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Photocure fiber-reinforced composites (FRCs) with varying chopped quartz-fiber lengths were incorporated into a dental
photocure zirconia-silicate particulate-filled composite (PFC) for mechanical test comparisons with a popular commercial
spherical-particle amalgam. FRC lengths included 0.5-mm, 1.0mm, 2.0mm, and 3.0mmall at a constant 28.2 volume percent. Four-
point fully articulated fixtures were used according to American Standards Test Methods with sample dimensions of 2×2×50mm3
across a 40mm span to provide sufficient Euler flexural bending and prevent top-load compressive shear error. Mechanical
properties for flexural strength, modulus, yield strength, resilience, work of fracture, critical strain energy release, critical stress
intensity factor, and strain were obtained for comparison. Fiber length subsequently correlated with increasing all mechanical
properties,𝑝 < 1.1×10−5. Although themodulus was significantly statistically higher for amalgam than all composites, all FRCs and
even the PFC had higher values than amalgam for all other mechanical properties. Because amalgams provide increased longevity
during clinical use compared to the standard PFCs, modulus would appear to be a mechanical property that might sufficiently
reduce margin interlaminar shear stress and strain-related microcracking that could reduce failure rates. Also, since FRCs were
tested with all mechanical properties that statistically significantly increased over the PFC, new avenues for future development
could be provided toward surpassing amalgam in clinical longevity.

1. Introduction

Dental professionalsmust assume responsibility over time for
providing a level of care that is expected to be no less than
continuous quality improvement above historically related
standards. Since the late 1960s, amalgam has experienced a
decline in the United States at over 75% of all restorations
to only about 50% by 1991 [1] and an overall 78% reduction
in placement from 157 million in 1977 to just 66 million in
1999 [2]. Conversely, in the United States, particulate-filled
composites (PFCs) have increased use in load-bearingmolars
and surpassed amalgam for the number of fillings placed in
the late 1990s [2]. It is known that the critical barrier for
both dental composites and amalgam is primarily bacterial
recurrent decay at the margins, but with lower PFC lifetimes

compared to the amalgam [3–25]. On the other hand, future
improvement is expected for PFCs since instruction for
posterior placement was minimal in most dental schools
before 1990 increasing to a level where PFCs account for
about 30% of all posterior fillings in a 2005 survey [26]. In
addition, improved materials and clinician experience have
significantly reduced failures of the posterior PFC [26, 27].
Regarding the need for continual dental composite research
and development, amalgam has further experienced several
problems related to potential toxicity-related biocompatibil-
ity [28] that has resulted in several countries discouraging and
even banning silver-alloy filling placement [27].

Amalgam has been mechanically tested historically by
compressive stress and occasionally by tensile tests that
produce results on the order of about 6–11x lower than
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compressive values [29–32]. Conversely, the more recent
development of the dental PFC has been historically tested
by flexural-test standards developed through the Ameri-
can National Standards Institute (ANSI) and International
Standards Organization (ISO) [33] that should produce
values very close to tensile tests ideally. In addition, photo-
cure chopped or discontinuous fiber-reinforced composites
(FRCs) have demonstrated highly significant mechanical
property improvements over similar PFCs during flexural
testing [34–37]. Significant statistical differences for FRC
mechanical property improvements over PFC included flex-
ural strength, modulus, yield strength, resilience, work of
fracture (WOF), critical strain energy release (𝑆

𝐼𝑐
), critical

stress intensity factor (𝐾
𝐼𝑐
), and strain that in turn appear

to be important for future development of restorative dental
materials.

To better understand general advantages and disad-
vantages between amalgams and composites toward future
material development, equivalent flexural-test results should
be available for comparison. Therefore, a range of chopped
quartz-fiber FRCs at different lengths, a quality zirconia-sil-
icate PFC, and a standard commercial amalgam were exten-
sively tested by advanced four-point flexuralmethods accord-
ing to American Standards Test Methods (ASTM) protocol.

2. Materials and Methods

2.1. Samples. Quartz fibers (Saint-Gobain, QPC Products,
Lexington, KY), supplied as yarn at 99.99% pure silica, were
chopped to fiber lengths of 0.5, 1.0, 2.0, and 3.0mm and
silanated with 1.0 wt% 3-methacryloxypropyltrimethoxysi-
lane (MPTMS) (DOW Chemical, Midland, MI) in 70% 2-
propanol, dried overnight, and heated briefly at 120∘C. The
silanated discontinuous quartz fibers were then impregnated
with a photocure resin at 70wt% fibers.The bisphenyl A vinyl
ester resin consisted of 2,2-bis[𝑝-(2󸀠-hydroxy-3󸀠-methacry-
loxypropoxyphenyl)]propane (BisGMA) resin (Esstech, PA)
and was combined with 2.5 wt% triethylene glycol dimetha-
crylate (TEGDMA) monomer (Esstech, Essington, PA) to
reduce viscosity. Resin systems were optimized to photocure
by incorporating photooxidants camphorquinone (Aldrich,
Milwaukee, WI) 0.6 wt% and Irgacure 819 (Ciba, Tarrytown,
NY) 1.0 wt%, and photoreductant 2-dimethylaminoethyl
methacrylate (Aldrich, Milwaukee, WI) 1.0 wt%. Adhesion
promoter SR9016 diacrylate (Sartomer,WestChester, PA) and
MPTMS organosilane were added to the photocure resin as
well at 2.0 and 1.0 wt%, respectively. Silanated chopped quartz
fibers were preimpregnated using the photocure resin system.
The resultant chopped quartz-fiber-reinforced compounds
were then thickened with 0.3 wt% zirconia-silicate filler from
3M Corporation (St. Paul, MN). The zirconia-silicate partic-
ulate had beenmilled into spheres by a proprietary process to
provide a uniform particle distribution from 10 nm to 3.5 𝜇m.
The zirconia-silicate particulate thus provides a hydrolytically
stable thickener with high atomic numbers for radiographic
purposes. BisGMA vinyl ester resin and TEGDMAmonomer
were then combined at a 50 : 50 ratio in a similar photo-
cure system for the addition of 84.5 wt% or 66 vol% 3M
Corporation zirconia-silicate particulate supplied silanated

by the manufacturer. The resultant PFC provided a clean
photocure system identical to a Z100� commercial prod-
uct with full free-radical activity without residual storage
free-radical contaminants. The resultant paste with possible
additional zirconia silicate was then used to incorporate all
fiber length groups preimpregnated with photocure resin
for final molding compounds with 30wt% (uniform 28.2𝑉

𝑓
)

fibers.
Samples 2×2×50mm3meeting AmericanNational Stan-

dards Institute (ANSI)/American Dental Association (ADA)
specification number 27 but for a longer span at 40mm
rather than 20mm were prepared with a split mold clamped
between two glass plates. Epilar 3000 (3M Corporation,
St. Paul, MN) was used for the photocure initiation and
monitored with a Demetron Radiometer daily to ensure
intensities of concentrated light at a wavelength of 470 nm
were above 500mW/cm2. The Epilar had a 12mm diameter
light guide to photocure samples. Samples were irradiated
by a small overlapping sequence for a total of 20 s on top
and bottom, through the glass plates, 20 s on top and bottom
after removing the glass plates, and from the sides for 1min
each with a focused 2mm diameter beam. Excess material
was removed from each sample followed by a sanding process
down to 600-grit silicon carbide. Samples were then placed in
a 37∘C water bath for 24 h, primarily as a control for uniform
postcure before mechanical testing.

Tytin� Regular 600mg amalgam capsules (Kerr, Orange,
CA) supplied as spherical particulate and 42.5% mercury
(Hg) were triturated according to the manufacturer instruc-
tions and placed by increments in a 2 × 2 × 50mm3
mold. Further, 2 operators were employed with an electric-
pneumatic condenser to ensure that all amalgam increments
were placed under 2 minutes. In addition, samples were
allowed to set for a 48-hour period before mechanical test-
ing as the manufacturer recommended 24-hour-set period
produced unacceptable highly inferior results for all prop-
erties except modulus. Conversely, modulus was actually
temporally excessive during a tremendous transformation
period in mechanical properties between 24-hour and 48-
hour amalgam set.

2.2. Flexural-Test Methods. Flexural-test methods recom-
mended for dental materials by ANSI and ISO are not
accepted ASTM flexural-test methods due to lack of
pure-Euler bending. ASTM recommends a span-to-depth
ratio of at least 16 to prevent compressive top-shear load-
ing that reduces mechanical test results whereas current
dental standards recommend a span-to-depth ratio of just
10 [36]. In fact, results for PFCs and FRCs with identical
sample dimensions demonstrated significant improvements
for flexural quarter-point mechanical properties in modulus,
flexural strength, and WOF when extending 20mm flexural
lengths to a 40mm span [36]. In the current investigation,
quarter-point 20mm spaced loading noses with 40mm span
and self-articulating fixtures were used for the mechan-
ical testing. Four specimens from the PFC group, each
FRC length group (0.5mm, 1.0mm, 2.0mm, and 3.0mm),
and the amalgam group were tested. An MTS inspec-
tion machine (858 MiniBionix) with a crosshead speed of
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0.5mm/minute was used to mechanically test flexural prop-
erties by

Flexural Strength (𝜎): 𝜎 = 3𝐹𝐿
4𝑏𝑑
2

(1)

Flexural Modulus (𝐸): 𝐸 = 0.17𝐿
3
𝑀

𝑏𝑑
3
, (2)

specifying 𝐹 as maximum load, 𝐿 as span length, 𝑏 as sample
width, 𝑑 as sample depth, and𝑀 as slope of the tangent to the
initial straight line on the steepest part of the load-deflection
curve, and

Yield Strength (YS): YS =
3𝐹
𝑦
𝐿

4𝑏𝑑
2
, (3)

for 𝐹
𝑦
where plastic deformation yielding starts as deflection

increases rapidly beyond the initial steep load-deflection
slope.

Resilience is measured in kJ/m2 units where energy was
integrated by numerical methods from the load-deflection
curve up to the yield point for cross-sectional area toughness
[35, 36].

WOF is measured in kJ/m2 units where energy was
integrated by numerical methods from the load-deflection
curve out past maximum load until the force dropped back
to no more than 5% deflection past critical load for cross-
sectional area toughness [35, 36].
𝑆
𝐼𝑐
is measured in kJ/m2 units where crack-propagation

energy was integrated by numerical methods for area during
Mode 𝐼 (𝐼) Euler-tensile flexural bending under the load-
deflection curve from peak or critical load (𝑐) until the force
dropped back to nomore than 5% deflection past critical load
[35, 36]. 𝑆

𝐼𝑐
toughness is then a function of energy relative to

the material cross-sectional area.
𝐾
𝐼𝑐
in MPa⋅m1/2 units can be derived by direct numerical

integration methods and (1) for strength and (2) for modulus
from the load-deflection curve by (4) where correction
factors (h) are replaced by real-data-calculated values for 𝜎
and the WOF that serve the same purpose [37] whereby

𝐾
𝐼𝑐
= 𝜎 (𝜋𝑎)

1/2
= h (𝐸𝐺

𝐼𝑐
)
1/2

= h (𝐸𝑆
𝐼𝑐
)
1/2 or (𝜎WOF)1/2 + (𝐸𝑆𝐼𝑐)

1/2
.

(4)

We further signify 𝑎 as the crack tip length or half the crack
length and 𝐺

𝐼𝑐
as strain energy release rate equivalent to

𝑆
𝐼𝑐
described in more detail in a previous publication [37].

h is replaced as (𝜎WOF)1/2 representing the starter crack
up to critical load as an additive correction factor [37]. The
convenience of accurate-real-data values easily calculated
from the load-deflection curve is then available without
suspect h correction factors greatly criticized by the United
States National Academy of Sciences as not providing bulk-
material results [38]:

Strain (𝑟): 𝑟 = (4.36 ∗ 𝐷𝑑)
(𝐿
2
)
, (5)

further denoting 𝑟 without units at maximum strain in the
outer fibers at midspan on the tensile surface at maximum
load and𝐷 as sample beam deflection as digitally provided at
maximum bend strength by (5).

2.3. Failure Analysis. Fracture theory was developed through
a correlation matrix where mechanical properties were ana-
lyzedwith the vertical-crack lengthmeasured from the lower-
tensile-failure surface as a ratiowith sample depth of the com-
posite samples and further compared to fiber length. Imaging
was done by Nikon digital micrographs for crack-depth mea-
surements. In addition, characterization was accomplished
by scanning electron micrographs (SEMs) for composites
comparing amalgamNikonmicrographs for sample fracture.

2.4. Statistics. Regression analyses were done using Statistica
and Microsoft Excel. 𝑡-tests were carried out by unequal
variances with Microsoft Excel. Marginal level of uncertainty
was set at 𝛼 = 0.05.

3. Results

3.1. Mechanical Properties. Mechanical flexural-test results
for the PFC, FRC at 3.0mm length, and amalgam are shown
in Figures 1(a)–1(h). Further, linear regression is calculated
for composite mechanical properties between the PFCs at
0.0mm to 0.5mm, 1.0mm, 2.0mm, and 3.0mm quartz-fiber
lengths. Table 1 further presents group averages and statistical
differences by 𝑝 values between the amalgam and all fiber
length groups with the PFC group for each mechanical test
result.

Amalgam was tested at different set periods and flexural-
test span conditions presented in Figure 2 and Table 2.

3.2. Correlation Coefficient Fracture Analysis. A correlation
matrix, Table 3, was developed with both Pearson product
correlation coefficients and 𝑝 values to examine relation-
ships for improvements with fiber length and many of the
mechanical properties including failure analysis by the degree
of fracture depth, in addition to the examined parameter
interrelationships.

3.3. Imaging Analysis. SEM composite images in Figures
3(a)–3(e) show noticeable lessening in open tensile flexural
fractures from the PFC that continually decrease by increas-
ing fiber lengths from 0.0mm up to 3.0mm. In addition,
Figure 3(f) at higher SEM magnification provided examples
from a crack image where possible fiber fracture, fiber pull-
out, and fiber bridging were occurring. Images for amalgam
characterization by Nikon micrographs further demonstrate
representative samples for fracture failure in Figures 3(g)-
3(h). The sample in Figure 3(g) was chosen as the amalgam
bottom surface with the least amount of cracking.

4. Discussion

Fibers dominate FRC material properties evidenced by the
uniformpositive fiber length regressions for the experimental
results in Figures 1(a)–1(h), 𝑝 < 1.1 × 10−5, and overall
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Figure 1: Mechanical properties for PFC, PFC with 28.2 vol% 3.0mm chopped quartz fibers, and amalgam with 48 hr set. Regression with
𝑅
2 variability and 𝑝 values for chopped quartz-fiber lengths of 0.0mm, 0.5mm, 1.0mm, 2.0mm, and 3.0mm. (a) Flexural strength, (b)

modulus, (c) yield strength, (d) resilience, (e) work of fracture, (f) critical strain energy release, (g) critical stress intensity factor, and (h) strain
at peak load. For comparisons: human dentin tensile strength 104MPa and modulus 13.7 GPa [39] and 𝐾

𝐼𝑐
soaked in water approximately

2.5MPa⋅m1/2 [40]; human enamel modulus 48GPa [41] to 94GPa and𝐾
𝐼𝑐
0.77±0.05MPa⋅m1/2 [42]; human bone longitudinal, cortical, and

tensile strength 70–150MPa, yield strength 30–70MPa, and modulus 15–30GPa [43].
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Table 1: Averages and 𝑡-test (𝑝 value) comparisons between composites and amalgam.

Fiber
length
(mm)

Flexural
strength
(MPa)

Modulus
(GPa)

Yield
strength
(MPa)

Resilience
(kJ/m2)

WOF
(kJ/m2) 𝑆

𝐼𝑐
(kJ/m2) 𝐾

𝐼𝑐

(MPa⋅m1/2)
Strain at
peak load

0.0 (PFC) 117.6
(0.0012)

19.5
(0.00102)

95.4
(0.01337)

3.03
(0.01882)

4.48
(5.1 × 10−5)

0.036
(0.16055)

1.71
(0.06584)

0.0079
(0.9740)

0.5 113.8
(0.1399)

23.0
(0.0008)

92.8
(0.0372)

2.35
(0.0400)

3.91
(0.0984)

0.075
(0.1794)

1.93
(0.07953)

0.0062
(0.9189)

1.0 173.6
(0.00318)

26.2
(0.001875)

126.1
(0.00018)

3.84
(0.00083)

8.7
(0.01879)

0.097
(0.0584)

2.77
(0.00797)

0.0084
(0.2993)

2.0 373.9
(5.2 × 10−5)

34.0
(0.00116)

329.8
(0.00168)

19.7
(0.00287)

28.2
(0.00046)

1.882
(0.0338)

11.01
(0.00579)

0.0121
(0.1290)

3.0
374.9
(2.2 ×
10−8)

31.5
(0.01236)

343.5
(0.00014)

23.3
(0.00348)

30.1
(4.2 ×
10−5)

2.4
(0.00296)

12.01
(3.89 × 10−5)

0.0131
(0.0677)

Amalgam 86.0 43.6 62.6 0.67 1.40 0.013 0.91 0.0078

Table 2: Mechanical properties for Tytin alloy at 24 hours and 48 hours (st. dev.).

Mechanical property 24-hour 3 pt. 20mm span 24-hour 4 pt. 40mm span 48-hour 4 pt. 40mm span
Flexural strength (MPa) 0.44 (0.04) 0.19 (0.02) 86.00 (10.64)
Modulus (GPa) 272.57 (107.82) 197.64 (55.94) 43.63 (6.13)
Yield strength (MPa) 0.44 (0.04) 0.19 (0.02) 62.56 (13.50)
Resilience (kJ/m2) 0.001 (0.000) 0.001 (0.000) 0.67 (0.23)
WOF (kJ/m2) 0.001 (0.000) 0.001 (0.000) 1.40 (0.28)
𝑆
𝐼𝑐
(kJ/m2) 0.00015 (0.00010) 0.00008 (0.00001) 0.013 (0.012)
𝐾
𝐼𝑐
(MPa⋅m1/2) 0.19 (0.03) 0.12 (0.02) 0.91 (0.52)

Strain 0.0022 (0.0009) 0.0021 (0.0001) 0.0078 (0.0050)
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Figure 2: Chart for amalgam flexural-test results at 24 hours and 48
hours with both 3-point bend and 4-point bend spans at different
lengths.

mechanical test correlations in Table 3 also with unusually
low 𝑝 values. Although 0.5mm fibers produced a gen-
eral small decrease in many of the mechanical properties
lower than the PFC, Table 1, micromechanics predict fiber-
related defects due to full debonding of fibers at the same
approximate critical length [35]. All composite mechanical
properties were better than amalgam except for modulus

that was statistically significantly higher for amalgam than
all composites. Correlation between fiber lengths and failure
examined by degree-of-fracture values was extremely statis-
tically significant, 𝑝 < 2.1 × 10−9. Regarding failure analysis,
fiber length had the highest linear relationship with degree-
of-fracture depth (𝑅 = −0.940672), followed by WOF (𝑅 =
−0.928299), and then flexural strength (𝑅 = −0.924982) and
𝐾
𝐼𝑐
(𝑅 = −0.896627). In terms of validity for the current

amalgam mechanical test comparisons, previous tensile tests
for 16 different amalgams have produced values in a range
from 42.5 to 62.1MPa [29–32]. In contrast, tensile failure
by the existing investigation with ASTM flexural testing
gave a much higher amalgam average of 86MPa but at the
extended 48-hour set. Also, a possibility exists that amalgam
mechanical propertieswould continue to increase over longer
times. In fact, in a 1949 study, amalgam compressive or
crushing strength was shown over a six-month period to
slowly continually increase after the initial 6–8-hour set [30].

Tested values on modulus were higher for the amalgam
(43.6GPa) over the composites (19.5–34.0GPa) and closer
to approximate values for enamel (48–94GPa) [41, 42].
Conversely FRC moduli with fiber lengths from 0.5mm
to 3.0mm in a range from 23 to 34.0GPA and the PFC
at 19.5 GPA could be compared more to dentin (13.7 GPa)
[39] and bone (15–30GPa) [43]. More importantly, although
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Flexural fracture samples: (a) SEM 30x, no fibers; (b) SEM 30x, 0.5mm fibers; (c) SEM 30x, 1.0mm fibers; (d) SEM 30x, 2.0mm
fibers; (e) SEM 30x, 3.0mm fibers; (f) SEM 200x fiber fracture, bridging, and pullout. Scale bar: 100 𝜇m. (g) Nikon micrograph amalgam
bottom surface, scale bar: 1.0mm. (h) Nikon micrograph amalgam top surface, scale bar: 1.0mm.
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Table 3: Correlation coefficient matrix fracture analysis (𝑝 values).

Fiber length Flexural
strength

Modulus WOF
𝑆
𝐼𝑐

𝐾
𝐼𝑐

Degree
fracture
depth

Length 1.000000 0.928050
(1.0 × 10−8)

0.861638
(2.1 × 10−6)

0.934687
(4.7 × 10−9)

0.869319
(1.4 × 10−6)

0.915848
(3.8 × 10−8)

−0.940672
(2.1 × 10−9)

Strength 1.000000 0.931744
(6.7 × 10−9)

0.996124
(2.2 × 10−19)

0.913242
(4.9 × 10−8)

0.975863
(1.1 × 10−12)

−0.924982
(1.5 × 10−8)

Modulus 1.000000 0.908892
(7.2 × 10−8)

0.810965
(2.5 × 10−5)

0.893058
(2.7 × 10−7)

−0.830431
(1.1 × 10−5)

WOF 1.000000 0.933409
(5.5 × 10−9)

0.984717
(2.4 × 10−14)

−0.928299
(1.0 × 10−8)

𝑆
𝐼𝑐 1.000000 0.977671

(5.9 × 10−13)
−0.844474
(5.4 × 10−6)

𝐾
𝐼𝑐 1.000000 −0.896627

(2.0 × 10−7)
Fracture 1.000000

both PFC and FRC mechanical properties were superior to
amalgams for strength and toughness, the reverse clinical-
longevity association between PFCs and amalgam [3–25]
then might possibly suggest other alternate composite failure
mechanisms related to the mechanical property for modulus
or approximately stiffness. As an example, PFC material
with a lower modulus would resist strain less than amalgam
metal and deform through interlaminar shear stress more
into the cavity as another factor related to breaking the
marginal cavity bond with the higher modulus tooth enamel.
In addition, lower modulus PFC would strain more to
initiate polymer matrix microcracking. In fact, applied stress
accelerates moisture uptake by opening up polymer voids
and initiating microcracks that will adsorb more water [44].
As the PFC filling distorts under a load by shearing against
the tooth wall and opens the cavity margin with adhesive
bond breaking, microcracking would be most detrimental at
the enamel and filling marginal interface. Subsequent margin
defects could then lead to even more moisture ingress with
bacterial infiltration further leading to bigger failure rates
with secondary decay. On the other hand, from test results,
moduli for the FRCs can significantly statistically increase
over the dental PFC with increasing fiber lengths to reduce
problems related to interlaminar shear stress deformation of
the filling material at the bond interface with the cavity tooth
margin and also strain-related microcracking.

In terms of general adhesive bonding to joints, polymer
matrix adherends are more sensitive to interlaminar shear
stress and tensile stresses thanmetals [45]. Again,masticatory
loading onto the cavity margin would produce interlaminar
shear stress deflections more pronounced in a dental PFC
with lower modulus than a stiff metal alloy filling material.
In effect, the lower modulus polymer adherend material will
deflect by interlaminar shear stress to a much greater extent
under masticatory loading than a stiffer metal alloy amalgam
to more easily break and open up the marginal cavity bond.
As a countermeasure for polymer matrix materials, bond
deflections are limited by the presence of high-modulus fibers

[45]. Further, polymer matrix adherends are susceptible to
moisture that is not the case with metals where moisture
is found on the adhesive layer but is confined mostly to
exposed edges on the metal [45]. As a result, chopped fibers
in mat carriers for adhesives are commonly used to prevent
moisture ingress into the bond [45]. Also, withmicrocracking
dimensional instability increases moisture adsorption rates
and levels ofmoisture [44, 45]. Althoughmoisture adsorption
increases with polarity of the polymer chain molecules,
diffusion is the chief mechanism for moisture ingress where
water molecules enter the polymer and reside in positions
between polymer chains that become forced apart [29]. As
water enters the polymer, the chains become less entangled
and more mobile so that the polymer plasticizes or softens
and also hydrolyzes [29, 44–46] with loss of composite
mechanical properties [45] such as strength andmodulus [44,
46]. Resin hydrophilicity as tendency for a polymer to adsorb
moisture has been shown to reduce polymer strength after
water storage [47]. Also, dental PFCs have shown significant
reductions in strength when stored in water [48]. Possible
strain-relatedmicrocracking from lowermodulus dental PFC
materials would then appear to accelerate such moisture
ingress not only at the adhesive joint but also within the
entire PFC. The fact that dental PFCs are not recommended
by the American Dental Association in stress bearing areas
[49] may be due to loss of mechanical strength particularly
over time from water adsorption. Further, deeper, larger
fillings with more surfaces are identified as reasons for using
amalgam instead of composite [20, 50, 51]. In addition, as
filling sizes increase, cavity margins have a greater possibility
of encountering stresses that would more easily deform a
lower modulus PFC to break the adhesive bond. So, although
mechanical properties with strength and fracture toughness
for PFCs are better than amalgam in an air environment, over
time, in an oral moisture environment, loss of mechanical
properties with more applied loading stress at the margins
could be the reason why PFCs are considered unsuitable for
larger posterior fillings.
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Concerning another major marginal interface problem,
polymer matrix composites shrink during polymerization
curing that produces residual stresses along the stationary
surface walls [29, 52]. One of the most characteristic features
for free-radical covalent bonding from a resin to solid poly-
mer structure with increasedmodulus and density properties
becomesmost apparent inmaterials that polymerize by cova-
lent chain-growth polymerization as the linear/volumetric
cure shrinkage [29, 45, 52–56]. In fact, free radicals are engi-
neered for specific and accurate polymerization application
to cross-link molecules with subsequent cure shrinkage and
possibly warpage as two of the most distinguished material
problems of extensive polymer electron-pair covalent bond-
ing [56]. Because polymerization shrinkage is not necessarily
perfect with inhomogeneous material, nonuniform electron-
pairing during curing in addition to increasing the modulus
or stiffness can also create residual internal stresses to
produce warpage of materials which weakens parts [45, 56].
Subsequent residual cure stresses from polymerization cure
shrinkage into the bulk of the material are then prone to
opening up a defect at the margins of dental PFCs [29,
52]. In fact, polymerization cure shrinkage is considered a
major clinical problem with dental PFCs that can produce
bacterial sensitivity [57].On the other hand,with incremental
curing, FRCs shrink during the polymerization cure process
by stabilizing the polymer matrix with the high-modulus
fibers in a planar fashion onto the floor of the cavity and
a wall or margin with reduced shrinkage along the fiber
axis [58]. Further, 9 𝜇m diameter fibers in a polymer matrix
molding compound will consolidate by pressure along a
cavity wall during packing insertion to squeeze unwanted
lower molecular weight monomers, excess resin, and particle
filler toward the cavity surface and away from the margins
sealing themargin interfacewith an elevated concentration of
high-modulus fibermaterial that is insoluble [34, 58]. Atomic
Force Microscopy (AFM) that provides better visual images
of FRC molding paste compressed by a flat instrument from
another study illustrates the top surface layer of PFC pressed
up to the surface when compared to the same sample but with
a chip exposing an underlying chopped quartz-fiber yarn,
Figure 4. Another AFM image shows how a 9𝜇m diameter
individual quartz fiber will mold by bending 90∘ without full
breakage and PFC paste that fills all space around the fiber
during consolidation, Figure 5. Figures 4 and 5 were obtained
with permission from Dr. Petersen [59, Figures 1–3].

As a tacky paste without a viable consolidation process,
the dental PFC presents another major serious concern for
voids when developing a filling material that more success-
fully competes with amalgams in clinical longevity [58]. On
the other hand, FRCs increase viscosities as discontinuous
fibers are added [60]. Consequently, common dental PFC
voids [58, 61–66], Figure 6, can be practically eliminated
by FRCs that mold with consolidating properties [58, 61].
Problems with voids have been sufficiently notable that the
American Dental Association Council of Dental Materials
at the November 1980 meeting suggested specifications be
set for X-ray density radiopacification in class II restorations
that describes cavities with loss of a tooth lateral wall
which included the requirement to detect “major voids” [62].
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Figure 4: AFM surface plots of PFC material. (a) Portion of sample
covered only by polymer and particulate with aspect ratios. (b)
Portion of sample with chip defect exposing underlying chopped
quartz yarn.

Figure 5: AFM 2D laser scan of 9.0 𝜇m diameter quartz fiber bent
without full breakage at about 90-degree angle. Molding pressure
squeezed particulate and resin toward the surface covering all
fibers in the composite before photocuring. Measurement length:
9.39 𝜇m.
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(a) (b)

Figure 6: X-ray showing occlusal and class II PFC voids from a typodont mock-clinical study [77] (a) and class II photocured PFC gingival
overhang (b).

Composite voids are most often left unnoticed until an X-ray
or radiograph is carried out much later. Subsequent marginal
moisture leakage in voids predisposes the filling to common
bacterial ingress with pain often experienced [57]. Also, den-
tal students were found to produce class II failures 10x greater
for composites than with amalgams with voids charted from
X-rays as one of the common reasons for replacement at no
cost [63]. Voids generally incorporate into the dentin hybrid
layer as porosities at the gingival/adhesive interface as a
possible reason for secondary decay acid-based deterioration
adhesive error and loss of bond strength [64]. Further, voids
in a class II cavity were found to be detrimental clinically
for adhesive bond strength [65]. Common class II gingival
overhang [14, 67, 68], Figure 6, also occurs due to difficult-
to-control runny excess PFC that flows under the matrix
band as another source for bacterial collection after cure-set
hardening. By controllable thickened viscosity, FRCs can be
incrementally placed carefully by wedge sealing and explorer
cleaned before photocuring to prevent such runny flow
overhangs that may not be seen by X-ray with radiolucent
and lower-viscosity photocure bonding agent. Also, without
proper consistency, dental PFCs cannot condense or pack
similar to the amalgam that often prevents reestablishment of
the interproximal contact in a class II filling [58, 61]. In fact,
the past two most commonly mentioned clinical complaints
regarding class II composites have been frequent poor inter-
proximal contacts [69–76] and void defects in the proximal
box [69].

Wear concepts for “sheltering” are based on the fact that
wear for dental PFCs increases with wider cavity prepara-
tions as the enamel margins shelter the dental composite
[78]. The sheltering concept was then extended successfully
with micro and hybrid composites and finally heavily filled
nanocomposites where smaller particles fit closer together to
protect the polymer matrix to wear less than composites with
larger filler diameters in the low micrometer range [78, 79].
Without agglomeration theoretically only about 1.5–6 vol%
filler at about 40 nm diameter is needed for interparticle
distances of 100 nm that provide adequate polymer protec-
tion, but with agglomeration around 35 vol% 40 nm diameter
filler is needed [78]. Also, larger higher modulus particles
shear from applied pressure during wear into the lower-
modulus polymer matrix and with polymer microcracking

debond from the polymer and increase wear at a greater rate
without smaller particle protection [78, 80]. Conversely, wear
improves for FRCs in conjunction with underlying mechan-
ical strength properties that support loading, particularly as
the reinforcement length extends beyond the average plowing
groove [81, 82]. Further, fibers cannot debond by shearing
into the soft polymer but peel off in worn thin sheets [82] and
wear slowly as exceptionally strong materials for a smooth
surface [58]. Also, fibers above critical lengths with a dental
PFCmatrix have been shown towear even better than enamel
[58].

Another practical FRC advantage over amalgam includes
bonding with tooth structure. Composite bonding allows a
more conservative cavity preparation with less tooth weak-
ening than amalgam that further requires bulk for strength
[26, 83]. In addition, thermoset polymer interfaces have been
extensively studied for cost-effective repair, bonding, and
structural joining to avoid complete replacement [84]. In
fact, composite bonded repair is instructed by over half of
all United States dental schools to reduce iatrogenic under-
mining sound tooth structure [85]. Further again, FRCs have
shown the ability to pack better than amalgam in restoring
the interproximal contact, consolidate well to eliminate voids
common with PFCs, and can provide pressure infiltration of
resin for enhanced adhesive bonding [58, 61, 66]. Current
standard dental adhesives require acid etching to provide
enamel microporosity and open the dentinal tubules for
micromechanical interlocking and with a subsequent rinse
to remove the acid [86]. Alternatively, newer types of cement
include the acid in the primer without rinse to provide amore
wettable or hydrophilic and polar surface to help infiltrate
dentinal tubules with resin adhesive [86]. But, adhesives that
etch and rinse provide more long-lasting bonds than most
adhesives that incorporate an acid [87]. Further, adhesive
bond tests that etch and rinse have shown nanofillers dissolve
in a water rich zone in the adhesive layer so that experts
believe removing water from the resin-dentin interface is
further crucial to bonding [88]. Since water diffusion into
an adhesive with soluble release of unpolymerized monomer
is associated with polymer softening and hydrolytic damage
[89], nonpolar or hydrophobic methods that reduce the
amounts of acid in the bond appear to be beneficial. Glass
ionomer cement similarly has residual acids to interact
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well for adhesion to moist substrates [90]. However, when
comparing marginal integrity of glass ionomers to resin-
based cement after thermocycling at 5∘C, 37∘C, and 55∘C for
250 cycles and immersion in artificial saliva for 15 days, glass
ionomer cement demonstrated highly significant inferior
bonds with greater marginal gaps than conventional resin
cement [91]. In efforts to correct bond problems, polymer
matrix FRCmolding compounds have thickened consistency
for effective placement so that pressure can be applied [58]
during adhesive bonding after complete acid elimination and
water removal by solvent/air drying to apply force and push
resin into the tooth deep for micromechanical interlocking.
Along the margins monomer, resin and particulate are
squeezed away from the surface to seal the bondwith a higher
concentration of insoluble high-strength pure quartz fibers
[34, 58]. Further, 9.0𝜇m diameter yarn fibers planarize to
applied forces and surfaces and bend into tight corners for
easy-to-finish margins [34, 58].

Amalgam has one more clinical problem overlooked
since premeasured capsules were developed. Fracturing on
the lower flexural tensile side of the relatively larger amalgam
sample, Figure 3(g), combined with reduced 24-hour-set
flexural mechanical test results for amalgams that further
required a 48-hour-set period may possibly be related.
Although spherical particulate improves bonding compared
to particulate with an aspect ratio [92], poor adaptability
between the initial increment and subsequent increments
during the packing phase of spherical particulate Tytin amal-
gam is considered. According to earlier recommendations
to improve amalgam plasticity and adaptability, Hg was
historically removed lightly with a squeeze cloth in the first
increment for large fillings and then progressively squeezed
out harder with each successive increment [93]. However,
with the premeasured capsules, all Hg content is the same. In
fact, during the historical clinical development of amalgam,
Hg content practically controls plasticity and adaptability
of the amalgam in a relatively narrow range between 48
and 62% [94] while strength can be inversely influenced
by residual Hg in the set amalgam [31]. By comparison,
Tytin Regular amalgam mix used in the current study is
supplied in premeasured capsules with a low 42.5% Hg
content for reduced plasticity that might dry on the bottom
during the set of larger incremental placements. AlthoughHg
toxicity has been well documented [28], on a positive note
during the same period of premeasured capsule commercial
development, Hg blood levels of dental professionals have
declined dramatically [95, 96]. As an explanation for reduced
Hg blood levels, squeeze cloth handling was found to be the
most common source of exposure [1, 96].

5. Conclusions

FRCs are the original engineering designmaterial and should
vastly improve dental composites during future development.
Research strategy includes protecting composites from bac-
terial colonization by stabilizing surfaces and interfaces from
all manners of defects with increasingmechanical properties.
As fiber lengths and volume percentages increase, FRCs
greatly increase all mechanical properties significantly over

common dental PFCs and even over the amalgam filling
for all properties except modulus. Subsequent lower PFC
modulus appears to play a role in reduced longevity compared
to the amalgam that better resists interlaminar shear stress
deformation and strain-related microcracking at the highly
susceptible cavity margin with the tooth that could open the
bond interface. Photocure FRCmolding compounds can also
pack into a cavity better than the amalgam alloy for easy
clinician operator success more easily satisfied to further help
overcome multiple serious problems experienced with the
dental PFC.
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