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We prove new generalization of Hadamard, Ostrowski, and Simpson inequalities in the framework of GA-s-convex functions and

Hadamard fractional integral.

1. Introduction

Let a real function f be defined on a nonempty interval I of
real line R. The function f is said to be convex on I if inequa-
lity

flex+(1-0)y)<tf () +1-1t) f(y) O

holds for all x, y € I'and t € [0, 1].
In [1], Breckner introduced s-convex functions as a
generalization of convex functions as follows.

Definition 1. Let s € (0,1] be a fixed real number. A function
f :[0,00) — [0,00) is said to be s-convex (in the second
sense), or that f belongs to the class K, if

flx+1-0)y)<tf@)+A-0°"f(y) @

forall x, y € [0,00) and t € [0, 1].

Of course, s-convexity means just convexity when s = 1.

The following inequalities are well known in the literature
as Hermite-Hadamard inequality, Ostrowski inequality, and
Simpson inequality, respectively.

Theorem 2. Let f : I € R — R be a convex function defined
on the interval I of real numbers and a,b € I witha < b. The
following double inequality holds:

a+b 1 (? f(a)+ f(b)
(457l rwas B2 0

Theorem 3. Let f: I € R — R be a mapping differentiable in
I°, the interior of I, and let a,b € I" witha < b. IfIf'(x)I <M,
x € [a, b], then the following inequality holds:

1 b
i RAGL.
M [(x—a)2+(b—x)2]

2

“b-a
for all x € [a, b].
Theorem 4. Let f : [a,b] — R be a four times con-

tinuously differentiable mapping on (a,b) and | f?|,, =
supxe(a’h)lf(‘l)(x)l < 00. Then the following inequality holds:

1[f(a)+f(b) +2f<a+b)]

3 2 2

e (5)
—EJ f(x)dx

a

< ol -




We will give definitions of the right and left hand side
Hadamard fractional integrals which are used throughout
this paper.

Definition 5. Let f € L[a,b]. The right-sided and left-sided
Hadamard fractional integrals J, f and J,_ f of order a > 0
with b > a > 0 are defined by

x(lnf>a_1f(t)%, a<x<b, (6)

i@ = | (3

I'(x) Ja

a R A dt
]b—f (X) = m J.x <11’1 ;) f(t) ?, a<x< b, (7)

respectively, where I'(x) is the Gamma function defined by
T(or) = [[7 et dt (see [2]).

In recent years, many authors have studied errors esti-
mations for Hermite-Hadamard, Ostrowski, and Simpson
inequalities; for refinements, counterparts, and generaliza-
tion see [3-10].

Definition 6 (see [11,12]). A function f: I € (0,00) — R is
said to be GA-convex (geometric-arithmetically convex) if

Y <tf @+ -1 f(y) (8)
forallx,y € Iandt € [0, 1].
Definition 7 (see [13]). For s € (0,1], a function f :

I <€ (0,00) — R is said to be GA-s-convex (geometric-
arithmetically s-convex) if

FEY )< ff@+a-0°f(y) )
forallx,y e Iandt € [0, 1].

It can be easily seen that if s = 1, GA-s-convexity reduces
to GA-convexity.

For recent results and generalizations concerning GA-
convex and GA-s-convex functions see [13-19].

Lemma 8 (see [20]). For o > 0 and y > 0, one has

e QED (nw)*
dt = _— , 10
L Foest Hk; (@) A 1)

where
(@ =al@+1)(a+2)---(a+k-1). (1)

Let f: I € (0,00) — R be a differentiable function on I°,
the interior of I; in sequel of this paper we will take

o X «b
If(x,/\,(x,a,b)z(l—)u) [ln ;+ln ;]f(x)

+A [f(a) ln“g + f(b) ln“%] (12)

~T(a+ D) [JLf(a)+Te, f®)],

Chinese Journal of Mathematics

where a,b € I witha < b, x € [a,b], A € [0,1], ¢« > 0,and T
is Euler Gamma function.

In [21], Iscan gave Hermite-Hadamard’s inequalities for
GA-convex functions in fractional integral forms as follows.

Theorem 9. Let f: I € (0,00) — R be a function such that
f € Lla,b], where a,b € I witha < b. If f is a GA-convex
function on [a, b], then the following inequalities for fractional
integrals hold:

I'(x+1) o «
f(\/%) < W {]a+f b))+, f (a)} )
- fa+ f(®)
- 2
with a > 0.

In [21], fscan obtained some new inequalities for quasi-
geometrically convex functions via fractional integrals by
using the following lemma.

Lemma 10. Let f : I € (0,00) — R be a differentiable
function on I" such thatf' € L[a,b], wherea,b € I witha < b.
Then for all x € [a,b], A € [0, 1], and o > 0 one has

I (x, Ao, a,b)
=a(in ;‘C)l Ll (#=4) G)t fa )y
-b <ln %)M jl (t“ - 1) (g)t fH(x'p"")dt.

0

In this paper, we will use Lemma 10 to obtain some
new inequalities on generalization of Hadamard, Ostrowski,
and Simpson type inequalities for GA-s-convex functions via
Hadamard fractional integral.

2. Generalized Integral Inequalities
for Some GA-s-Convex Functions via
Fractional Integrals

Theorem 11. Let f: I c (0,00) — R be a differentiable func-
tion on I° such that f' € Lla,b], where a,b € I' witha < b.
Iflf "1 is GA-s-convex on [a,b] in the second sense for some
fixedq > 1, x € [a,b], A € [0,1], and & > O then the following
inequality for fractional integrals holds:

a+l
|If (x, A,y a, b)' < All_l/q (o, A) {a (ln f)
a

. <|f’ (x)|qA2 <<§>q,(x,l,s>
+ 'f, (a)'qAa ((;—C)q,oc,/\,s)>l/q +b(ln g)aﬂ
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(ol a((3) o)
oy ot as((3)e0)) "}

(15)
where

2 /\1+1/0< 1
Al =224 T°_)
a+1

A ((2) ) = JOI - 2 (Z)qt Fdt, o
A, <(Z>q,oc,/\,s> - Jol I~ Al (Z)qtu 7t

u=ab.

Proof. Using Lemma 10, property of the modulus, and the
power-mean inequality, we have

|If (x, A, a0, a,b) <a< )
1 t b a+l
.Jlt“—)\|< )| '( f“|dt+b<1 )
0
1 t a+l
|t —A| ) 7' ( ]dt<a< x)
a
1-1/q
|t —)let) a7)

(I
([ -

1 t 1/q
(JO =N () 1 (xfbH)|th> .
Since | f "7 is GA-s-convex on [a, b], we get
1 t 1
L |ta—A|<g>q |fl ta lt ' dt<J- |toc_/\l
x\%
()G
=|f Gl Ax (Zadisa) + |7 @)

X
A <_; )Ays )3
3 a(x Sq

T a-1 T dt

(18)

1 qt 1
L e =2(5) 1 (<o) de < L |- Al

() el @l -l o

(19)
= |f o' A ( s, ) IF' o
'A3 (%)a’kisiq>i
and by a simple computation, we have
1 A 1
J I~ A|dt = J (A—t“)dt+J (t = A) dt
0 0 Al/zx
(20)
1+1/a
_ 2a) +1 )
a+1
Hence, If we use (18), (19), and (20) in (17), we obtain the
desired result. This completes the proof. O

Corollary 12. Under the assumptions of Theorem 11 with s =
1, inequality (15) reduces to the following inequality:

a+l
|If (x, A, a, b)| < All_l/q (x, A) {a (ln f)
a

q
a(2) )
a

+ |f' (a)|qA3 <<§>q Lo\, 1>)l/q + b(ln 9>M1 (21)

X

(17 |

ol ot an((3) o)}

Corollary 13. Under the assumptions of Theorem 11 with s = 1
and o = 1, inequality (15) reduces to the following inequality:

b\ !
(ln;) |If(x,/\,1,a,b)| =
i [f(a) In(x/a) + f (b)In (b/x)] B 1

(1-4) f (x)

In (b/a) In (b/a)
-1
j du<< Z) All—l/q(l,,\){a<ln§>2
(17 " 4 (o 10 1) =

2
| @[ A5 (e 1.1,1) 4 b <ln 9)

X

'f (x)' 5 (LA D)

O A 1,1,1)) }

where
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(23)

(22* -21 +1)
A=
2
{(m = 2220 ) I, + (A In g, — gy + 1) (AIn g, + A+ 4) = A +2) (g, In g, — o, + 1)}
Ay (1 LAT) = -
(Ing,)
[2”3 +#u1n”u _A(l + Mu)ln.uu My~ 1]
A3 (n“u’ 1’A’1) = 2 _AZ (Hu)l)A') 1))
(Inp,)
x\41
= - ) = ab
()

Corollary 14. Under the assumptions of Theorem 11 with q =
1, inequality (15) reduces to the following inequality:

|1f (X,/\,tx,a,b)| < {a <ln§>“ﬂ
.(If’ (x)|A2<g,oc,A,5)
ol Ger))-o(nt)
(1 @4 (s

+|f ®)] 4, <£(x}ts)>} .

Corollary 15. Under the assumptions of Theorem 11 with x =
Vab, A = 1/3, from inequality (15), one gets the following
Simpson type inequality for fractional integrals:

Ha-l <lné>_a1f(\/ﬁ,§,(x,a,b>‘ = Ié [f(a)

a

2T (a+1)

+4f (Vab) + f (b)] (In (b/a))*

[V f (@)

a In(b/a) ,i1- 1
+]m+f(b)]’S¥All 1/q((x)§>

, q b a2 1
.{a<|f Caa((2) eks)

a/2 Va
+|f'(a).qA3<<S> a%s))

oI (a) as((5)" )

Corollary 16. Under the assumptions of Theorem 11 with x =
Vab, A =0, from inequality (15), one gets

(i b)‘“ff(@o,a,a,b)| _ ’f(@)

a

2T (a+1) [ a )
- W V5w f @ + ij(b)]’
In (b/a) 1 \l-la
=T (a+1>

{lremra((@) )

+|f%a”qA3(<g>W2“LOJ)>Uq
+ b<|f’ (\/%)FAZ <(g)q/2,oc,0,s)

+ |fl (b)|qA3 <(g>q/2,04,0,5)>1/q]> )

Corollary 17. Under the assumptions of Theorem 11 with x =
Vab and A = 1, from inequality (15) one gets

! (1n b)“" 1;(Vab, 1,oc,a,b)‘ - lw

; 2
206—11“((x+ D).« o
T na)* VS @) +]@+f(b)]l
In(®/a) / o \'74
=74 <ﬁ>

| { [|f’ (Vab)[' 4, ((g)‘”z,a, 1,5)
N |f’ (a)|qA3 (<g>q/2’a’ 1,5)]1/q
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\/%)'qu <<g)q/2,a, 1,5)
+|ff<b)1u3((g)m,a,l,g]”‘f}_

b17'(

(27)

Corollary 18. Let the assumptions of Theorem 11 hold. If
If/(x)l < M forall x € [a,b] and A = 0, then from inequality
(15), one gets the following Ostrowski type inequality for frac-
tional integrals:

H(lng)a+ (1“9%)] f@) =T+ D[ f@
() o)
[ ()" o)
(&) )] o)

1
(ap+1)°

/\1+p+1/oc 1
-, 1
ﬁ(oc Pt ) "

(04

+ I f )] <

C, (v, M) =

(1 —A)PH
a(p+1)

e ((3))-(0)'2 (_”k_l(ghi (;;iw‘f)’“

k=1

(=1 (=In (x/w) )"

(s+ 1)

() -

k=1

Proof. Using Lemma 10, property of the modulus, the Holder
inequality, and GA-s-convexity of | f'|9, we have

a+l 1 t
'If(x,)t,oc,a,b)|£a<lng> J |t°‘—/\|<f)
0 a
at+l -1
| (xtalt'dt+b<lnb> J |t = A
0
a+l
(f) ' tblt'dt<a(lnx>+
b a

(L

- AP dt)

(28)
forall x € [a,b].

Theorem 19. Let f: I  (0,00) — R be a differentiable func-
tion on I° such that f' € L[a,b], wherea,b € I" witha < b. If
If'Iq is GA-s-convex on [a, b] for some fixed q > 1, x € [a, b],
A € [0,1], and o > 0O then the following inequality for fractional
integrals holds:

1, (6 Ao, a,B)] < CVP (@, ) {a <ln §>1
(IFr@fe((2).s)
s () (o) e
(I7' wl'c, <<g>q5>
rore(E) )}

where1/p+1/q =1 and

A=0
‘2F1<1

1
——,1;p+2;1—A>, 0<A<1,
04

(30)

u=ab.

<|f (x)|qj it + |1 (a)|qj w1 - t)sdt>l/q



a+l 1
(n)” ror i

a (! 1/q
+|f ) jo ui,(l—tfdt) }
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where y, = (x/a)?, y, = (x/b)? and

(31)
1 AV 1
J |ta—A|Pdt:J (/\—t‘”)”dt+J (t* = )P dt
0 0 Alle
1 (32)
(ap+1) =0
o
= A(ap+1)/oc 1 (1 _/\)p+1 1 A A
- 1 _— 1-—,1; 2;1— , 0 <1
o ﬁ(ocp+ >+<x(p+1) 2F1< o P ) <As

Using Lemma 8, we have

QD (ng)

1
‘rdt =
L Hu “”k; (s+ 1),

>

1 1
J y;(l—t)sdt=J pteat
0 0 (33)

Hence, if we use (32)-(33) in (31) and replacing y, = (x/a),
ty, = (x/b), we obtain the desired result. This completes the
proof. O

Corollary 20. Under the assumptions of Theorem 19 with s =
1, inequality (29) reduces to the following inequality:

o+l
|If (x,/\,oc,a,b)| < Ci/P (o, A) {a <ln f)
a

Corollary 21. Under the assumptions of Theorem 19 with s = 1
and o = 1, inequality (29) reduces to the following inequality:

b x
|1 (5,1, 1,0,b)| = ln;(l—A)f(x)+)L[f(a)ln;

+fwnng]—flgﬁm4

(At a(in2)
B p+1 a

(rera ()

Corollary 22. Under the assumptions of Theorem 19 with x =
Vab, A = 1/3, from inequality (29), one gets the following
Simpson type inequality for fractional integrals:

a b\
2 1(111;) If<\/%,§,a,a,b>‘:‘é[f(a)

2T (e + 1)

+4f (Vab) + f ®)] - S0 o

[ f (@)

3

Aol emre((2)

« In (b/a) 1
+]Wmfaﬂ|silzﬂxj”(m-)
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rera (")
(i camre((5)" )

Ll <b>|qc3((g)q”,s>)”q
(36)

Corollary 23. Under the assumptions of Theorem 19 with x =
Vab, A =0, from inequality (29), one gets

-1 <1ng>_“1f(\/%,0,(x,a,b) = ’f(\/a_b)

2T (a+1) [ 4 N
" (n(/a)* [T f (@) + ij(b)]’

Sln(b/a)( 1 )‘/P
4 ocp+1

o(Ir e ((2)" ) o
@l (<§>q/2’s))1/q
o)’ C2<<b>q/ ’S>
F oG <<g)q/2)s>>1/q

Corollary 24. Under the assumptions of Theorem 19
with x = \ab and A = 1, from inequality (29) one gets

! <lng>_ If(\/_ 1, ocab) —f(a);f(b)

+b<|f’(

- 2T (a+1)
(In (b/a))*

4 ()
o[l camre((2)" ) o
swrara((5)”)]”
@1 ((2)")
rore (")

[V f @) + TS, f (b)]'

+b[|f’(

Corollary 25. Let the assumptions of Theorem 19 hold. If
|f'(x)| < M for all x € [a,b] and A = 0, then from inequality
(29), one gets the following Ostrowski type inequality for
fractional integrals:

027 (2 00
am( )"

fo 2 e (&) res ()]
o)

[ea((3) )+ () )]

for each x € [a,b].

I'(a+1)

Ui f @+ 5L f ()]
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