge velocity, electrical
current, and the vacuum permeability constant, respectively.
Substituting relations (21)–(26) into equilibrium (18) includ-
ing simple algebraic manipulation gives

𝜕

2

𝑢

𝜕𝑟

2
+ (

1 + 𝑛

𝑟

)

𝜕𝑢

𝜕𝑟

+

𝑢

𝑟

2
(

𝜐

1 − 𝜐

𝑛

𝑚

− 1)

= 𝑁

1
𝑟

𝑛1−𝑛2−1

+ 𝑁

2
𝑟

𝑛1−1

+ 𝑁

3
𝑟

1−𝑛+𝑛4
+ 𝑁

4
𝑟

𝑛4−2−𝑛

+ 𝑁

5
𝑟

−1−𝑛−𝑛5
,

(27)

where

𝑁

1
= (

1 + 𝜐

1 − 𝜐

) 𝛼

0
(

𝑚

1

𝑟

𝑜

)

𝑛1
𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

(𝑛

1
− 𝑛

2
+ 𝑛) ,

𝑁

2
= (

1 + 𝜐

1 − 𝜐

) 𝛼

0
(

𝑚

1

𝑟

𝑜

)

𝑛1

(𝑛

1
+ 𝑛)

⋅ (𝑇

𝑜
− 𝑇

𝑖

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

) ,

𝑁

3
= − (1 − 2𝜐) (

1 + 𝜐

1 − 𝜐

)

1

𝐸

0

(

𝑟

𝑜

𝑚

)

𝑛

𝜌

0
(

𝑚

4

𝑟

𝑜

)

𝑛4

𝜔

2

,

𝑁

4
= (1 − 2𝜐) (

1 + 𝜐

1 − 𝜐

)

1

𝐸

0

(

𝑟

𝑜

𝑚

)

𝑛

𝐺𝜌

0
(

𝑚

4

𝑟

𝑜

)

𝑛4

𝜌

2
,

𝑁

5
= − (1 − 2𝜐) (

1 + 𝜐

1 − 𝜐

)

1

𝐸

0

(

𝑟

𝑜

𝑚

)

𝑛
𝑄

2𝜋

[

𝜌

𝜀

1

+ 𝜇

1
V𝐼]

⋅ (

𝑟

𝑜

𝑚

5

)

𝑛5

.

(28)

The total solution of (27) is a combination of two parts,
homogenous and particular solution, according to the follow-
ing expression:

𝑢FGM = 𝑢

ℎFGM
+ 𝑢

𝑝FGM
. (29)

The homogenous solution takes the following form:

𝑢

ℎFGM
= 𝐴

1
𝑟

𝑧1
+ 𝐴

2
𝑟

𝑧2
, (30)

whereas the following constants are obtained as a result of
quadratic equation solution due to substitution of (30) into
(27) homogenous part:

𝑧

1,2
=

−𝑛 ±
√
𝑛

2
− 4 (𝜐/ (1 − 𝜐)) (𝑛/𝑚)

2

.

(31)

𝐴

1
and 𝐴

2
will be calculated continuously according to the

total displacement boundary conditions.
Next step is to handle the particular solution part. Firstly,

the particular solution type will be written as follows (after
multiplying both sides of the equilibrium (82) by 𝑟2):

𝑢

𝑝FGM
= 𝐵

1
𝑟

𝑓1
+ 𝐵

2
𝑟

𝑓2
+ 𝐵

3
𝑟

𝑓3
+ 𝐵

4
𝑟

𝑓4
+ 𝐵

5
𝑟

𝑓5
, (32)

where

[𝑓

1
, 𝑓

2
, 𝑓

3
, 𝑓

4
, 𝑓

5
]

= [𝑛

1
− 𝑛

2
+ 1, 𝑛

1
+ 1, 3 − 𝑛 + 𝑛

4
, 𝑛

4
− 𝑛, 1 − 𝑛 − 𝑛

5
] ,

(33)

𝐵

𝑖
=

𝑁

𝑖

𝑓

2

𝑖
+ 𝑛𝑓

𝑖
+ (𝜐/ (1 − 𝜐)) (𝑛/𝑚) − 1

for 𝑖 = 1, 2, 3, 4, 5,
(34)

while 𝑓
𝑖

̸= 𝑧

1,2
for each value of 𝑖 since otherwise 𝐵

𝑖
is

undefined (singularity).Therefore the total solution takes the
form

𝑢FGM = 𝐴

1
𝑟

𝑝1
+ 𝐴

2
𝑟

𝑝2
+ 𝐵

1
𝑟

𝑓1
+ 𝐵

2
𝑟

𝑓2
+ 𝐵

3
𝑟

𝑓3

+ 𝐵

4
𝑟

𝑓4
+ 𝐵

5
𝑟

𝑓5
.

(35)

It should be noted that, for the particular case𝑚 = 1, solution
(29) coincided with Sadeghian and Ekhteraei Toussi solution
[4]. Now, radial and tangential strains will be found together



8 Journal of Composites

with the appropriate stresses by using (15a) and (15b) and
(16a) and (16b), respectively:

𝜀

Elastic-FGM
𝑟,𝑇

=

2

∑

𝑗=1

𝐴

𝑗
𝑝

𝑗
𝑟

𝑝𝑗−1

+

5

∑

𝑖=1

𝐵

𝑖
𝑓

𝑖
𝑟

𝑓𝑖−1

, (36a)

𝜀

Elastic-FGM
𝜃,𝑇

=

2

∑

𝑖=1

𝐴

𝑖
𝑟

𝑝𝑖−1

+

5

∑

𝑖=1

𝐵

𝑖
𝑟

𝑓𝑖−1

, (36b)

𝜎

Elastic-FGM
𝑟

=

𝐸

0
(𝑚 (𝑟/𝑟

𝑜
))

𝑛

(1 + 𝜐) (1 − 2𝜐)

[

[

(1 − 𝜐)

⋅ (

2

∑

𝑗=1

𝐴

𝑗
𝑝

𝑗
𝑟

𝑝𝑗−1

+

5

∑

𝑖=1

𝐵

𝑖
𝑓

𝑖
𝑟

𝑓𝑖−1

) + 𝜐(

2

∑

𝑖=1

𝐴

𝑖
𝑟

𝑝𝑖−1

+

5

∑

𝑖=1

𝐵

𝑖
𝑟

𝑓𝑖−1

)

]

]

−

𝛼𝐸𝑇

1 − 2𝜐

,

(37a)

𝜎

Elastic-FGM
𝜃

=

𝐸

0
(𝑚 (𝑟/𝑟

𝑜
))

𝑛

(1 + 𝜐) (1 − 2𝜐)

[

[

𝜐(

2

∑

𝑗=1

𝐴

𝑗
𝑝

𝑗
𝑟

𝑝𝑗−1

+

5

∑

𝑖=1

𝐵

𝑖
𝑓

𝑖
𝑟

𝑓𝑖−1

) + (1 − 𝜐)(

2

∑

𝑖=1

𝐴

𝑖
𝑟

𝑝𝑖−1

+

5

∑

𝑖=1

𝐵

𝑖
𝑟

𝑓𝑖−1

)

]

]

−

𝛼𝐸𝑇

1 − 2𝜐

.

(37b)

However,

𝛼𝐸𝑇 = 𝛼

0
𝐸

0
(

𝑚

1

𝑟

𝑜

)

𝑛1

(

𝑚

𝑟

𝑜

)

𝑛

(

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝛽

𝑜
− 𝑟

−𝛽

𝑖

𝑟

𝑛1−𝛽+𝑛

− 𝑇

𝑖

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝛽

𝑜
− 𝑟

−𝛽

𝑖

𝑟

𝑛1+𝑛

+ 𝑇

𝑜
𝑟

𝑛1+𝑛

) .

(38)

Final step before ending this section will be determining the
constants𝐴

1
and𝐴

2
through the presuming of the following

boundary conditions:

𝜎

𝑟
(𝑟 = 𝑟

𝑖
) = −𝑝

𝑖
,

𝜎

𝑟
(𝑟 = 𝑟

𝑜
) = −𝑝

𝑜
.

(39)

Applying BC (39) on (37a) leads to a two-variable system of
linear equations. Solving the linear system using Cramer’s
rule yields the following relations for the constants 𝐴

1
and

𝐴

2
:

𝐴

1
=

𝑄

4

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑜

𝐹

2

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑖

− 𝑄

4

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑖

𝐹

2

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑜

𝐹

1

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑜

𝐹

2

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑖

− 𝐹

1

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑖

𝐹

2

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑜

,

𝐴

2
=

𝑄

4

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑜

𝐹

1

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑖

− 𝑄

4

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑖

𝐹

1

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑜

𝐹

2

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑜

𝐹

1

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑖

− 𝐹

2

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑖

𝐹

1

󵄨

󵄨

󵄨

󵄨𝑟=𝑟𝑜

.

(40)

However,

𝑄

1
=

𝐸

0
(𝑚 (𝑟/𝑟

𝑜
))

𝑛

(1 + 𝜐) (1 − 2𝜐)

,

𝑄

2
=

5

∑

𝑖=1

𝐵

𝑖
𝑓

𝑖
𝑟

𝑓𝑖−1

,

𝑄

3
=

𝛼𝐸𝑇

1 − 2𝜐

,

𝑄

4
=

−𝑃 + 𝑄

3

𝑄

1

− (1 − 𝜐)𝑄

2
− 𝜐𝑓

𝑖
𝑄

2
,

𝑃|

𝑟=𝑟𝑖 ,𝑟𝑜
= −𝑝

𝑖,𝑜
,

𝐹

1
= (1 − 𝜐) 𝑝

1
𝑟

𝑝1−1

+ 𝜐𝑟

𝑝1−1

,

𝐹

2
= (1 − 𝜐) 𝑝

2
𝑟

𝑝2−1

+ 𝜐𝑟

𝑝2−1

.

(41)

It should be noted that elastic-plastic response of metal-
ceramic composites has been investigated by Vena et al. [40].
However, more information on FGM temperature variations
can be found in [37, 38, 41–43].

In similar way to (32) development, the particular solu-
tion of the non-FGM vessels case will be developed. Initially,
substituting relations (24b) and (26) back into (5) and (7)
results in the next relation:

𝜕

2

𝑢

𝜕𝑟

2
+

1

𝑟

𝜕𝑢

𝜕𝑟

−

𝑢

𝑟

2
= 𝛼 (1 + 𝜐) (

𝑇

𝑜
− 𝑇

𝑖

ln 𝑟
𝑜
/𝑟

𝑖

)

1

𝑟

− (

1 − 𝜐

2

𝐸

)

⋅ (𝜌

1
𝜔

2

𝑟 − 𝐺

𝜌

1
𝜌

2

𝑟

2
+

𝑄𝜌

2𝜋𝑟𝜀

0

+ 𝑄V
𝜇

0
𝐼

2𝜋𝑟

) ,

(42)

where 𝜌
1
, 𝜀
0
, and 𝜇

0
are constants. After applying algebraic

manipulations, equilibrium (42) turns to be in the form

𝜕

2

𝑢

𝜕𝑟

2
+

1

𝑟

𝜕𝑢

𝜕𝑟

−

𝑢

𝑟

2
=

𝑀

1

𝑟

+𝑀

2
𝑟 +

𝑀

3

𝑟

2
.

(43)

However,

𝑀

1
= 𝛼 (1 + 𝜐) (

𝑇

𝑜
− 𝑇

𝑖

ln 𝑟
𝑜
/𝑟

𝑖

)

− (

1 − 𝜐

2

𝐸

)(

𝑄𝜌

2𝜋𝜀

0

+ 𝑄V
𝜇

0
𝐼

2𝜋

) ,

𝑀

2
= −(

1 − 𝜐

2

𝐸

)𝜌

1
𝜔

2

,

𝑀

3
= 𝐺(

1 − 𝜐

2

𝐸

)𝜌

1
𝜌

2
,

(44)

where the particular solution of the non-FGM displacement
case is in the following form:

𝑢

𝑝non-FGM
= 𝑑

1
𝑟

𝛽1
+ 𝑑

2
𝑟

𝛽2
+ 𝑑

3
𝑟

𝛽3
. (45)
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In similar way to (32) power coefficients development proce-
dure, the following coefficients are obtained:

[𝛽

1
, 𝛽

2
, 𝛽

3
] = [1, 3, 0] . (46)

However,

𝑑

𝑗
=

𝑀

𝑗

𝛽

2

𝑗
− 1

for 𝑗 = 1, 2, 3. (47)

Analyzing expression (47) compared to (34) leads to conclu-
sion that for 𝑛 = 0 both relations coincided. In addition, for
𝑛 = 𝑛

1
= 𝑛

2
= 𝑛

3
= 0 FGMandnon-FGMcylinder cases both

coincided. Different discussion on different permutations of
power law properties should be done (like 𝑛 = 0 with 𝑛

1
̸=

𝑛

2
̸= 𝑛

3
̸= 0 or 𝑛 ̸= 𝑛

3
̸= 0 with 𝑛

1
= 𝑛

2
= 0). Moreover,

a singularity for the case 𝛽
1
= 1 (also 𝛽 = −1) does exist.

Therefore this special case will be solved separately by using
the following form:

𝜕

2

𝑢

𝜕𝑟

2
+

1

𝑟

𝜕𝑢

𝜕𝑟

−

𝑢

𝑟

2
=

𝜕

𝜕𝑟

[

1

𝑟

𝜕 (𝑟𝑢)

𝜕𝑟

] =

𝑀

1

𝑟

.
(48)

After applying integration over the radial direction on (48)
as shown broadly in Ugural and Fenster book [44], the
particular solution for the obtained differential equation is

𝑢

𝑝non-FGM

󵄨

󵄨

󵄨

󵄨

󵄨𝛽=±1

= 𝑀

1

𝑟

2

[ln 𝑟 − 1

2

] . (49)

Accordingly, the full particular solution for the FGM case
using (45)–(49) is

𝑢

𝑝non-FGM
= 𝑑

1

𝑟

2

[ln 𝑟 − 1

2

] + 𝑑

2
𝑟

3

+ 𝑑

3
, (50)

while the constants are redefined by

[𝛽

2
, 𝛽

3
] = [3, 0] ,

𝑑

1
= 𝑀

1
,

𝑑

𝑗
=

𝑀

𝑗

𝛽

2

𝑗
− 1

,

for 𝑗 = 2, 3.

(51)

Thereby, the final displacement solution takes the form

𝑢non-FGM = 𝑎

1
𝑟 +

𝑎

2

𝑟

+ 𝑑

1

𝑟

2

[ln 𝑟 − 1

2

] + 𝑑

2
𝑟

3

+ 𝑑

3
. (52)

Substituting (48) back into (13)-(14) yields the values for the
constants 𝑎

1
and 𝑎
2
by

𝑎

1

= 𝛼𝑇

𝑖
− 𝑝

𝑖

1 − 𝜐

𝐸

−

1

1 + 𝜐

[

𝜐

𝑟

𝑖

(𝑑

1

𝑟

𝑖

2

[ln 𝑟
𝑖
−

1

2

] + 𝑑

2
𝑟

3

𝑖
+ 𝑑

3
) −

𝑑

1

2

(ln 𝑟
𝑖
+

1

2

) − 3𝑑

2
𝑟

2

𝑖
] + ⋅ ⋅ ⋅

+

((1 − 𝜐) /𝐸) (𝑝

𝑜
− 𝑝

𝑖
) + (𝜐/ (1 + 𝜐)) [(𝑑

1
/2) ln (𝑟

𝑜
/𝑟

𝑖
) + ∑

3

𝑗=2
𝑑

𝑗
(𝑟

𝛽𝑗−1

𝑜
− 𝑟

𝛽𝑗−1

𝑖
)] + (((𝑑

1
/2) ln (𝑟

𝑜
/𝑟

𝑖
) + 3𝑑

2
(𝑟

2

𝑜
− 𝑟

2

𝑖
)) / (1 + 𝜐)) − 𝛼 (𝑇

𝑜
− 𝑇

𝑖
)

𝑟

2

𝑖
/𝑟

2

𝑜
− 1

,

𝑎

2

=

((1 + 𝜐) /𝐸) (𝑝

𝑜
− 𝑝

𝑖
) + (𝜐/ (1 − 𝜐)) ((𝑑

1
/2) ln (𝑟

𝑜
/𝑟

𝑖
) + ∑

3

𝑗=2
𝑑

𝑗
(𝑟

𝛽𝑗−1

𝑜
− 𝑟

𝛽𝑗−1

𝑖
)) + (((𝑑

1
/2) ln (𝑟

𝑜
/𝑟

𝑖
) + 3𝑑

2
(𝑟

2

𝑜
− 𝑟

2

𝑖
)) / (1 − 𝜐)) − 𝛼 (𝑇

𝑜
− 𝑇

𝑖
) ((1 + 𝜐) / (1 − 𝜐))

1/𝑟

2

𝑜
− 1/𝑟

2

𝑖

.

(53)

The strain relations for the elastic non-FGM case will be
found by using (48) as follows:

𝜀

Elastic-non-FGM
𝑟,𝑇

=

𝜕𝑢

𝜕𝑟

= 𝑎

1
−

𝑎

2

𝑟

2
+

𝑑

1

2

[ln 𝑟 + 1

2

] + 3𝑑

2
𝑟

2

,

(54a)

𝜀

Elastic-non-FGM
𝜃,𝑇

=

𝑢

𝑟

= 𝑎

1
+

𝑎

2

𝑟

2
+

𝑑

1

2

[ln 𝑟 − 1

2

] + 𝑑

2
𝑟

2

+

𝑑

3

𝑟

.

(54b)

Therefore stress relations (9) will be found using expressions
(53) by

𝜎

Elastic-non-FGM
𝑟

=

𝐸

1 − 𝜐

2
[𝑎

1
(1 + 𝜐) +

𝑎

2

𝑟

2
(𝜐 − 1)

+ 𝑑

1
+ 3𝑑

2
𝑟

2

+ 𝜐(𝑑

1
+ 𝑑

2
𝑟

2

+

𝑑

3

𝑟

)] −

𝐸𝛼𝑇

1 − 𝜐

,

(55a)

𝜎

Elastic-non-FGM
𝜃

=

𝐸

1 − 𝜐

2
[𝑎

1
(1 + 𝜐) +

𝑎

2

𝑟

2
(1 − 𝜐)

+ 𝑑

1
+ 𝑑

2
𝑟

2

+

𝑑

3

𝑟

+ 𝜐 (𝑑

1
+ 3𝑑

2
𝑟

2

)] −

𝐸𝛼𝑇

1 − 𝜐

.

(55b)

From here, the discussion will pass to concern the plastic
behavior of FGM pressure vessels due to thermal and body
forces effects.
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4. General Elastic-Plastic Stress-Strain
Relations with Thermal and Body Forces
Influence of FGM Pressure Vessels

Assume that tangential stress is greater than radial stress
(𝜎
𝜃
> 𝜎

𝑟
> 𝜎

𝑧
) according to the following form:

𝜎

𝜃
− 𝜎

𝑟
= 𝜎

𝑦
. (56)

For honesty, note that other criteria for solution also exist [2,
14]. Substituting (56) into (2) using relations (22) leads to the
following expressions for 𝜎

𝑟
and 𝜎

𝜃
:

𝜎

FGM-Plastic
𝑟

=

𝜎

𝑦0

𝑛

3

(

𝑚

3

𝑟

𝑜

)

𝑛3

𝑟

𝑛3

− [

𝜌

0
𝜔

2

2 + 𝑛

3

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4+2

− 𝐺

𝜌

0
𝜌

2

𝑛

4
− 1

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4−1

−

𝑄

2𝜋𝑛

5

(

𝜌

𝜀

1

+ V𝜇
1
𝐼)(

𝑟

𝑜

𝑚

5

)

𝑛5
1

𝑟

𝑛5

] + 𝑐

1
,

(57)

𝜎

FGM-Plastic
𝜃

= 𝜎

𝑦0
(

𝑚

3

𝑟

𝑜

)

𝑛3

𝑟

𝑛3
(1 +

1

𝑛

3

)

− [

𝜌

0
𝜔

2

2 + 𝑛

4

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4+2

− 𝐺

𝜌

0
𝜌

2

𝑛

4
− 1

(

𝑚

3

𝑟

𝑜

)

𝑛4

𝑟

𝑛4−1

−

𝑄

2𝜋𝑛

5

(

𝜌

𝜀

1

+ V𝜇
1
𝐼)(

𝑟

𝑜

𝑚

5

)

𝑛5
1

𝑟

𝑛5

] + 𝑐

1

(58)

while 𝑐
1
constant will be calculated continuously. The total

displacement is calculated by using relations (15a) and (15b)
according to

𝜀

𝑇
= 𝜀

𝑟,𝑇
+ 𝜀

𝜃,𝑇
+ 𝜀

𝑧,𝑇
=

𝜕𝑢

𝜕𝑟

+

𝑢

𝑟

=

(1 + 𝜐) (1 − 2𝜐)

𝐸

(𝜎

𝑟
+ 𝜎

𝜃
) + 𝜀

𝑟,plastic + 𝜀𝜃,plastic
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+ 2 (1 + 𝜐) 𝛼𝑇,

(59)

while assuming that 𝜀
𝑟,plastic + 𝜀

𝜃,plastic = 0. Equation (59)
will be rewritten using expressions (57) and (58) including
relations (21)-(22) and (24a) as follows:

𝜕𝑢

𝜕𝑟

+

𝑢

𝑟

= 2

(1 + 𝜐) (1 − 2𝜐)

𝐸

0
(𝑚 (𝑟/𝑟

𝑜
))

𝑛
[𝜎

𝑦0
(

𝑚

3

𝑟

𝑜

)

𝑛3

(1 +

1

2𝑛

3

)

⋅ 𝑟

𝑛3
− [

𝜌

0
𝜔

2

2 + 𝑛

4

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4+2

− 𝐺

𝜌

0
𝜌

2

𝑛

4
− 1

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4−1

−

𝑄

2𝜋𝑛

5

(

𝜌

𝜀

1

+ V𝜇
1
𝐼)(

𝑟

𝑜

𝑚

5

)

𝑛5
1

𝑟

𝑛5

] + 𝑐

1
] + ⋅ ⋅ ⋅

+ 2 (1 + 𝜐) 𝛼

0
(𝑚

1

𝑟

𝑟

𝑜

)

𝑛1

(

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

𝑟

−𝑛2
− 𝑇

𝑖

⋅

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

+ 𝑇

𝑜
) .

(60)

Firstly, equilibrium (60) will be represented as follows:

𝜕𝑢

𝜕𝑟

+

𝑢

𝑟

= 𝐽

1
𝑟

𝑛3−𝑛

+ 𝐽

2
𝑟

𝑛4+2−𝑛

+

𝐽

3

𝑟

1+𝑛−𝑛4

+

𝐽

4

𝑟

𝑛+𝑛5

+ 𝐽

6
𝑟

𝑛1−𝑛2
+ 𝐽

7
𝑟

𝑛1
+

𝐽

8

𝑟

𝑛
,

(61)

while 𝐽 coefficients are determined using relations (23)
according to

𝐽 = 2

(1 + 𝜐) (1 − 2𝜐)

𝐸

0
(𝑚/𝑟

𝑜
)

𝑛
,

𝐽

1
= 𝐽𝜎

𝑦0
(1 +

1

2𝑛

3

)(

𝑚

3

𝑟

𝑜

)

𝑛3

,

𝐽

2
= −𝐽

5

𝜌

0
𝜔

2

2 + 𝑛

4

,

𝐽

3
= −𝐽

5
𝐺

𝜌

0
𝜌

2

𝑛

4
− 1

,

𝐽

4
= −𝐽

𝑄

2𝜋𝑛

5

(

𝜌

𝜀

1

+ V𝜇
1
𝐼)(

𝑟

𝑜

𝑚

5

)

𝑛5

,

𝐽

5
= 𝐽(

𝑚

4

𝑟

𝑜

)

𝑛4

,

𝐽

6
= 𝐽

9

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

,

𝐽

7
= 𝐽

9
(𝑇

𝑜
− 𝑇

𝑖

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

) ,

𝐽

8
= 𝐽𝑐

1
,

𝐽

9
= 2 (1 + 𝜐) 𝛼

0
(

𝑚

1

𝑟

𝑜

)

𝑛1

.

(62)

The solution of differential equation (61) is composed of two
parts, homogenous and particular solution, by

𝑢FGM = 𝑢

ℎPlastic FGM
+ 𝑢

𝑝Plastic FGM
. (63)

However, homogenous and particular solutions will be
achieved simultaneously. By multiplying both sides of (61)
with 𝑟 (𝑟 ̸= 0) including the rearrangement of equilibrium
left side, the following differential equation is obtained:

𝜕

𝜕𝑟

(𝑟𝑢) = 𝐽

1
𝑟

𝑛3−𝑛+1

+ 𝐽

2
𝑟

𝑛4+3−𝑛

+

𝐽

3

𝑟

𝑛−𝑛4

+

𝐽

4

𝑟

𝑛+𝑛5−1

+ 𝐽

6
𝑟

1+𝑛1−𝑛2
+ 𝐽

7
𝑟

1+𝑛1
+

𝐽

8

𝑟

𝑛−1
.

(64)
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However, the final solution for the displacement will be
obtained by simple integration over the radial direction 𝑟:

𝑢FGM-Plastic =
𝐽

1

𝑛

3
− 𝑛 + 2

𝑟

1+𝑛3−𝑛

+

𝐽

2

𝑛

4
+ 4 − 𝑛

𝑟

𝑛4+3−𝑛

+

𝐽

3

1 + 𝑛

4
− 𝑛

𝑟

𝑛4−𝑛

+ 𝐽

4

𝑟

1−𝑛−𝑛5

2 − 𝑛 − 𝑛

5

+

𝐽

6

𝑛

1
− 𝑛

2
+ 2

𝑟

1+𝑛1−𝑛2
+

𝐽

7

𝑛

1
+ 2

𝑟

1+𝑛1

+

𝐽

8

2 − 𝑛

𝑟

1−𝑛

+

𝑆

9

𝑟

(65)

while 𝑆
9
is constant. From here, plastic strains will be defined

by the following relations:

𝜀

FGM
𝑟,Plastic =

𝑢

𝑟

− (1 + 𝜐) 𝛼𝑇 − (

1 − 𝜐

2

𝐸

)(𝜎

𝜃
−

𝜐

1 − 𝜐

⋅ 𝜎

𝑟
) = 𝑆

1
𝑟

𝑛3−𝑛

+ 𝑆

2
𝑟

𝑛4+2−𝑛

+ 𝑆

3
𝑟

𝑛4−𝑛−1

+ 𝑆

4
𝑟

−𝑛−𝑛5

+ 𝑆

6
𝑟

𝑛1−𝑛2
+ 𝑆

7
𝑟

𝑛1
+ 𝑆

8
𝑟

−𝑛

+

𝑆

9

𝑟

2
− ⋅ ⋅ ⋅ − (1 + 𝜐)

⋅ 𝛼

0
(𝑚

1

𝑟

𝑟

𝑜

)

𝑛1

(

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

𝑟

−𝑛2
− 𝑇

𝑖

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

+ 𝑇

𝑜
)

1

𝑟

− ⋅ ⋅ ⋅ − (

1 − 𝜐

2

𝐸

)(𝜎

𝑦0
(

𝑚

3

𝑟

𝑜

)

𝑛3

𝑟

𝑛3
(1

+

1

𝑛

3

) − [

𝜌

0
𝜔

2

2 + 𝑛

4

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4+2

− 𝐺

⋅

𝜌

0
𝜌

2

𝑛

4
− 1

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4−1

−

𝑄

2𝜋𝑛

5

(

𝜌

𝜀

1

+ V𝜇
1
𝐼)

⋅ (

𝑟

𝑜

𝑚

5

)

𝑛5
1

𝑟

𝑛5

] + 𝑐

1
−

𝜐

1 − 𝜐

[

𝜎

𝑦0

𝑛

3

(

𝑚

3

𝑟

𝑜

)

𝑛3

𝑟

𝑛3

− [

𝜌

0
𝜔

2

2 + 𝑛

4

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4+2

− 𝐺

𝜌

0
𝜌

2

𝑛

4
− 1

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4−1

−

𝑄

2𝜋𝑛

5

(

𝜌

𝜀

1

+ V𝜇
1
𝐼)(

𝑟

𝑜

𝑚

5

)

𝑛5
1

𝑟

𝑛5

] + 𝑐

1
]) ,

(66)

𝜀

FGM
𝜃,Plastic =

𝜕𝑢

𝜕𝑟

− (1 + 𝜐) 𝛼𝑇 − (

1 − 𝜐

2

𝐸

)(𝜎

𝑟
−

𝜐

1 − 𝜐

⋅ 𝜎

𝜃
) = 𝑆

1
(1 + 𝑛

3
− 𝑛) 𝑟

𝑛3−𝑛

+ 𝑆

2
(𝑛

4
+ 3 − 𝑛)

⋅ 𝑟

𝑛4+2−𝑛

+ (𝑛

4
− 𝑛) 𝑆

3
𝑟

𝑛4−𝑛−1

+ (1 − 𝑛 − 𝑛

5
)

⋅ 𝑆

4
𝑟

−𝑛−𝑛5
+ (1 + 𝑛

1
− 𝑛

2
) 𝑆

5
𝑟

𝑛1−𝑛2
+ (1 + 𝑛

1
) 𝑆

7
𝑟

𝑛1

+ (1 − 𝑛)

𝑆

8

𝑟

𝑛
−

𝑆

9

𝑟

2
− (1 + 𝜐) 𝛼

0
(𝑚

1

𝑟

𝑟

𝑜

)

𝑛1

⋅ (

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

𝑟

−𝑛2
− 𝑇

𝑖

𝑇

𝑜
− 𝑇

𝑖

𝑟

−𝑛2

𝑜
− 𝑟

−𝑛2

𝑖

+ 𝑇

𝑜
)

1

𝑟

− (

1 − 𝜐

2

𝐸

)(

𝜎

𝑦0

𝑛

3

(

𝑚

3

𝑟

𝑜

)

𝑛3

𝑟

𝑛3
− [

𝜌

0
𝜔

2

2 + 𝑛

4

(

𝑚

4

𝑟

𝑜

)

𝑛4

⋅ 𝑟

𝑛4+2

− 𝐺

𝜌

0
𝜌

2

𝑛

4
− 1

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4−1

−

𝑄

2𝜋𝑛

5

(

𝜌

𝜀

1

+ V𝜇
1
𝐼)(

𝑟

𝑜

𝑚

5

)

𝑛5
1

𝑟

𝑛5

] + 𝑐

1
−

𝜐

1 − 𝜐

[𝜎

𝑦0
(

𝑚

3

𝑟

𝑜

)

𝑛3

⋅ 𝑟

𝑛3
(1 +

1

𝑛

3

) − [

𝜌

0
𝜔

2

2 + 𝑛

4

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4+2

− 𝐺

𝜌

0
𝜌

2

𝑛

4
− 1

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4−1

−

𝑄

2𝜋𝑛

5

(

𝜌

𝜀

1

+ V𝜇
1
𝐼)(

𝑟

𝑜

𝑚

5

)

𝑛5
1

𝑟

𝑛5

] + 𝑐

1
]) ,

(67)

while,

𝑆

1
=

𝐽

1

𝑛

3
− 𝑛 + 2

,

𝑆

2
=

𝐽

2

𝑛

4
+ 4 − 𝑛

,

𝑆

3
=

𝐽

3

1 + 𝑛

4
− 𝑛

,

𝑆

4
=

𝐽

4

2 − 𝑛 − 𝑛

5

,

𝑆

6
=

𝐽

6

𝑛

1
− 𝑛

2
+ 2

,

𝑆

7
=

𝐽

7

𝑛

1
+ 2

,

𝑆

8
=

𝐽

8

2 − 𝑛

.

(68)

Initial observation on expressions (68) for 𝑆

𝑖
constants

leads to conclusion that these constants have singularity at
[𝑛 𝑛

1
] = [(𝑛

3
+ 2, 𝑛

4
+ 4, 𝑛

4
+ 1, 2 − 𝑛

5
, 2) (𝑛

2
− 2, −2)]. For

these specific cases, one should insert each case into (64) with
the appropriate integration over the radial direction, while
obtained displacement results are presented in Table 2.

Unlike homogenous cylinder pressure, the plastic region
in FGM pressure vessels (inhomogeneous material) can be
created anywhere along the thickness defined by its first
yielding [4]. Hence, in order to determine the value of 𝑐

1

constant like other constants, BC will be applied through
distinction between four main cases as shown in Table 3. In
order to make it simple, Figure 2 illustrates the possible states
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Table 2: Plastic-elastic states inside pressure vessels cylinder.

𝑛

𝑖 𝑢
Limitations

𝑛 = 𝑛

3
+ 2

𝑢 = 𝐽

1

ln 𝑟
𝑟

+

𝐽

2

𝑛

4
− 𝑛

3
+ 2

𝑟

𝑛4−𝑛3+1
+

𝐽

3

𝑛

4
− 𝑛

3
− 1

𝑟

𝑛4−𝑛3−2
−

𝐽

4

𝑛

3
+ 𝑛

5

𝑟

−𝑛3−𝑛5−1
+

𝐽

6

𝑛

1
− 𝑛

2
+ 2

𝑟

1+𝑛1−𝑛2

+

𝐽

7

𝑛

1
+ 2

𝑟

𝑛1+1
−

𝐽

8

𝑛

3

𝑟

−𝑛3−1
+

𝑆

9

𝑟

𝑛

1
̸= −2

𝑛

2
̸= 𝑛

1
+ 2

𝑛

3
̸= 0

𝑛

4
− 𝑛

3
̸= −2, 1

𝑛

3
+ 𝑛

5
̸= 0

𝑛 = 𝑛

4
+ 4

𝑢 =

𝐽

1

𝑛

3
− 𝑛

4
− 2

𝑟

𝑛3−𝑛4−3
+ 𝐽

2

ln 𝑟
𝑟

−

𝐽

3

3

𝑟

−4

−

𝐽

4

𝑛

4
+ 𝑛

5
+ 2

1

𝑟

𝑛4+𝑛5+3
+

𝐽

6

2 + 𝑛

1
− 𝑛

2

𝑟

1+𝑛1−𝑛2

+

𝐽

7

2 + 𝑛

1

𝑟

1+𝑛1
−

𝐽

8

𝑛

4
+ 2

𝑟

−𝑛4−3
+

𝑆

9

𝑟

𝑛

1
, 𝑛

4
̸= −2

𝑛

2
̸= 𝑛

1
+ 2

𝑛

3
− 𝑛

4
̸= 2

𝑛

4
+ 𝑛

5
̸= −2

𝑛 = 𝑛

4
+ 1

𝑢 =

𝐽

1

𝑛

3
− 𝑛

4
+ 1

𝑟

𝑛3−𝑛4
+

𝐽

2

3

𝑟

2

+

𝐽

3

𝑟

ln 𝑟 + 𝐽

4

1 − 𝑛

4
− 𝑛

5

1

𝑟

𝑛4+𝑛5

+

𝐽

6

2 + 𝑛

1
− 𝑛

2

𝑟

1+𝑛1−𝑛2
+

𝐽

7

2 + 𝑛

1

𝑟

1+𝑛1

+

𝐽

8

1 − 𝑛

4

𝑟

−𝑛4
+

𝑆

9

𝑟

𝑛

1
̸= −2

𝑛

2
̸= 𝑛

1
+ 2

𝑛

3
− 𝑛

4
̸= −1

𝑛

4
̸= 1

𝑛

4
+ 𝑛

5
̸= 1

𝑛 = 2 − 𝑛

5

𝑢 =

𝐽

1

𝑛

3
− 𝑛

5

𝑟

𝑛3−𝑛5−1
+

𝐽

2

𝑛

4
− 𝑛

5
+ 2

𝑟

𝑛4−𝑛5+1
+

𝐽

3

𝑛

4
+ 𝑛

5
− 1

𝑟

𝑛4+𝑛5−2
+

𝐽

4

𝑟

ln 𝑟 +
𝐽

6

2 + 𝑛

1
− 𝑛

2

𝑟

1+𝑛1−𝑛2

+

𝐽

7

2 + 𝑛

1

𝑟

1+𝑛1
+

𝐽

8

𝑛

5

𝑟

𝑛5−1

𝑛

1
̸= −2

𝑛

2
̸= 𝑛

1
+ 2

𝑛

3
̸= 𝑛

5

𝑛

4
+ 𝑛

5
̸= 1

𝑛

4
− 𝑛

5
̸= −2

𝑛

5
̸= 0

𝑛 = 2 𝑢 =

𝐽

1

𝑛

3

𝑟

𝑛3−1
+

𝐽

2

𝑛

4
+ 2

𝑟

𝑛4+1
+

𝐽

3

𝑛

4
− 1

𝑟

𝑛4−2
−

𝐽

4

𝑛

5

𝑟

−𝑛5−1
+

𝐽

6

2 + 𝑛

1
− 𝑛

2

𝑟

1+𝑛1−𝑛2
+

𝐽

7

2 + 𝑛

1

𝑟

1+𝑛1
+𝐽

8
ln 𝑟+

𝑆

9

𝑟

𝑛

1
̸= −2,

𝑛

2
̸= 𝑛

1
+ 2

𝑛

4
̸= 1, −2

𝑛

3
, 𝑛

5
̸= 0

𝑛

1
= 𝑛

2
− 2

𝑢 =

𝐽

1

𝑛

3
− 𝑛 + 2

𝑟

𝑛3−𝑛+2
+

𝐽

2

𝑛

4
+ 4 − 𝑛

𝑟

𝑛4+3−𝑛
+

𝐽

3

𝑛

4
− 𝑛 + 1

𝑟

𝑛4−𝑛
+

𝐽

4

2 − 𝑛 − 𝑛

5

𝑟

2−𝑛−𝑛5
+ 𝐽

6

ln 𝑟
𝑟

+

𝐽

7

𝑛

2

𝑟

𝑛2−1
+

𝐽

8

1 − 𝑛

𝑟

−𝑛

+

𝑆

9

𝑟

𝑛 ̸= 1

𝑛

2
̸= 0

𝑛

3
̸= 𝑛 − 2

𝑛

4
̸= 𝑛 − 4, 𝑛 − 1

𝑛

5
̸= −2 − 𝑛

𝑛

1
= −2

𝑢 =

𝐽

1

𝑛

3
− 𝑛 + 2

𝑟

𝑛3−𝑛+1
+

𝐽

2

𝑛

4
− 𝑛 + 4

𝑟

𝑛4−𝑛+3
+

𝐽

3

𝑛

4
− 𝑛 + 1

𝑟

𝑛4−𝑛
+

𝐽

4

2 − 𝑛 − 𝑛

5

1

𝑟

𝑛+𝑛5−1
−

𝐽

6

𝑛

2

𝑟

−1−𝑛2

+ 𝐽

7

ln 𝑟
𝑟

+

𝐽

8

2 − 𝑛

𝑟

1−𝑛

+

𝑆

9

𝑟

𝑛 ̸= 2

𝑛

2
̸= 0

𝑛

3
̸= 𝑛 − 2

𝑛

4
̸= 𝑛 − 4, 𝑛 − 1

𝑛

5
̸= 2 − 𝑛

of FGM pressure vessels. FGM materials properties in this
essay are as follows:

(i) FGM qualities are variable and are dependent on the
power 𝑛 and radius 𝑟.

(ii) Stresses are also temperature dependent.
(iii) Body forces are not neglected.

These three assumptions are themain reason for the nonfeasi-
bility of Lame’s plane strain criterion 𝜎

𝑟
+𝜎

𝜃
= constant, since
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Table 3: Plastic-elastic states inside non-FGM pressure vessels cylinder.

Case/conditions B.C. Representative equations Constants to define

Plastic-elastic

Plastic region:
𝜎

Plastic
𝑟

(𝑟 = 𝑟

𝑖
) = −𝑝

𝑖

Elastic region:
𝜎

Elastic
𝑟

(𝑟 = 𝑟

𝑜
) = −𝑝

𝑜

Interface zone:
𝜎

Plastic
𝑟

(𝑟 = 𝑟

𝑝
) = 𝜎

Elastic
𝑟

(𝑟 = 𝑟

𝑝
)

𝜎

Plastic
𝜃

(𝑟 = 𝑟

𝑝
) = 𝜎

Elastic
𝜃

(𝑟 = 𝑟

𝑝
)

𝑢

Plastic
(𝑟 = 𝑟

𝑝
) = 𝑢

Elastic
(𝑟 = 𝑟

𝑝
)

Plastic region:
(56)
Elastic region:
((16a) and (16b))

𝐴

1
, 𝐴

2
in (30)

𝑐

3
in (57)-(58)

𝑆

10
in (64)–(66)

𝑟

𝑝

Elastic-plastic

Plastic region:
𝜎

Plastic
𝑟

(𝑟 = 𝑟

𝑜
) = −𝑝

𝑜

Elastic region:
𝜎

Elastic
𝑟

(𝑟 = 𝑟

𝑖
) = −𝑝

𝑖

Interface zone:
Same as plastic-elastic

Same as
plastic-elastic

Same as
plastic-elastic

Plastic-elastic-plastic

Plastic region 1:
𝜎

Plastic
𝑟

(𝑟 = 𝑟

𝑖
) = −𝑝

𝑖

Elastic region: no BC
Interface zone 1:
𝜎

Plastic
𝑟

(𝑟 = 𝑟

𝑝1
) = 𝜎

Elastic
𝑟

(𝑟 = 𝑟

𝑝1
)

𝜎

Plastic
𝜃

(𝑟 = 𝑟

𝑝1
) = 𝜎

Elastic
𝜃

(𝑟 = 𝑟

𝑝1
)

𝑢

Plastic
(𝑟 = 𝑟

𝑝1
) = 𝑢

Elastic
(𝑟 = 𝑟

𝑝1
)

Plastic region 2:
𝜎

Plastic
𝑟

(𝑟 = 𝑟

𝑜
) = −𝑝

𝑜

Interface zone 2:
𝜎

Plastic
𝑟

(𝑟 = 𝑟

𝑝2
) = 𝜎

Elastic
𝑟

(𝑟 = 𝑟

𝑝2
)

𝜎

Plastic
𝜃

(𝑟 = 𝑟

𝑝2
) = 𝜎

Elastic
𝜃

(𝑟 = 𝑟

𝑝2
)

𝑢

Plastic
(𝑟 = 𝑟

𝑝2
) = 𝑢

Elastic
(𝑟 = 𝑟

𝑝2
)

Same as
plastic-elastic

𝐴

1
, 𝐴

2
in (30)

𝑐

3
in (57)-(58)

𝑆

10
in (64)–(66)

𝑟

𝑝1
, 𝑟

𝑝2
, while 𝑐

3
and 𝑆

10
are duplicated

(𝑐

󸀠

3
, 𝑆

󸀠

10
) for two plastic cases

Consequently, there are 8 variables

Elastic-plastic-elastic

Elastic region 1:
𝜎

Elastic
𝑟

(𝑟 = 𝑟

𝑖
) = −𝑝

𝑖

Plastic region: No BC
Interface zone 1:
Same as
plastic-elastic-plastic
Elastic region 2:
𝜎

Elastic
𝑟

(𝑟 = 𝑟

𝑜
) = −𝑝

𝑜

Interface zone 2:
Same as
plastic-elastic-plastic

Same as
plastic-elastic

𝐴

1
, 𝐴

2
in (30)

𝑐

3
in (57)-(58)

𝑆

10
in (64)–(66)

𝑟

𝑝1
, 𝑟

𝑝2
, while 𝐴

1
, 𝐴

2
are duplicated

(𝐴

󸀠

1
, 𝐴

󸀠

2
) for two elastic cases

Consequently, there are 8 variables

rp

ro

ri

(a)

rp1

ro

ri

(b)

Figure 2: (a) Plastic-elastic or elastic-plastic state. (b) Plastic-elastic-plastic or elastic-plastic-elastic state.
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it is no longer valid for each of the assumptions separately
or combined (see App. 1 as brought up by Nayebi [12]).
This comprehension is also true for non-FGM vessels while
being dependent on temperature. In these cases, where the
elastic and plastic states are both mixed together, the plastic
state field relations will be found initially. Afterwards, the
elastic stress-strain relations will be calculated while being
dependent on the plastic constant due to interface conditions.
However, stress-strain expressions are affected not only by the
edge conditions (BC) but also due to the function shape. In
other words, equilibrium (2) together with elastic (see (16a)
and (16b)) and plastic (56) relations has crucial impact on the
final analytical solution shape. For the plastic-elastic state, 𝑐

1

will be found by applying BC (39) on the radial pressure (57)
as follows:

𝑐

1
= −𝑝

𝑖
−

𝜎

𝑦0

𝑛

3

(

𝑚

3

𝑟

𝑜

)

𝑛3

𝑟

𝑛3

𝑖
+

𝜌

0
𝜔

2

2 + 𝑛

3

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4+2

𝑖

− 𝐺

𝜌

0
𝜌

2

𝑛

4
− 1

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4−1

𝑖

−

𝑄

2𝜋𝑛

5

(

𝜌

𝜀

1

+ V𝜇
1
𝐼)(

𝑟

𝑜

𝑚

5

)

𝑛5
1

𝑟

𝑛5

𝑖

.

(69)

Similarly, in case of elastic-plastic, 𝑐
1
will be determined by

𝑐

1
= −𝑝

𝑜
− 𝜎

𝑦0
(

𝑚

3

𝑟

𝑜

)

𝑛3

𝑟

𝑛3

𝑜
(1 +

1

𝑛

3

)

+

𝜌

0
𝜔

2

2 + 𝑛

4

(

𝑚

4

𝑟

𝑜

)

𝑛4

𝑟

𝑛4+2

𝑜

− 𝐺

𝜌

0
𝜌

2

𝑛

4
− 1

(

𝑚

3

𝑟

𝑜

)

𝑛4

𝑟

𝑛4−1

𝑜

−

𝑄

2𝜋𝑛

5

(

𝜌

𝜀

1

+ V𝜇
1
𝐼)(

𝑟

𝑜

𝑚

5

)

𝑛5
1

𝑟

𝑛5

𝑜

.

(70)

All other parameters would be calculated according to the
elastic-plastic regions appropriate conditions including inter-
face zone as shown in Table 3. From here, the discussion will
pass directly to the elastic-plastic stress-strain field definition
of non-FGM pressure vessels.

5. General Elastic-Plastic Stress-Strain
Relations with Thermal and Body Forces
Influence of Non-FGM Pressure Vessels

Assuming that the tangential stress is greater than the radial
stress (𝜎

𝜃
> 𝜎

𝑟
> 𝜎

𝑧
) according to von Mises yield criterion,

𝜎

𝜃
− 𝜎

𝑟
= 𝜎

𝑦0
, (71)

while 𝜎
𝑦0

is constant. Substituting (71) into (2) leads to the
following relations for 𝜎

𝑟
and 𝜎

𝜃
:

𝜎

non-FGM-Plastic
𝑟

= 𝜎

𝑦0
ln 𝑟

− [

𝜌

1
𝜔

2

𝑟

2

2

+ 𝐺

𝜌

1
𝜌

2

𝑟

+ (

𝑄𝜌

2𝜋𝜀

0

+ 𝑄V
𝜇

0
𝐼

2𝜋

) ln 𝑟]

+ 𝑉

1
,

(72)

𝜎

non-FGM-Plastic
𝜃

= (𝜎

𝑦0
+ 1) ln 𝑟

− [

𝜌

1
𝜔

2

𝑟

2

2

+ 𝐺

𝜌

1
𝜌

2

𝑟

+ (

𝑄𝜌

2𝜋𝜀

0

+ 𝑄V
𝜇

0
𝐼

2𝜋

) ln 𝑟]

+ 𝑉

1
,

(73)

while 𝑉
1
is constant and will be calculated continuously. The

total displacement is calculated by using relations (72)-(73)
according to

𝜀

𝑇
= 𝜀

𝑟,𝑇
+ 𝜀

𝜃,𝑇
+ 𝜀

𝑧,𝑇
=

𝜕𝑢

𝜕𝑟

+

𝑢

𝑟

=

(1 + 𝜐) (1 − 2𝜐)

𝐸

(𝜎

𝑟
+ 𝜎

𝜃
) + 𝜀

𝑟,plastic + 𝜀𝜃,plastic
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+ 2 (1 + 𝜐) 𝛼𝑇,

(74)

while assuming that 𝜀
𝑟,plastic + 𝜀

𝜃,plastic = 0 and 𝐸, 𝛼 are
constants. Equation (74) will be written using expressions
(54a) and (54b):

𝜀

𝑇
=

(1 + 𝜐) (1 − 2𝜐)

𝐸

{(2𝜎

𝑦0
+ 1) ln 𝑟

− [𝜌

1
𝜔

2

𝑟

2

+ 2𝐺

𝜌

1
𝜌

2

𝑟

+ (

𝑄𝜌

𝜋𝜀

0

+ 𝑄V
𝜇

0
𝐼

𝜋

) ln 𝑟]

+ 2𝑉

1
} + 2 (1 + 𝜐) 𝛼 [𝑇

𝑖
+ (𝑇

𝑜
− 𝑇

𝑖
)

ln 𝑟/𝑟
𝑖

ln 𝑟
𝑜
/𝑟

𝑖

] .

(75)

First step before solving equilibrium (75) is to use the
following representation:

𝜕𝑢

𝜕𝑟

+

𝑢

𝑟

= 𝑈

1
ln 𝑟 + 𝑈

2
𝑟

2

+

𝑈

3

𝑟

+ 𝑈

4
, (76)

while 𝑈 coefficients are determined by

𝑈 =

(1 + 𝜐) (1 − 2𝜐)

𝐸

,

𝑈

1
= 𝑈(2𝜎

𝑦0
+ 1 −

𝑄𝜌

𝜋𝜀

0

− 𝑄V
𝜇

0
𝐼

𝜋

) +

𝑈

5
(𝑇

𝑜
− 𝑇

𝑖
)

ln 𝑟
𝑜
/𝑟

𝑖

,
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𝑈

2
= −𝑈𝜌

1
𝜔

2

,

𝑈

3
= −2𝑈𝐺𝜌

1
𝜌

2
,

𝑈

4
= 𝑈

5
[𝑇

𝑖
− (𝑇

𝑜
− 𝑇

𝑖
)

ln 𝑟
𝑖

ln 𝑟
𝑜
/𝑟

𝑖

] + 2𝑈𝑉

1
,

𝑈

5
= 2 (1 + 𝜐) 𝛼.

(77)

Differential equation (76) solution is composed of two parts,
homogenous and particular solution, according to

𝑢

Plastic
non-FGM = 𝑢

ℎPlasticnon-FGM
+ 𝑢

𝑝Plasticnon-FGM
, (78)

while homogenous and particular solutions will be derived in
one step. Multiplying both sides of (77) by 𝑟 (𝑟 ̸= 0) including
the rearrangement of equilibrium left side yields

𝜕

𝜕𝑟

(𝑟𝑢) = 𝑈

1
𝑟 ln 𝑟 + 𝑈

2
𝑟

3

+ 𝑈

3
+ 𝑈

4
𝑟, (79)

while the final solution for the displacement will be obtained
by simple integration over the radial direction 𝑟, by the form

𝑢non-FGM-Plastic = 𝑈1
𝑟

2

(ln 𝑟 − 1

2

) +

𝑈

2

4

𝑟

3

+ 𝑈

3
+

𝑈

4

2

𝑟

+

𝑈

6

𝑟

,

(80)

while𝑈
6
is constant. From here, plastic strains will be defined

by the following relations:

𝜀

FGM
𝑟,Plastic =

𝑢

𝑟

− (1 + 𝜐) 𝛼𝑇 − (

1 − 𝜐

2

𝐸

)(𝜎

𝜃
−

𝜐

1 − 𝜐

𝜎

𝑟
)

=

𝑈

1

2

(ln 𝑟 − 1

2

) +

𝑈

2

4

𝑟

2

+

𝑈

3

𝑟

+

𝑈

4

2

+

𝑈

6

𝑟

2
− (1

+ 𝜐) 𝛼 [𝑇

𝑖
+ (𝑇

𝑜
− 𝑇

𝑖
)

ln 𝑟/𝑟
𝑖

ln 𝑟
𝑜
/𝑟

𝑖

] − ⋅ ⋅ ⋅ − (

1 − 𝜐

2

𝐸

)

⋅ ((𝜎

𝑦0
+ 1) ln 𝑟 −

𝜌

1
𝜔

2

2

𝑟

2

− 𝐺

𝜌

1
𝜌

2

𝑟

− (

𝑄𝜌

2𝜋𝜀

0

+ 𝑄V
𝜇

0
𝐼

2𝜋

) ln 𝑟 + 𝑉
1
−

𝜐

1 − 𝜐

[𝜎

𝑦0
ln 𝑟 −

𝜌

1
𝜔

2

2

𝑟

2

− 𝐺

𝜌

1
𝜌

2

𝑟

− (

𝑄𝜌

2𝜋𝜀

0

+ 𝑄V
𝜇

0
𝐼

2𝜋

) ln 𝑟 + 𝑉
1
]) ,

(81)

𝜀

FGM
𝜃,Plastic =

𝜕𝑢

𝜕𝑟

− (1 + 𝜐) 𝛼𝑇 − (

1 − 𝜐

2

𝐸

)(𝜎

𝑟
−

𝜐

1 − 𝜐

⋅ 𝜎

𝜃
) =

𝑈

1

2

(ln 𝑟 + 1

2

) + 3

𝑈

2

4

𝑟

2

+

𝑈

4

2

−

𝑈

6

𝑟

2
− (1

+ 𝜐) 𝛼 [𝑇

𝑖
+ (𝑇

𝑜
− 𝑇

𝑖
)

ln 𝑟/𝑟
𝑖

ln 𝑟
𝑜
/𝑟

𝑖

] − (

1 − 𝜐

2

𝐸

)(𝜎

𝑦0

⋅ ln 𝑟 −
𝜌

1
𝜔

2

2

𝑟

2

− 𝐺

𝜌

1
𝜌

2

𝑟

− (

𝑄𝜌

2𝜋𝜀

0

+ 𝑄V
𝜇

0
𝐼

2𝜋

) ln 𝑟

+ 𝑉

1
−

𝜐

1 − 𝜐

[(𝜎

𝑦0
+ 1) ln 𝑟 −

𝜌

1
𝜔

2

2

𝑟

2

− 𝐺

𝜌

1
𝜌

2

𝑟

− (

𝑄𝜌

2𝜋𝜀

0

+ 𝑄V
𝜇

0
𝐼

2𝜋

) ln 𝑟 + 𝑉
1
]) .

(82)

The plastic region in non-FGM pressure vessels (inhomoge-
neous material) may be created in the bore or at the outer
cylinder regions (not in the middle) defined by its first and
secondary yielding states [14]. Hence, in order to determine
the value of 𝑉

1
constant like other constants, BC will be

applied through distinguishing between four main cases as
shown in Table 4. To make it simple, Figure 3 illustrates
the possible plastic states of non-FGM pressure vessels not
including the elastic-plastic-elastic state (Figure 2(b)). Non-
FGMmain assumptions are as follows:

(i) Material properties are constants (𝐸, 𝛼).
(ii) Stresses are temperature dependent.
(iii) Body forces are not neglected.

The second assumption for temperature distribution is the
main reason for the nonfeasibility of Lame’s plane strain
criterion 𝜎

𝑟
+ 𝜎

𝜃
= constant, since it is no longer valid for

each of the assumptions separately or combined (see App. 1
as brought up by Gibson [14]). In these cases, where elastic
and plastic states are both mixed together, in order to find
stress and strain relations, the plastic state field relations
will be found initially. Afterwards, the elastic stress-strain
relations will be calculated while being dependent on the
plastic constant due to interface conditions. However, it is
required to mention that in case of non-FGMmaterials while
body forces and temperature effects are both neglected elastic
stresses and strains will be calculated initially and plastic
stress strains constants will be dependent on that due to
interface zone conditions. For the plastic-elastic case, 𝑉

1
will

be determined by applying BC (39) for the radial pressure (72)
as follows:

𝑉

1
= −𝑝

𝑖
− 𝜎

𝑦0
ln 𝑟 +

𝜌

1
𝜔

2

𝑟

2

𝑖

2

+ 𝐺

𝜌

1
𝜌

2

𝑟

𝑖

+ (

𝑄𝜌

2𝜋𝜀

0

+ 𝑄V
𝜇

0
𝐼

2𝜋

) ln 𝑟
𝑖
.

(83)

Similarly, in case of elastic-plastic state,𝑉
1
will be determined

by

𝑉

1
= −𝑝

𝑜
− 𝜎

𝑦0
ln 𝑟
𝑂
+

𝜌

1
𝜔

2

𝑟

2

𝑂

2

+ 𝐺

𝜌

1
𝜌

2

𝑟

𝑂

+ (

𝑄𝜌

2𝜋𝜀

0

+ 𝑄V
𝜇

0
𝐼

2𝜋

) ln 𝑟
𝑂
.

(84)

All other parameters would be determined by the appropriate
conditions for the elastic-plastic regions including interface
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Table 4: Plastic-elastic states inside non-FGM pressure vessels cylinder.

Case/conditions B.C. Representative equations Constants to define

Plastic-elastic

Plastic region:
𝜎

Plastic
𝑟

(𝑟 = 𝑟

𝑖
) = −𝑝

𝑖

Elastic region:
𝜎

Elastic
𝑟

(𝑟 = 𝑟

𝑜
) = −𝑝

𝑜

Interface zone:
𝜎

Plastic
𝑟

(𝑟 = 𝑟

𝑝
) = 𝜎

Elastic
𝑟

(𝑟 = 𝑟

𝑝
)

𝜎

Plastic
𝜃

(𝑟 = 𝑟

𝑝
) = 𝜎

Elastic
𝜃

(𝑟 = 𝑟

𝑝
)

𝑢

Plastic
(𝑟 = 𝑟

𝑝
) = 𝑢

Elastic
(𝑟 = 𝑟
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Figure 3: (a) Plastic-elastic or elastic-plastic states with secondary yielding state. (b) Plastic-elastic-plastic state with secondary yielding state.

zone as shown in Table 4. Note that plastic-elastic-plastic
state is created by applying primary yielding pressure in
the inner (bore) and/or at the outer cylinder regions while
pressures may be different. During the act of pressure an
intermediate elastic region which has not been transformed
into the plastic state might exist. Boundaries of the elastic
state region should be evaluated using primary yield radius
(𝑟

𝑝1
, 𝑟

𝑝2
, 𝑟

𝑝
) according to Table 4. In themeantime, unloading

compressive stresses are developed upon specifically highly

enough values, and secondary yielding state may occur,
termed by the secondary yield radius, 𝑟

𝑠
, 𝑟
𝑠1
, and 𝑟

𝑠2
, as

shown in Figure 3. In order to decide whether secondary
yield stage is developed one should check the difference 𝜎

𝜃
−

𝜎

𝑟
where 𝑟

𝑠
< 𝑟

𝑝
for plastic-elastic case whereas the ratio

of comparison is reversed in elastic-plastic case (𝑟
𝑠
> 𝑟

𝑝
).

For detailed explanation see Gibson [14] (section 11.2.3 in
App. A2). Final remark for this section deals with general
stresses and strains calculation in 𝑧 direction. Evaluation of
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the longitudinal stresses and strains is based on the following
constitutive relation:

𝜎

𝑧
= 𝜐 (𝜎

𝑟
+ 𝜎

𝜃
) + 𝐸𝜀

𝑧
. (85)

Finally, one should subtract expression −𝜐𝜀
𝑧
from the strains

expressions in the radial and tangential directions, according
to

𝜀

𝑟
=

𝜕𝑢

𝜕𝑟

=

1

𝐸

(𝜎

𝑟
− 𝜐𝜎

𝜃
) + 𝛼𝑇 − 𝜐𝜀

𝑧
,

𝜀

𝜃
=

𝑢

𝑟

=

1

𝐸

(𝜎

𝜃
− 𝜐𝜎

𝑟
) + 𝛼𝑇 − 𝜐𝜀

𝑧
.

(86)

6. Summary and Future Topics

During this study, stress-strain relations of FGM and non-
FGM cylindrical vessels behavior in the presence of physical
phenomena like magnetic, gravitation, rotational, and elec-
trical charge were developed. In addition, a new power law
model for FGMmaterials was suggested and discussed.

In the next stage, development of plastic phase mathe-
matical model was performed based on von Mises criterion.
The elastoplastic states conditions of the FGM and non-FGM
vessels that were developed are as follows:

(i) FGM: elastic-plastic.
(ii) FGM: plastic-elastic.
(iii) FGM: plastic-elastic-plastic.
(iv) FGM: elastic-plastic-elastic.
(v) Non-FGM: elastic-plastic.
(vi) Non-FGM: plastic-elastic.
(vii) Non-FGM: plastic-elastic-plastic.

However, the case elastic-plastic-elastic in non-FGMpressure
vessels was not being discussed since it is not physically valid
due to vessels material homogeneity.

In the future, thorough examination including numerical
and experimental aspects of the developed elastic-plastic
states of FGM and non-FGM materials influenced by body
force effect should be performed.
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