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The paper deals with the calculation of the gravitational entropy in the context of teleparallel gravity for de Sitter space-time. In
such a theory it is possible to define gravitational energy and pressure; thus we use those expressions to construct the gravitational
entropy. We use the temperature as a function of the cosmological constant and write the first law of thermodynamics from which
we obtain the entropy. In the limit Λ ≪ 1 we find that the entropy is proportional to volume, for a specific temperature’s choice; we
find that Δ𝑆 ≥ 0 as well. We also identify a phase transition in de Sitter space-time by analyzing the specific heat.

1. Introduction

The idea of black hole thermodynamics started with the
pioneering works of Bekenstein and Hawking [1, 2]. It was
noted that the area of the event horizon behaves as an entropy.
Together with such discovery it was also noted that it has a
specific temperature. Thus it radiates and evaporates leading
to a loss of the information inside the black hole, which
apparently violates the second law of thermodynamics. It was
the so-called information paradox [3]. Dolan has pointed out
that such study was incomplete without the term 𝑝𝑑𝑉 in
the first law of thermodynamics [4]. However the concept
of gravitational pressure is difficult to establish as the very
idea of gravitational energy. The matter of the definition of
gravitational energy has a long story and yet it is a very
controversial theme. The main approaches in this subject
are Komar integrals [5], ADM formalism [6], and quasi-
local expressions [7, 8]. In opposition to general relativity, in
teleparallel gravity those quantities can be well defined.

Teleparallel Equivalent toGeneral Relativity (TEGR) is an
alternative theory of gravitation constructed out in terms
of the tetrad field on Weitzenböck geometry. It was first
proposed by Einstein in an attempt to derive a unified field
theory [9]. Later it was revived with a paper entitled “New
General Relativity” [10]; since then a lot of improvement

has been made in the understanding of gravitational energy
and the role of torsion [11, 12]. In the context of TEGR it
is possible to define an expression for gravitational energy
which is invariant under coordinates transformation and
dependent on the reference frame.Those features are present
in the special theory of relativity and there is no physical
reason to abandon such ideas once one has dealt with a
gravitational theory. Using the field equations of TEGR, it is
possible to define an expression for the gravitational pressure.
Therefore a natural extension is to define an expression for
the gravitational entropy. The advantage of this procedure
is defining an entropy in terms of purely thermodynamical
quantities such as energy and pressure. This will be our main
goal in this paper, for de Sitter Universe.This Universe model
is important because it describes an expanding empty space.
Thus it is possible to shed light on the vacuum energy and
cosmological inflationary models.

The paper is organized as follows. In Section 2, we present
the main ideas of teleparallel gravity. From field equation we
derive the total energy and pressure. In Section 3, we calculate
such quantities for de Sitter Universe, and then we use the
first law of thermodynamics to get the gravitational entropy.
To achieve such aim, we have interpreted the temperature of
the system as a function of the cosmological constant. Finally
we present our concluding remarks in Section 4.

Hindawi Publishing Corporation
Journal of Gravity
Volume 2016, Article ID 4504817, 7 pages
http://dx.doi.org/10.1155/2016/4504817



2 Journal of Gravity

Notation. Space-time indices 𝜇, ], . . . and SO(3, 1) indices
𝑎, 𝑏, . . . run from 0 to 3. Time and space indices are indicated
according to 𝜇 = 0, 𝑖, 𝑎 = (0), (𝑖). The tetrad field is denoted
by 𝑒𝑎
𝜇
and the determinant of the tetrad field is represented

by 𝑒 = det(𝑒𝑎
𝜇
). In addition we adopt units where 𝐺 = 𝑘

𝑏
=

𝑐 = 1, unless otherwise stated.

2. Teleparallel Equivalent to General
Relativity (TEGR)

Teleparallel gravity is a theory entirely equivalent to general
relativity; however it is formulated in the framework of
Weitzenböck geometry rather than in terms of Riemann
geometry.Weitzenböck geometry is endowedwith theCartan
connection [13], given by Γ

𝜇𝜆] = 𝑒
𝑎

𝜇
𝜕
𝜆
𝑒
𝑎], where 𝑒

𝑎

𝜇
is the

tetrad field; thus the torsion tensor can be calculated in terms
of this field by

𝑇
𝑎

𝜆] = 𝜕
𝜆
𝑒
𝑎

] − 𝜕]𝑒
𝑎

𝜆
. (1)

Such a geometry keeps a relation to a Riemannian manifold;
for instance, we note the Cartan connection and Christoffel
(0Γ
𝜇𝜆]) symbols are related by a mathematical identity, which

reads

Γ
𝜇𝜆] =

0

Γ
𝜇𝜆] + 𝐾

𝜇𝜆], (2)

where

𝐾
𝜇𝜆] =

1

2
(𝑇
𝜆𝜇] + 𝑇]𝜆𝜇 + 𝑇

𝜇𝜆]) (3)

is the contortion tensor.The tetrad field, which is the dynam-
ical variable of the theory, is obtained from the metric tensor.
Thus Weitzenböck geometry is less restrictive than Riemann
geometry; for each metric tensor it is possible to construct
an infinite number of tetrad fields. This apparent arbitrary
behavior is amended once we recall the interpretation of
the tetrad field. The component 𝑒

(0)

𝜇 is associated with the
four-velocity of the observer; then for each reference frame
there exists only one tetrad field. In fact we have to make
use of the acceleration tensor to completely settle the state
of an observer [14], since it could be in rotation as well as in
translation.

If one tries to construct the curvature from the Cartan
connection, he/she will find out that it vanishes identically.
Hence the Weitzenböck geometry is described by a van-
ishing curvature and the presence of torsion. The Riemann
geometry, as is well known, has vanishing torsion and a
nonvanishing curvature tensor. Therefore making use of
identity (2) to construct the scalar curvature, it leads to

𝑒𝑅 (𝑒) ≡ −𝑒 (
1

4
𝑇
𝑎𝑏𝑐

𝑇
𝑎𝑏𝑐

+
1

2
𝑇
𝑎𝑏𝑐

𝑇
𝑏𝑎𝑐

− 𝑇
𝑎

𝑇
𝑎
)

+ 2𝜕
𝜇
(𝑒𝑇
𝜇

) ,

(4)

where 𝑒 is the determinant of the tetrad field, 𝑇
𝑎

=

𝑇
𝑏

𝑏𝑎
(𝑇
𝑎𝑏𝑐

= 𝑒
𝑏

𝜇

𝑒
𝑐

]
𝑇
𝑎𝜇]), and𝑅(𝑒) is the scalar curvature con-

structed out in terms of such a field. It should be noted that the

metric tensor alone does not establish a geometry. From the
above identity, we see that it is possible to construct a tetrad
field adapted to a specific reference frame which induces,
for the same metric tensor, both a curvature in Riemannian
manifold and torsion in a Weitzenböck geometry. By means
of the very same above identity, it is possible to find the coun-
terpart of Hilbert-Einstein Lagrangian density for teleparallel
gravity; thus, up to a total divergence (which plays no role in
the field equations), it reads

L = −𝑘𝑒 (
1

4
𝑇
𝑎𝑏𝑐

𝑇
𝑎𝑏𝑐

+
1

2
𝑇
𝑎𝑏𝑐

𝑇
𝑏𝑎𝑐

− 𝑇
𝑎

𝑇
𝑎
) − L

𝑀
, (5)

where 𝑘 = 1/16𝜋 and L
𝑀

stands for the Lagrangian density
for thematter fields.This Lagrangian density can be rewritten
as

L ≡ −𝑘𝑒Σ
𝑎𝑏𝑐

𝑇
𝑎𝑏𝑐

− L
𝑀
, (6)

where

Σ
𝑎𝑏𝑐

=
1

4
(𝑇
𝑎𝑏𝑐

+ 𝑇
𝑏𝑎𝑐

− 𝑇
𝑐𝑎𝑏

) +
1

2
(𝜂
𝑎𝑐

𝑇
𝑏

− 𝜂
𝑎𝑏

𝑇
𝑐

) . (7)

The field equations can be derived from Lagrangian (6)
using a variational derivative with respect to 𝑒𝑎𝜇; they read

𝑒
𝑎𝜆
𝑒
𝑏𝜇
𝜕] (𝑒Σ

𝑏𝜆]
) − 𝑒 (Σ

𝑏]
𝑎
𝑇
𝑏]𝜇 −

1

4
𝑒
𝑎𝜇
𝑇
𝑏𝑐𝑑

Σ
𝑏𝑐𝑑

)

=
1

4𝑘
𝑒𝑇
𝑎𝜇
,

(8)

where 𝛿L
𝑀
/𝛿𝑒
𝑎𝜇

= 𝑒𝑇
𝑎𝜇
. The field equations may be rewrit-

ten as

𝜕] (𝑒Σ
𝑎𝜆]

) =
1

4𝑘
𝑒𝑒
𝑎

𝜇
(𝑡
𝜆𝜇

+ 𝑇
𝜆𝜇

) , (9)

where 𝑇𝜆𝜇 = 𝑒
𝑎

𝜆

𝑇
𝑎𝜇

and

𝑡
𝜆𝜇

= 𝑘 (4Σ
𝑏𝑐𝜆

𝑇
𝑏𝑐

𝜇

− 𝑔
𝜆𝜇

Σ
𝑏𝑐𝑑

𝑇
𝑏𝑐𝑑

) . (10)

In view of the antisymmetry propertyΣ𝑎𝜇] = −Σ
𝑎]𝜇, it follows

that

𝜕
𝜆
[𝑒𝑒
𝑎

𝜇
(𝑡
𝜆𝜇

+ 𝑇
𝜆𝜇

)] = 0. (11)

Such equation leads to the following continuity equation:

𝑑

𝑑𝑡
∫
𝑉

𝑑
3

𝑥𝑒𝑒
𝑎

𝜇
(𝑡
0𝜇

+ 𝑇
0𝜇

)

= −∮
𝑆

𝑑𝑆
𝑗
[𝑒𝑒
𝑎

𝜇
(𝑡
𝑗𝜇

+ 𝑇
𝑗𝜇

)] .

(12)

Therefore we identify 𝑡𝜆𝜇 as the gravitational energy-momen-
tum tensor [15, 16].

Then, as usual, the total energy-momentum vector is
defined by [17]

𝑃
𝑎

= ∫
𝑉

𝑑
3

𝑥𝑒𝑒
𝑎

𝜇
(𝑡
0𝜇

+ 𝑇
0𝜇

) , (13)
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Table 1

General relativity Teleparallel gravity
Field equations 𝐺

𝜇] = 𝑘𝑇
𝜇] Equivalent

Gravitational energy-momentum tensor Nonexistent 𝑡
𝑎𝜇

Gravitational energy ADM/Komar expressions Defined from 𝑡
𝑎𝜇

Gravitational pressure Nonexistent Defined from 𝑡
𝑎𝜇

Gravitational entropy Proportional to the area Defined from 𝑡
𝑎𝜇

where 𝑉 is a volume of the three-dimensional space. It is
important to note that the above expression is invariant under
coordinate transformations and it transforms like a 4-vector
under Lorentz transformations. The energy-momentum flux
is given by the time derivative of (13); thus by means of (12)
we find

Φ
𝑎

= ∮
𝑆

𝑑𝑆
𝑗
𝑒𝑒
𝑎

𝜇
(𝑡
𝑗𝜇

+ 𝑇
𝑗𝜇

) . (14)

If we assume a vacuum solution, for example, a vanishing
energy-momentum tensor of matter fields, then we have

𝑑𝑃
𝑎

𝑑𝑡
= −∮

𝑆

𝑑𝑆
𝑗
[𝑒𝑒
𝑎

𝜇
𝑡
𝑗𝜇

] , (15)

which is the gravitational energy-momentum flux [18]. Using
field equations (9), the total energy-momentum flux reads

𝑑𝑃
𝑎

𝑑𝑡
= −4𝑘∮

𝑆

𝑑𝑆
𝑗
𝜕] (𝑒Σ

𝑎𝑗]
) . (16)

Now let us restrict our attention to the spatial part of the
energy-momentum flux, that is, themomentum flux; we have

𝑑𝑃
(𝑖)

𝑑𝑡
= −∮

𝑆

𝑑𝑆
𝑗
𝜙
(𝑖)𝑗

, (17)

where

𝜙
(𝑖)𝑗

= 4𝑘𝜕] (𝑒Σ
(𝑖)𝑗]

) ; (18)

we note that the momentum flux is precisely the force; hence,
since 𝑑𝑆

𝑗
is an element of area, we see that −𝜙(𝑖)𝑗 represents

the pressure, along the (𝑖) direction, over an element of area
oriented along the 𝑗 direction [16]. It should be noted that all
definitions presented in this section follow exclusively from
field equations (9).

Wepoint out that general relativity and teleparallel gravity
are equivalent only concerning dynamical features. This
means that both theories will predict the same behavior of
a test particle around a mass distribution. In other words
both of them will agree in the classical experimental tests
such as Mercury’s perihelion deviation and the bending of
light. However predictions concerning the gravitational field
features are strictly different, such as gravitational energy,
momentum, and angular momentum. For instance, there is
no analogous tensor in general relativity equivalent to the
gravitational energy-momentum tensor in (10). The main
reason for this is that some of the tensorial quantities in

teleparallel gravity are analogous to connections in Rieman-
nian geometry which gives rise to pseudo-tensors describing
gravitational energy and momentum. Particularly there is
no tensorial form, in Riemannian geometry, of 𝑇

𝑎𝜇] on
Weitzenböck geometry.Theproblemof defining gravitational
energy in general relativity is a long-standing one; as a
consequence any thermodynamical attempt to define a grav-
itational entropy would be plagued by the same problems.
On the other hand such a quantity is natural in teleparallel
gravity; thus our approach has several advantages. In Table 1,
we chart the features of general relativity and teleparallel
gravity.

We stress out that the definition of entropy in general
relativity is not of general validity since it demands the
existence of matter as in the black hole context. It is possible
to force both definitions to agree at some point by the choice
of temperature; however it seems an arbitrary procedure.

3. The Gravitational Entropy for de Sitter
Space-Time

The de Sitter space-time is defined by the following line
element:

𝑑𝑠
2

= −(1 −
𝑟
2

𝑅2
)𝑑𝑡
2

+ (1 −
𝑟
2

𝑅2
)

−1

𝑑𝑟
2

+ 𝑟
2

𝑑𝜃
2

+ 𝑟
2sin2𝜃𝑑𝜙2,

(19)

where 𝑅 = √3/Λ and Λ is the cosmological constant. Such a
space-time works as a model of an expanding Universe; thus
many inflationary models of the early Universe make use of
this feature [19–21].

Let us choose the following tetrad field adapted to a
stationary reference frame:

𝑒
𝑎

𝜇

=

[
[
[
[
[
[

[

𝐴 0 0 0

0 𝐴
−1 sin 𝜃 cos𝜙 𝑟 cos 𝜃 cos𝜙 −𝑟 sin 𝜃 sin𝜙

0 𝐴
−1 sin 𝜃 sin𝜙 𝑟 cos 𝜃 sin𝜙 𝑟 sin 𝜃 cos𝜙

0 𝐴
−1 cos 𝜃 −𝑟 sin 𝜃 0

]
]
]
]
]
]

]

,

(20)

where 𝐴 = (1 − 𝑟
2

/𝑅
2

)
1/2 and its determinant is 𝑒 = 𝑟

2 sin 𝜃.
It is worth recalling some ideas on how to choose the tetrad
field. It is well known that for a given metric tensor there
exist an infinity number of possible tetrads. On the other
hand given a world line of an observer the tetrad field can



4 Journal of Gravity

be transported along such a curve; in particular the 𝑎 = (0)

component of the tetrad field remains tangent to the curve.
Thus it is possible to associate such a component with the
4-velocity of the observer. Hence the tetrad field is adapted
to a reference frame. Mashhoon generalized such a concept
in [22, 23]; there the absolute derivative of the tetrad field is
defined as

𝐷𝑒
𝑎

𝜇

𝑑𝜏
= Φ
𝑎

𝑏

𝑒
𝑏

𝜇

, (21)

where Φ
𝑎

𝑏 is the acceleration tensor. The component Φ
(0)(𝑖)

defines the tangential acceleration whileΦ
(𝑖)(𝑗)

establishes the
rotational acceleration.

The nonvanishing components of the torsion tensor are

𝑇
001

= −
𝑟

𝑅2
,

𝑇
212

= 𝑟[1 − (1 −
𝑟
2

𝑅2
)

−1/2

] ,

𝑇
313

= 𝑟 sin2𝜃 [1 − (1 −
𝑟
2

𝑅2
)

−1/2

] .

(22)

In order to calculate the gravitational energy and pressure
we need the components Σ

𝜇]𝜆; thus after some algebraic
manipulation we find that the nonvanishing ones are

Σ
001

=
1

𝑟
[(1 −

𝑟
2

𝑅2
)

−1/2

− 1] ,

Σ
212

=
1

2𝑟3
[

[

√1 −
𝑟
2

𝑅2
− (1 −

2𝑟
2

𝑅2
)]

]

,

Σ
313

=
1

2𝑟3sin2𝜃
[

[

√1 −
𝑟
2

𝑅2
− (1 −

2𝑟
2

𝑅2
)]

]

.

(23)

Hence, substituting the above components into (13) for 𝑎 =

(0), it is possible to find the total energy and it reads

𝐸 = 𝑟
0
(1 − √1 −

𝑟
2

0

𝑅2
) , (24)

where 𝑟
0
is the radius of a spherical 3-dimensional hypersur-

face of integration. In addition we have made the identifica-
tion 𝐸 ≡ 𝑃

(0). It should be noted that such expression already
appeared in [24].

Similarly the radial pressure can be constructed from the
components 𝜙(𝑖)𝑗 which is given in terms of the components
in (23). Thus after some simple calculations, we find

𝜙
(1)1

= −4𝑘 cos𝜙 sin2𝜃[

[

√1 −
𝑟
2

𝑅2
− (1 −

2𝑟
2

𝑅2
)]

]

,

𝜙
(2)1

= −4𝑘 sin𝜙 sin2𝜙[

[

√1 −
𝑟
2

𝑅2
− (1 −

2𝑟
2

𝑅2
)]

]

,

𝜙
(3)1

= −4𝑘 sin 𝜃 cos 𝜃[

[

√1 −
𝑟
2

𝑅2
− (1 −

2𝑟
2

𝑅2
)]

]

.

(25)

Then we construct a radial 𝜙, which is denoted by 𝜙
(𝑟)1; by

means of the relation

𝜙
(𝑟)1

= sin 𝜃 cos𝜙𝜙(1)1 + sin 𝜃 sin𝜙𝜙(2)1 + cos 𝜃𝜙(3)1, (26)

it yields

𝜙
(𝑟)1

= −4𝑘 sin 𝜃[

[

√1 −
𝑟
2

𝑅2
− (1 −

2𝑟
2

𝑅2
)]

]

. (27)

The radial pressure is given by

𝑝 (𝑟) = ∫

2𝜋

0

𝑑𝜙∫

𝜋

0

𝑑𝜃 (−𝜙
(𝑟)1

) , (28)

and therefore, we obtain

𝑝 (𝑟) = [

[

√1 −
𝑟
2

𝑅2
− (1 −

2𝑟
2

𝑅2
)]

]

. (29)

Once the energy and pressure are given, we can turn
our attention to the entropy itself. It is a thermodynamical
potential linked to the variation of energy and volume; that
is,

𝑇𝑑𝑆 = 𝑑𝐸 + 𝑝 (𝑟, 𝜃, 𝜙) 𝑑
3

𝑥, (30)

where𝑇 is the temperature (considered constant a priori) and
𝑆 is the entropy.The change in the volume is realized through
the variation of 𝑟

0
; thus 𝑝(𝑟

0
, 𝜃, 𝜙)𝑑

3

𝑥 → 𝑝(𝑟
0
)𝑑𝑟
0
, once we

perform an integration over the 𝜃 and 𝜙 variables. The total
energy also changes with the variation of 𝑟

0
. In this system

we have two parameters 𝑟
0
and the cosmological constant: the

first one is linked to the volume while the second one has to
play the role of a temperature. As a consequence we suppose
the temperature could be given by an arbitrary function of the
cosmological constant, 𝑇 = 𝑓(Λ). Therefore the energy will
vary with the change of the temperature.Then the first law of
thermodynamics simply reads

𝑇𝑑𝑆 =
𝜕𝐸

𝜕𝑟
0

𝑑𝑟
0
+ 𝑝 (𝑟

0
) 𝑑𝑟
0
; (31)
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Figure 1: Entropy versus 𝑟
0
.

then the gravitational entropy is given by

𝑆 (𝑟
0
) = (

1

𝑇
)∫(

𝜕𝐸

𝜕𝑟
0

+ 𝑝 (𝑟
0
)) 𝑑𝑟
0
, (32)

which yields

𝑆 (𝑟
0
) = (

1

𝑇
)
[
[

[

𝑟
0
(

2𝑟
2

0

3𝑅2
−
1

2

√1 −
𝑟
2

0

𝑅2
)

+
𝑅

2
arctan(

𝑟
0
/𝑅

√1 − 𝑟
2

0
/𝑅2

)
]
]

]

.

(33)

In Figure 1 we plotted the entropy as a function of 𝑟
0
. We

normalized the horizon radius, 𝑅 = 1; thus the choice of
temperature as dependent on the cosmological constant will
not affect the entropy. We see a divergence when the space
reaches the horizon volume which is an expected behavior.

Next we will analyze how the entropy can depend on the
horizon area and two remarkable choices for the temperature.
The first one is thewell-known temperature of de Sitter space-
time, and the second one is based on an attempt to obtain a
gravitational entropy independent of the temperature.

3.1. Entropy and Horizon Area. If one assumes the Hawking
area dependence for the entropy then it is possible to analyze
the consequences of this fact in the context of teleparallel
gravity as performed in [25]; however in this subsection we
are interested in obtaining such a dependence assuming the
existence of a gravitational energy and pressure. We point
out that, to obtain the entropy, one should consider it as a
thermodynamical potential which depends on the energy and
the volume; thus the temperature should be constant. For

instance, if we intend to obtain the heat capacity then we
should consider the energy as the potential; only then can the
temperature change.

If we use (31) together with the expressions of energy and
pressure, then it yields

𝑇𝑑𝑆 = (
2𝑟
2

0

𝑅2
)(1 +

1

√1 − 𝑟
2

0
/𝑅2

)𝑑𝑟
0
. (34)

Since 𝑑𝐴 = 8𝜋𝑟
0
𝑑𝑟
0
we get

𝑑𝑆 = (
𝑟
0

4𝜋𝑇𝑅2
)(1 +

1

√1 − 𝑟
2

0
/𝑅2

)𝑑𝐴; (35)

Hence in order to obtain 𝑑𝑆 = 𝑑𝐴/4, where 𝐴 is the horizon
area, the algebraic equation

(
𝑟
0

4𝜋𝑇𝑅2
)(1 +

1

√1 − 𝑟
2

0
/𝑅2

) =
1

4
(36)

must be satisfied for 𝑟
0

= 𝑅 which is not true. Therefore
the entropy is not necessarily a quarter of the horizon area.
On the other hand the entropy can be proportional only to
the spatial area. This is achieved by finding a solution for the
above equation. For instance, with the choice 𝜋𝑇𝑅 = 1, we
find 𝑟
0
= 0.47𝑅.

In [26] an entropy is constructed for de Sitter space-
time. We point out that the procedure adopted in such a
reference is an attempt to identify the term 𝑝𝑑𝑉which seems
to be missing in gravitational thermodynamics as discussed
by Dolan [4]. In order to perform such an aim it is usual to
assume theHawking entropy and as a consequence obtain the
other terms in the first law of thermodynamics. In this paper
we follow the opposite path; we use the gravitational pressure
defined in the framework of teleparallel gravity to find the
entropy. In this sense it is mandatory to have a satisfactory
definition of gravitational energy which can also be found in
teleparallel gravity.

Thus in our opinion the Hawking entropy is a nonther-
modynamical expression, since it is defined in a context
where some trouble to define gravitational energy and pres-
sure is observed. Clearly the dependency of the entropy on
the horizon area is an important theoretical insight in this
problem. In fact it has been used to propose an analog of
Higgs mechanism in cosmology [27], where the de Sitter
space plays an important role. In [28] the authors deal
with a statistic mechanics approach of de Sitter entropy
which is proportional to horizon area. In such cases the
problem of composing the full thermodynamical picture
with energy, pressure, and entropy is a serious obstacle.
Hence, once there is no experimental evidence to support the
Hawking expression, our expression should be considered as
a candidate to represent the gravitational entropy.

3.2. de Sitter Temperature. In this subsection we will use
the temperature of de Sitter space-time which is defined as
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𝑇 = (1/2𝜋)√Λ/3 [29, 30]. If we analyze the gravitational
entropy in the regime where Λ ≪ 1, then we will have

𝑆 (𝑟
0
) ≈ (

11𝜋𝑇𝑉

4
) , (37)

where 𝑉 is the 3D volume.
Now let us allow the temperature Λ to change. With such

a procedure we are interested in the specific heat at constant
volume 𝐶

𝑉
. Thus

𝐶
𝑉
= (

𝜕𝐸

𝜕𝑇
)

𝑉

, (38)

where keeping a constant volumemeans having a constant 𝑟
0
,

since 𝑉 = (4𝜋/3)𝑟
3

0
. Therefore we have

𝐶
𝑉
=
[
[

[

4𝜋
2

𝑇𝑟
3

0

√1 − 𝑟
2

0
(4𝜋2𝑇2)

]
]

]

; (39)

this quantity gives the information on how the gravitational
energy changes on the variation of the cosmological constant.
It should be noted that specific heat goes to zero when the
temperature vanishes. At this point we can see a discontinuity
in the specific heat which, by the way, establishes a phase
transition of the first order between thermodynamical states
defined by 𝐸, 𝑆, 𝑝, and 𝑇, as is well known. Thus the critical
temperature is given by

𝑇
𝑐
=

1

2𝜋𝑟
0

. (40)

Thus we see that the older the Universe is the easier it is to
expect a phase transition since the critical temperature will
be smaller with the Universe’s expansion.

3.3. Temperature as the Cosmological Constant. In this sub-
section we will take the cosmological constant as the temper-
ature, 𝑇 = 𝛼Λ, where 𝛼 is a dimensional constant. Thus we
use this in expression (33) and, in the limit Λ ≪ 1, it yields

𝑆 (𝑟
0
) ≈ (

11𝑉

48𝛼𝜋
) (41)

which is proportional to the volume rather than the area as
obtained in [2] in the context of black holes. It should be
noted that, in this limit, Δ𝑆 ≥ 0, since de Sitter Universe is in
expansion. We see that such a choice, at a proper limit, leads
to an entropy independent of the temperature. Hereafter we
will make 𝛼 = 1.

The specific heat at constant volume 𝐶
𝑉
, using this

temperature, is given by

𝐶
𝑉
=

𝑟
3

0

6√1 − 𝑟
2

0
𝑇/3

; (42)

it should be noted that 𝐶
𝑉

→ 𝑉/8𝜋 when 𝑇 → 0. In this
context the critical temperature is given by

𝑇
𝑐
=

3

𝑟
2

0

; (43)

thus a phase transition during inflation era could have hap-
pened since the space-time experimented such a great expan-
sion then. In this sense a rapid expansion could be driving a
phase transition in the primordial Universe.

4. Conclusion

In this paper we have obtained the gravitational entropy for
de Sitter space-time in the framework of teleparallel gravity.
Such a result was obtained by purely thermodynamical
quantities; that is, using concepts such as energy and pressure
that can be defined in TEGR, we have derived an expression
for the entropy. To obtain this we have used the first law of
thermodynamics in which the temperature is a function of
the cosmological constant. We have assumed that because
we have only two parameters in this system, the radius
of the hypersurface of integration, 𝑟

0
, which dictates how

the volume varies, and the cosmological constant, Λ. We
investigated the entropy in the limitΛ ≪ 1 for two definitions
of temperature: the first one was the well-known de Sitter
temperature and the second one was the very cosmological
constant. We have obtained that the entropy is proportional
solely to the 3D volume, with this last temperature’s choice,
yet the entropy always increases in this case; for example,
Δ𝑆 ≥ 0. Then we have relaxed the condition 𝑇 = Λ = const.
to obtain the specific heat at constant volume for each case.
If we have chosen the temperature as constant then, in the
limit Λ ≪ 1, it would be impossible to establish a specific
heat. We have found that the specific heat goes to zero in the
limit 𝑇 → 0 in the first case and that it goes to a constant,
proportional to the 3D volume, in the second case, in the
same limit. By the analysis of the specific heat we conclude
that the de Sitter Universe performed a phase transition at
some point of its evolution. The entropy also diverges with
a critical temperature which corroborates such an idea of
phase transition. We note that in both cases the critical
temperatures lead to the same critical cosmological constant
which isΛ

𝑐
= 3/𝑟
2

0
. We also showed that the entropy, defined

in teleparallel gravity, is not necessarily equal to the area of the
event horizon. It is not the case of Hawking expression which
is constructed out in the context of general relativity where
one cannot deal with meaningful expressions of gravitational
energy and pressure. The choice to calculate the entropy
of a de Sitter space-time was guided by two reasons. The
first one is that the most accepted expression of entropy
is based on nonthermodynamical approach in which the
physical meaning relies on matter fields. Thus analyzing an
expanding empty spacewe could shed light on the very nature
of gravitational field. The second reason is that it is believed
that any quantum gravity theory should break the Lorentz
invariance [31]. We speculate that in constructing an effective
theory of gravitation, in order to quantize it, the torsion
tensor will self-interact with the geometry of space-time
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which could be interpreted as a mean field representing the
spin of the matter distribution.
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