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The paper considers the applied problems of hydrodynamics and based on the new results, published by the author in recent years,
shows that main assumptions used in the course of their solution, namely, incompressibility of liquids and potentiality of their
movement, are not applicable to liquids in the gravitational field of the Earth.

1. Introduction

Surface gravity waves are generated and propagated on the
interface of two liquids; therefore, while studying them,
the methods of theory of hydrodynamic tangential gap are
applied. Such waves arise in consequence of disturbance of
these surfaces and depending on the volume of disturbance,
they may be either linear (when disturbances of parameters
of liquids are much less than their equilibrium value) or
nonlinear (when disturbances of parameters of liquids are
bigger or of the order of their equilibrium value). A great
number of scientific publications have been dedicated to the
study of this problem, which stemmed from the second half
of the 18th century. The vast majority of these works rely on
two assumptions: (a) liquids are incompressible (i.e., their
densities are constant) and (b) liquid motions are potential,
that is, noncircuital.

The first assumption apparently contradicts the concept
of mechanical wave in medium itself, since it is known
that a wave is propagated only when, under disturbance of
density of medium in any point, the elastic forces originate,
spreading these perturbations to other points. If the medium
is incompressible within the above sense, then any pertur-
bation will be propagated with infinite velocity and thus,
generation of wave is impossible. Irrelevance of condition
of incompressibility to liquids was shown in work [1]. Upon
correct determination of sound speed [2], according to which

its true (real) value in the medium is determined by com-
bination of adiabatic (𝐶𝑠) and isobaric (𝐶𝑝) sound speeds,
it became evident that compressibility and incompressibility
have thermodynamic rather than mechanic meaning and
they are directly related to homogeneity or inhomogeneity of
the medium [3]. Homogeneous medium, which is free from
the influence of external force field, is always compressible
and sound speed in it is adiabatic. Strongly inhomogeneous
medium, which is largely influenced by external force filed, is
always incompressible and sound speed in it is isobaric.These
results led to necessity of changing the mass conservation
equation. It appeared that the equation in its current form is
fair only for homogeneous medium and as any medium in
gravity field is more or less inhomogeneous, it needs to be
generalized. The generalized mass conservation equation is
obtained in work [4], in the right part of which an additional
summand is entered determining the change of density of
constant mass, under isobaric change of its volume as a result
of temperature variations conditioned by entropy oscillations
in inhomogeneous (nonisentropic) medium. When the first
summand equals zero, which is the condition for incom-
pressibility of the medium, the second summand remains,
equaling isobaric change of its density. Disregard of this
summand leads to existence of internal gravity wave [5] (§13)
whose nature is unclear [3].

Fallacy of the second assumption is proved by theThomp-
son theorem (1869), according to which liquid motion in the
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gravity field of the Earth cannot be potential, since it repre-
sents a nonisentropicmedium [5] (§9). Notwithstanding this,
the author himself contradicts this theorem when solving the
linear problem of capillary-gravity waves, where motions of
liquids are potential [5] (§62). Apparently, he opted for the
Helmholtz theorem, according to which circulation of speed
vector in gravity field is preserved [6] (§1.2).

Discussion of this problem with particular intensity
started from 2012, after publication of work [2]. The sub-
sequent papers based on the critical analysis of the works
of other authors persuasively proved existence of the afore-
mentioned contradictions, suggesting the ways of overcom-
ing them. Although those papers received highly favorable
reviews, they were neglected by the scientific community.
This is evidenced by the fact that they are scarcely cited. For
example, we give several studies [7–18], published after 2012,
and, as before, consider liquids as incompressible and their
motion as potential. Work [12] is worthy of particular regret,
as it represents lecture notes and is designed for students.

The aim of the proposed article is to once again present to
the experts of this field of physics the overview of earlier pub-
lished works, with some refinements and additions, to draw
their attention to the problems of gas and hydrodynamics.

1.1. The Generalized Equation of Conservation of Mass and
System of Hydrodynamic Equations in Gravity Field of the
Earth. The principal equations describing liquid motion in
gravity field of the Earth are the following:

(1) Euler’s motion equation:

𝜌𝑑𝑉⃗𝑑𝑡 = 𝜌 [𝜕𝑉⃗𝜕𝑡 + (𝑉⃗∇) 𝑉⃗] = −∇𝑃 + 𝜌𝑔⃗. (1)

(2) Mass conservation equation:𝑑𝜌𝑑𝑡 = 𝜕𝜌𝜕𝑡 + (𝑉⃗∇) 𝜌 = −𝜌∇𝑉⃗. (2)

(3) Adiabatic equation:𝜕𝑠𝜕𝑡 + (𝑉⃗∇𝑠) = 0. (3)

Equation (2) determines change of density of liquid particle in
given, immovable volume and says that it equals difference of
mass flows incoming and outgoing through surface restrict-
ing this volume. However, change of density may occur also
at the expense of change of volume of constant mass of
substance. Indeed,𝑑𝜌𝑑𝑡 = 𝑑𝑑𝑡 (𝑚𝜐 ) = 𝜐 (𝑑𝑚/𝑑𝑡) − 𝑚 (𝑑𝜐/𝑑𝑡)𝜐2

= (𝑑𝜌𝑑𝑡 )𝜐 − (𝜌 𝑑𝑑𝑡 ln 𝜐)𝑚 .
(4)

Assuming here𝑚 = 1, that is, 𝜐 = 1/𝜌, we will get
(𝜌 𝑑𝑑𝑡 ln 𝜐)𝑚 = −(𝜌 𝑑𝑑𝑡 ln 𝜌)𝑚 = −(𝑑𝜌𝑑𝑡 )𝑚 . (5)

And finally, from (4), we will find𝑑𝜌𝑑𝑡 = (𝜕𝜌𝜕𝑡 )𝜐 + (𝜕𝜌𝜕𝑡 )𝑚 . (6)

Thus, complete change of density consists of two parts, first of
which is determined by (2).The second part describes change
of density of substance of constant mass as a consequence of
isobaric change of volume which can occur only at the cost
of change of temperature, which in turn, in absence of heat
source, is possible only in case of change of entropy; that is,

(𝑑𝜌𝑑𝑡 )𝑚 = (𝜕𝜌𝜕𝑠 )𝑝 𝜕𝑠𝜕𝑡 = −(𝜕𝜌𝜕𝑠 )𝑝 (𝑉⃗∇) 𝑠. (7)

Here the adiabatic equation (3) is used. For homogeneous
(isentropic) medium (𝑉⃗∇)𝑠 = 0 and from (6) it is seen that
change of density of liquid particle is indeed determined by
(2). For inhomogeneous medium we can write

(𝑉⃗∇) 𝑠 = 𝑉⃗ ( 𝜕𝑠𝜕𝑃)𝑇 ∇𝑃. (8)

And then, on basis of (6)–(8), the equation of continuity of
mass in inhomogeneous medium will take form of

𝑑𝜌𝑑𝑡 = −𝜌∇𝑉⃗ − 𝑉⃗∇𝑃𝐶2𝑝 . (9)

Quantity𝐶2𝑝 has the dimension of squared velocity and equals

𝐶2𝑝 = [(𝜕𝜌𝜕𝑠 )𝑝 ( 𝜕𝑠𝜕𝑃)𝑇]
−1 . (10)

Real value of the speed of sound in inhomogeneous medium
is determined by combination of adiabatic 𝐶𝑠 = (𝛾𝑘𝑇/𝑚)1/2
and isobaric 𝐶𝑝 speeds of sound [2]:

𝐶 = ( 𝐶2𝑠𝐶2𝑝𝐶2𝑠 + 𝐶2𝑝)
1/2 . (11)

Thus, the system of equations of hydrodynamics (gas dynam-
ics) in the gravity field of the Earth has the following form:

𝜌 [𝜕𝑉⃗𝜕𝑡 + (𝑉⃗∇) 𝑉⃗] = −∇𝑃 + 𝜌𝑔⃗,
𝜕𝜌𝜕𝑡 + (𝑉⃗∇) 𝜌 = −𝜌∇𝑉⃗ − 𝑉⃗∇𝑃𝐶2𝑝 .

(12)

2. The Existing Theory of Gravitational Waves

The system of (12) gives four equations for five unknowns𝑉𝑥, 𝑉𝑦, 𝑉𝑧, 𝑃, and𝜌, and in order for it to be solvable (closed),
the existence of another equation that links the disturbances
of density 𝜌󸀠 and pressure 𝑃󸀠 at constant entropy is required.
Such equation is the equation of state of medium:

𝜌󸀠 = 1𝐶2𝑃󸀠, (13)
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where 𝐶 is expressed by formula (11). According to the
current understanding, the medium is considered to be
incompressible if the speed of sound in it is infinite, which
following formula (13) means 𝜌 = 𝜌0 = const, and from
formula (11) we have 𝐶𝑠 = 𝐶𝑝 = ∞. Under these conditions,
from (9), we have

∇𝑉⃗ = 0 (14)

which is a condition of incompressibility of the medium.
Thus, for incompressible fluid, (13) loses its meaning and we
have a system of four equations for four unknowns, which
is solvable. That is what accounts for the fact that although
condition (14) does not apply to liquids (as will be shown
below) the existing theory of surface gravity waves gives
satisfactory results.

The linearized Euler equation (1) for oscillations with
small amplitudes in the absence of a gravitational field, when
the entropy at each point of the liquid has the same value
(homogeneous, isentropic medium), takes the form

𝑑𝑉⃗𝑑𝑡 = 𝜕𝑉⃗𝜕𝑡 = − 1𝜌0∇𝑃. (15)

Having applied to both sides of (15) the operator rot and
considering the fact that rotgrad𝑃 = 0, we obtain

𝑑𝑑𝑡 rot 𝑉⃗ = 0 󳨐⇒ rot 𝑉⃗ = const. (16)

The value rot 𝑉⃗ is referred to as “vorticity” of speed and from
(16) it follows that this value is maintained; that is, if it is zero
at the starting point, it will remain the same along the whole
current line. From preservation of vorticity of speed rot 𝑉⃗ =
const directly follows preservation of circulation of velocity
along any closed loop; that is,

𝑑𝑑𝑡Γ (𝑡) = 𝑑𝑑𝑡 ∮𝐶 𝑉⃗ 𝑑 ⃗𝑙 = 0 󳨐⇒ ∮𝐶 𝑉⃗ 𝑑 ⃗𝑙 = const. (17)

This is Thomson’s theorem, which is valid only for
the ideal isentropic liquid, free from the influence of the
gravitational field. If rot 𝑉⃗ = 0 in all points of the fluid, the
movement is called potential. In this case, there is always a
scalar function𝜑( ⃗𝑟, 𝑡), which is called the potential of velocity
and satisfies the following condition:

∇𝜑 ( ⃗𝑟, 𝑡) = 𝑉⃗ ( ⃗𝑟, 𝑡) . (18)

It is obvious that, for an incompressible fluid, when condition
(14) is met, the velocity potential satisfies the Laplace equa-
tion:

Δ𝜑 ( ⃗𝑟, 𝑡) = 0. (19)

Thomson’s theorem contradicts the Helmholtz theorem,
according to which in the gravitational field the circulation
of speed is maintained [6] (§1.2). Helmholtz defines a closed

circuit parametrically via a vector 𝑋⃗(𝜎, 𝑡), where 0 ≤ 𝜎 ≤ 1
and 𝑋⃗(0, 𝑡) = 𝑋⃗(1, 𝑡). Thus, the choice of the parameter 𝜎
means selection of the certain liquid particle on the circuit.
In this case, the circulation of speed can be written as

Γ (𝑡) = ∫1
0
𝑉⃗𝜕𝑋⃗𝜕𝜎 𝑑𝜎. (20)

From (20), for change of the circulation of speed, the
following expression is obtained (see in more detail [6]
(§1.2)):

𝑑Γ𝑑𝑡 = ∫10 [− 1𝜌0 𝜕𝑃𝜕𝜎 − 𝑔𝜕𝑧𝜕𝜎 + 12 𝜕𝑉
2𝜕𝜎 ] 𝑑𝜎

= 1𝜌0 [𝑃 (0) − 𝑃 (1)] + 𝑔 [𝑧 (0) − 𝑧 (1)]
+ 12 [𝑉2 (1) − 𝑉2 (0)] .

(21)

According to the author, expression (21) is zero, since on the
basis of the cyclicality of parameter 𝜎 the following equalities
are fair: 𝑃(0) = 𝑃(1), 𝑧(0) = 𝑧(1), and 𝑉(0) = 𝑉(1). Actually,
it is not the case, because cyclicality of parameter determines
the point on the circuit, rather than the values of the physical
quantities at this point. These equations are executed only in
case velocity has the same value at all points of liquid and
if 𝑔 = 0. If 𝑔 ̸= 0, the contour point (liquid particle) must
move strictly in horizontal direction, because any deviation of
fluid particle along the axis 𝑍 leads to a change of circulation
of velocity and movement is nonpotential. This assertion is
also made obvious from the fact that, in the gravitational
field of the Earth, 𝑧 component of velocity should depend
on the gravitational acceleration 𝑔; however in this case it is
impossible tomeet the condition of potentiality of movement
rot 𝑉⃗ = 0 ⇒ 𝜕𝑉𝑥/𝜕𝑧 = 𝜕𝑉𝑧/𝜕𝑥.

Let us now discuss how the problems of the linear
surface gravity waves generated at the surface of tangential
discontinuity 𝑧 = 0 between the two fluids are solved in
the existing theory. Let us consider the two-dimensional
problem, when all variables are dependent on 𝑥, 𝑧, and 𝑡. Let
us route the axis𝑋 along the surface of discontinuity and the
axis𝑍 perpendicular thereto. Let the upper fluid with infinite
depth move relative to the lower liquid with finite, constant
depth ℎ at constant speed 𝑉⃗0 = 𝑉0 ⃗𝑒𝑥. We write the Euler
equation (1) in the following form:

𝜕𝑉⃗𝜕𝑡 + 12∇𝑉⃗2 = − 1𝜌0∇𝑃 + 𝑔⃗. (22)

Considering the potentiality of the movement and using (18),
(22) takes the following form:

∇[𝜕𝜑𝜕𝑡 + 12 (∇𝜑)2 + 𝑃𝜌0 ] = 𝑔⃗. (23)
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By integrating 𝑥 and 𝑧 components of (23) we find

𝑃 − 𝑃0𝜌0 = 𝛼 (𝑧, 𝑡) − 𝜕𝜑𝜕𝑡 − 12 (∇𝜑)2 ,𝑃 − 𝑃0𝜌0 = 𝛽 (𝑡) − 𝑔𝑧 − 𝜕𝜑𝜕𝑡 − 12 (∇𝜑)2 ,
(24)

where 𝛼(𝑧, 𝑡) and 𝛽(𝑡) are the arbitrary functions and𝑃0 is the
equilibrium pressure. From (24) we find easily that

𝛼 (𝑧, 𝑡) = 𝛽 (𝑡) − 𝑔𝑧, (25)

and thus

𝑃 (𝑥, 𝑧, 𝑡) = 𝜌0 [𝛽 (𝑡) − 𝑔𝑧 − 𝜕𝜑𝜕𝑡 − 12 (∇𝜑)2] + 𝑃0. (26)

If the pressure in any liquid particle on the surface of
the tangential discontinuity is changed, such change, however
small it may be, will spread along the surface in the form of
wave and it will no longer be flat. We define the equation of
the perturbed surface as 𝑧 = 𝜉(𝑥, 𝑡). In the existing theory,
function 𝜉(𝑥, 𝑡) is given a priori, which we assume is wrong.
It should be determined in the process of solving the problem,
which we will show below.

On the perturbed surface and on the bottom of the lower
liquid the following boundary conditions should be fulfilled:

𝑃2 − 𝑃1 = −𝛼 𝜕2𝜉𝜕𝑥2 ,
𝑉1𝑧 = 𝜕𝜉𝜕𝑡 + 𝑉0 𝜕𝜉𝜕𝑥 ,
𝑉2𝑧 = 𝜕𝜉𝜕𝑡 , 𝑧 = 𝜉,𝑉2𝑧 = 0, 𝑧 = −ℎ.

(27)

Thefirst of these conditions is called dynamic conditionwhile
the rest of the conditions are kinematic conditions. Here, 𝛼
is the coefficient of the surface tension and indices 1 and 2
denote quantities in the regions 𝑧 > 0 and 𝑧 < 0, respectively.
We introduce the potentials of speeds 𝑉⃗1 and 𝑉⃗2 in the
following form:

𝜑1 (𝑥, 𝑧, 𝑡) = 𝑉0𝑥 + 𝐴 exp (𝛾𝑧) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] ,𝜑2 (𝑥, 𝑧, 𝑡) = 𝐵 exp (𝛿𝑧) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (28)

Note that such definition of the potential is a priori wrong,
because, in a gravitational field, 𝑧 components of velocities,
that is, 𝜕𝜑1/𝜕𝑧 and 𝜕𝜑2/𝜕𝑧, must clearly depend on the
gravitational acceleration 𝑔, which is not taken into account
in (28). However, we follow the conventional method and

demanding 𝜑1 and 𝜑2 to satisfy the Laplace equation and
attenuation of perturbations at 𝑧 → ∞, we finally have

𝜑1 (𝑥, 𝑧, 𝑡) = 𝑉0𝑥 + 𝐴 exp (−𝑘𝑧) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] ,𝑧 > 0, (29)

𝜑2 (𝑥, 𝑧, 𝑡)= [𝐵1 exp (𝑘𝑧) + 𝐵2 exp (−𝑘𝑧)] exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] ,𝑧 < 0. (30)

Let us define 𝜉(𝑥, 𝑡) as
𝑧 = 𝜉 (𝑥, 𝑡) = 𝑎 exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (31)

Taking into account (29), (30), and (31) from kinematic
conditions (27) at 𝑧 = 𝜉(𝑥, 𝑡) ≅ 0 results in

𝑘𝐴 = 𝑖 (𝜔 − 𝑘𝑉0) 𝑎,𝑘 (𝐵1 − 𝐵2) = −𝑖𝜔𝑎. (32)

From (32) we find the relation between the coefficients𝐴, 𝐵1,
and 𝐵2in the following form:

𝜔𝐴 = (𝜔 − 𝑘𝑉0) (𝐵2 − 𝐵1) . (33)

Substituting (29), (30), and (31) and the value of 𝑎 from the
second equation (32) to (26) and neglecting terms containing
squares and products of the coefficients 𝐴, 𝐵1, and 𝐵2 due to
their smallness, from (27), we obtain the following system of
linear algebraic equations for these coefficients:

𝑖 {− [𝑔𝜌2 − 𝜌1𝑉0 + 𝜌1 (𝜔 − 𝑘𝑉0) + 𝛼𝑘2𝑉0 ]𝐴
− [𝑔𝜌2 − 𝜌1𝑉0 − 𝜌2𝜔 + 𝛼𝑘2𝑉0 ]𝐵1
+ [𝑔𝜌2 − 𝜌1𝑉0 + 𝜌2𝜔 + 𝛼𝑘2𝑉0 ]𝐵2} exp [𝑖 (𝑘𝑥 − 𝜔𝑡)]
= 𝜌2𝛽2 (𝑡) − 𝜌1𝛽1 (𝑡) − 𝜌1𝑉202 ,

𝜔𝐴 + (𝜔 − 𝑘𝑉0) 𝐵1 − (𝜔 − 𝑘𝑉0) 𝐵2 = 0,
exp (−𝑘ℎ) 𝐵1 − exp (𝑘ℎ) 𝐵2 = 0.

(34)

Here two kinematic conditions on the surface 𝑧 = 𝜉 ≅ 0 are
replaced with one condition (33). From (34) it is clear that
in order to obtain the dispersion equation 𝜔 = 𝜔(𝑘), it is
necessary to satisfy the following condition:

𝜌2𝛽2 (𝑡) − 𝜌1𝛽1 (𝑡) − 𝜌1𝑉202 = 0. (35)

In monograph [5] (§62) is given a solution of Kelvin problem
when ℎ = ∞, where 𝛽1(𝑡) = 𝛽2(𝑡) = 0 and as we see, in
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this case, the problem cannot be solved. Therefore, constant
term 𝜌1𝑉20 /2 is artificially introduced in the right part of the
first equation (34). In monograph [19] (§13.7) 𝛽2(𝑡) = 0 while𝛽1(𝑡) = −𝑉20 /2 is introduced in the expression for potential
(29):

𝜑1 (𝑥, 𝑧, 𝑡) = 𝑉0𝑥 − 𝑉20 𝑡2+ 𝐴 exp (−𝑘𝑧) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] . (36)

Thereafter condition (35) is fulfilled and the problem can be
solved. Equating to zero the determinant of system (34) with
consideration of (35), we obtain the dispersion equation in
the following form:

[𝜌2 + 𝜌1𝑡ℎ (𝑘ℎ)] 𝜔2 − 2𝜌1𝑘𝑉0𝑡ℎ (𝑘ℎ) 𝜔+ 𝑘 [𝜌1𝑘𝑉20 − 𝑔 (𝜌2 − 𝜌1) − 𝛼𝑘2] 𝑡ℎ (𝑘ℎ) = 0, (37)

the solution of which is

𝜔 = 𝜌1𝑘𝑉0𝑡ℎ (𝑘ℎ) ± 𝑡ℎ1/2 (𝑘ℎ) {[𝜌2 + 𝜌1𝑡ℎ (𝑘ℎ)] [𝑘𝑔 (𝜌2 − 𝜌1) + 𝛼𝑘3] − 𝜌1𝜌2𝑘2𝑉20 }1/2𝜌2 + 𝜌1𝑡ℎ (𝑘ℎ) . (38)

From (38) follow all the known dispersion relations for
special cases. For example, for the air and infinitely deepwater
(𝜌2 ≫ 𝜌1), when 𝑉0 = 0, we have

𝜔 = ±[𝑘(𝑔 + 𝛼𝑘2𝜌2 )]
1/2 . (39)

The wave, dispersion equation of which is expressed by
formula (39), is called a capillary-gravity wave. If 𝑘 <(𝜌2𝑔/𝛼)1/2, then, for the phase velocity of the wave𝑈𝑝 = 𝜔/𝑘,
we get

𝑈𝑝 = (𝑔𝑘)1/2 (40)

and the wave is purely gravitational. This condition sets the
upper limit of wavelength of the capillary wave. For water𝛼 = 73 × 10−3N/m, 𝜌2 = 103 kg/m3 and thus, if the
wavelength𝜆 > 1.73 cm, then thewave is purely gravitational.
For shallow water (𝜆 ≫ ℎ, 𝑡ℎ(𝑘ℎ) ≅ 𝑘ℎ) at 𝑉0 = 0, from (38),
we have

𝑈𝑝 = √𝑔ℎ. (41)

It is easy to show that the representation of potential in the
form of (29) or (36) contradicts its physical sense. Indeed,
given that 𝑉0 = 𝑥/𝑡, expression (36) can be written as𝜑1 (𝑥, 𝑧, 𝑡)

= 𝑉0𝑥2 {1 + 2𝐴𝑉0𝑥 exp (−𝑘𝑧) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)]} . (42)

Since the coordinate 𝑥 is not limited in the problem, at|𝑥| > 2𝐴/𝑉0𝜀2, where 𝜀 is a small dimensionless quantity,
square of which is neglected, the second term in the braces
must be rejected. This is one more proof that only stationary
motion can be potential. Thus, we have convincingly shown
that, while studying wave processes in liquids, the movement
cannot be considered as a potential not only when 𝑔 ̸= 0, but
also when 𝑔 = 0.

Let us now consider the consequences of the neglect of the
second term in (9) on the example of the internal gravitational

waves, to which §13 of monograph [5] is dedicated. The
authors called wave within incompressible liquid located in
Earth’s gravitational field the internal wave. In connection
with incompressibility they neglect change of density related
to change of pressure and assume that change of density can
only be isobaric, at the expense of change of entropy under
mechanic oscillation of inhomogeneous medium; that is,

𝜌󸀠 = (𝜕𝜌0𝜕𝑠0 )𝑝 𝑠󸀠 (43)

which is similar to formula (7). Thereafter, they write down
linearized equations of motion and conservation of mass in
the following form:

𝜕𝑉⃗𝜕𝑡 = 𝑔⃗𝜌0 (𝜕𝜌0𝜕𝑠0 )𝑝 𝑠󸀠 − ∇𝑃
󸀠𝜌0 , (44)

∇𝑉⃗ = 0. (45)

Having presented all perturbed values of variable values in
the form 𝑓󸀠( ⃗𝑟, 𝑡) = const × exp [𝑖(𝑘⃗ ⃗𝑟 − 𝜔𝑡)], from (3), (44),
and (45), they obtain

𝑖𝜔𝑠󸀠 = −𝑉⃗∇𝑠0, (46)

−𝑖𝜔𝑉⃗ = 1𝜌0 (𝜕𝜌0𝜕𝑠0 )𝑝 𝑠󸀠𝑔⃗ − 𝑖𝑘⃗𝜌0𝑃󸀠, (47)

𝑘⃗𝑉⃗ = 0. (48)

Multiplying (47) by vector 𝑘⃗ they receive
𝑖𝑘2𝑃󸀠 = (𝜕𝜌0𝜕𝑠0 )𝑝 𝑠󸀠 (𝑔⃗𝑘⃗) . (49)

From these equations dispersive equation can easily be
obtained in the following form:

𝜔2 = 𝜔20sin2𝜃, (50)
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where

𝜔20 = − 𝑔𝜌0 (𝜕𝜌0𝜕𝑠0 )𝑝 𝑑𝑠0𝑑𝑧 , (51)

and 𝜃 is angle between vector 𝑘⃗ and axis𝑍.Thus, we get some
kind of strange transverse wave, frequency of which depends
only on direction of wave vector 𝑘⃗ and it can be of any length.
The reason for this paradox is that if, in the equation of mass
continuity 𝑑𝜌/𝑑𝑡 = −𝜌∇𝑉⃗ − 𝑉⃗∇𝑃/𝐶2𝑝, the second summand
which related to heterogeneity of medium is not taken into
consideration, then the condition ∇𝑉⃗ = 0 means 𝜌󸀠 = 0
or following (43) 𝑠󸀠 = 0 and then all equations from which
dispersive equation (50) is obtained are nulling. If we consider
the second summand and ignore the first one, considering
liquid to be incompressible, as done in monograph [5], we
come to a clear contradiction. Indeed, expressed from (46) 𝑠󸀠
and substituting in (47), we obtain

𝑉⃗ = 𝜔𝑃󸀠𝑘⃗𝜌0𝜔2 − (𝜕𝜌0/𝜕𝑠0)𝑃 (𝑔⃗∇𝑠0) , (52)

from which it follows that 𝑉⃗ ↑↑ 𝑘⃗that is contrary to
condition (48). Therefore, application of the condition of
incompressibility ∇𝑉⃗ = 0 for fluids is impossible. In addi
tion, as it follows from (44), in this case (𝜌󸀠 = 0 ⇒ 𝑠󸀠 =0), gravitational acceleration disappears from the Euler
equation and talk about gravitational waves is impossible.
Nevertheless, in the dispersion equations of surface gravity
waves, in which condition of potentiality of movement is not
used, this acceleration is present that is a consequence of the
incorrectness allowed by the authors (see, e.g., [5], §12). They
assume that 𝜕𝑉𝑧/𝜕𝑡 = 0 and solve the system of equations as
follows: 𝜕𝑉𝑥𝜕𝑡 = − 1𝜌0 𝜕𝑃𝜕𝑥 ,1𝜌0 𝜕𝑃𝜕𝑧 = −𝑔,𝜕𝑉𝑥𝜕𝑥 + 𝜕𝑉𝑧𝜕𝑧 = 0

(53)

with the boundary condition at 𝛼 = 0.
𝑃|𝑧=𝜉 = 𝑃0. (54)

Then, by integrating the second equation of (53) in the range[𝑧; 𝜉], they find the pressure in form of

𝑃 = 𝑃0 + 𝜌0𝑔 (𝜉 − 𝑧) . (55)

Obviously, this method of solving the problem is erroneous
for the following reasons.

Firstly, from condition (54) it follows that pressure is
constant on the disturbed liquid surface and thus it is unclear
how the wave is propagated in this case.

Secondly, the second equation of system (53) can be
written as

1𝜌0 𝜕 (𝑃0 + 𝑃
󸀠)𝜕𝑧 = −𝑔 (56)

after which, using equilibrium condition of liquid 𝜕𝑃0/𝜕𝑧 =−𝜌0𝑔, we obtain 𝜕𝑃󸀠𝜕𝑧 = 0 󳨐⇒ 𝑃󸀠 = const; (57)

that is, if condition (56) is fulfilled, vibration is impossible.
Thirdly, assumption 𝜕𝑉𝑧/𝜕𝑡 = 0 is equivalent to assuming𝑉𝑧 = 0 and consequently 𝜉 = 0.
These examples conclusively prove that the theory of

surface gravity waves is flawed and needs revision.

3. The Correct Theory of Linear Surface Waves

Compressibility or incompressibility of the medium is deter-
mined by the relation between𝐶𝑠 and𝐶𝑝. From (11), it follows
that if 𝐶𝑝 > 𝐶𝑠, then𝐶 ≅ 𝐶𝑠 and themedium is compressible;
that is, the second term in (9) can be neglected. If 𝐶𝑠 > 𝐶𝑝,
then 𝐶 ≅ 𝐶𝑝 and the medium is incompressible; that is,
we neglect the first term, assuming that ∇𝑉⃗ = 0. From the
definition of isobaric speed of sound we easily find

𝐶𝑝 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜌0 (𝜕𝜌0𝜕𝑇 )
−1

𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (𝑐𝑝𝑇 )
1/2 = 1𝛽 (𝑐𝑝𝑇 )1/2 , (58)

where𝛽 = (1/𝑉)(𝜕𝑉/𝜕𝑇)𝑝 is coefficient of thermal expansion
and 𝑐𝑝 is the heat capacity per unit mass of substance at
constant pressure. For water, 𝛽 = 1.5 × 10−4K−1 and𝑐𝑝 = 4.19 × 103 J/kg, and then from formula (58) we
obtain 𝐶𝑝 = 25210m/sec. On the other hand, according
to the experiment, the speed of sound in water at the same
temperature to a high accuracy is 𝐶 = 1480m/s and from
formula (11) we have 𝐶𝑠 = 𝐶𝐶𝑝/√𝐶2𝑝 − 𝐶2 = 1482.6m/sec.
As we can see, in water, the speed of sound is almost
equal to the adiabatic sound speed and therefore, water is a
homogeneous or a compressible medium, for which ∇𝑉⃗ ̸=0. Therefore, for water, as well as for air at sea level, the
second term in (9) can be neglected [2]. Let us present all the
variables in the form of the sum of fixed and perturbed values
as follows:

𝑉⃗ (𝑥, 𝑧, 𝑡) = 𝑉⃗0 + 𝑉⃗󸀠 (𝑥, 𝑧, 𝑡) ,𝑃 (𝑥, 𝑧, 𝑡) = 𝑃0 + 𝑃󸀠 (𝑥, 𝑧, 𝑡) ,𝜌 (𝑥, 𝑧, 𝑡) = 𝜌0 + 𝜌󸀠 (𝑥, 𝑧, 𝑡) ,
(59)

and then, by linearizing system (12), we obtain

𝜌0 [𝜕𝑉⃗𝜕𝑡 + (𝑉⃗0∇) 𝑉⃗] = −∇𝑃 + 𝑔⃗𝐶2𝑃,1𝐶2 [𝜕𝑃𝜕𝑡 + (𝑉⃗0∇)𝑃] = −𝜌0∇𝑉⃗.
(60)
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Here the equation of equilibrium∇𝑃0 = 𝜌0𝑔⃗ and the equation
of state 𝜌󸀠 = (1/𝐶2)𝑃󸀠 are used while the marks of disturbed
values are omitted. Having applied the operator ∇ to the first
equation of system (60) and the operator 𝜕/𝜕𝑡 to the second
equation,

𝜌0 𝜕𝜕𝑡∇𝑉⃗ + Δ𝑃 − 𝑔⃗𝐶2∇𝑃 = −𝜌0∇ [(𝑉⃗0∇) 𝑉⃗] ,1𝐶2 𝜕2𝑃𝜕𝑡2 + 𝑉⃗0𝐶2 𝜕𝜕𝑡∇𝑃 = −𝜌0 𝜕𝜕𝑡∇𝑉⃗,
(61)

and having determined 𝜌0𝜕∇𝑉⃗/𝜕𝑡 from the first equation
(61) and substituting in the second, we obtain a generalized
equation of gravitational waves in the form of

Δ𝑃 − 𝑔⃗𝐶2∇𝑃 − 1𝐶2 𝜕2𝑃𝜕𝑡2
= 𝑉⃗0𝐶2 𝜕𝜕𝑡∇𝑃 − 𝜌0∇ [(𝑉⃗0∇𝑃) 𝑉⃗] ,

(62)

from which the equation for any wave in Earth’s gravitational
field, including soundwave equation, can be obtained [4].We
will seek for all perturbed quantities in the form 𝑓(𝑥, 𝑧, 𝑡) =𝑓𝑎(𝑧) exp[𝑖(𝑘𝑥 − 𝜔𝑡)] and take into account that 𝑉⃗0 = 𝑉0 ⃗𝑒𝑥
and ∇[(𝑉⃗0∇)𝑉⃗] = 𝑉0(𝜕2𝑉𝑥/𝜕𝑥2 + 𝜕2𝑉𝑧/𝜕𝑥𝜕𝑧), and then (62)
will give the following equation:

𝑑2𝑃𝑎 (𝑧)𝑑𝑧2 + 𝑔𝐶2 𝑑𝑃𝑎 (𝑧)𝑑𝑧 + (𝜔2𝐶2 − 𝑘2)𝑃𝑎 (𝑧)
= 𝑘𝑉0 [𝜌0 (𝑘𝑉𝑥𝑎 (𝑧) − 𝑖𝑑𝑉𝑧𝑎 (𝑧)𝑑𝑧 ) + 𝜔𝐶2𝑃𝑎 (𝑧)] .

(63)

From the first equation of (60) for𝑉𝑥𝑎(𝑧) and𝑉𝑧𝑎(𝑧)weobtain
𝑉𝑥𝑎 (𝑧) = 𝑘𝑃𝑎 (𝑧)𝜌0 (𝜔 − 𝑘𝑉0) ,
𝑉𝑧𝑎 (𝑧) = −𝑖𝑑𝑃𝑎 (𝑧) /𝑑𝑧 + 𝑔𝑃𝑎 (𝑧) /𝐶2𝜌0 (𝜔 − 𝑘𝑉0) . (64)

Substituting (64) to (63) we will find the equation for the
amplitude of perturbed pressure:

𝑑2𝑃𝑎 (𝑧)𝑑𝑧2 + 𝑔𝐶2 𝑑𝑃𝑎 (𝑧)𝑑𝑧 + (𝜔 − 𝑘𝑉0)2 − 𝑘2𝐶2𝐶2 𝑃𝑎 (𝑧)
= 0. (65)

At 𝑃𝑎(𝑧) = const and 𝑉0 = 0, from (65), it follows that the
dispersion equation for the sound wave 𝜔/𝑘 = 𝐶.

We will seek for a solution of (65) in the area 𝑧 > 0 in the
form 𝑃𝑎1(𝑧) = 𝐴 exp(𝛾𝑘𝑧). Then for 𝛾 we will find
𝛾 = − 1𝜃1 [[[1 + √1 + 𝜃

2
1(1 − (𝑈𝑝 − 𝑉0)2𝐶21 )]]] < 0, (66)

where 𝜃1 = 2𝑘𝐶21/𝑔. In the area 𝑧 < 0, we will similarly find𝑃𝑎2(𝑧) = 𝐵1 exp(𝛿1𝑘𝑧) + 𝐵2 exp(𝛿2𝑘𝑧), where
𝛿1 = − 1𝜃2 [[[1 − √1 + 𝜃

2
2 (1 − 𝑈2𝑝𝐶22)]]] > 0,

𝛿2 = − 1𝜃2 [[[1 + √1 + 𝜃
2
2 (1 − 𝑈2𝑝𝐶2𝑠2)]]] < 0

(67)

and 𝜃2 = 2𝑘𝐶22/𝑔. Let us consider the condition 𝜃1 > 1.
Given that in the air at sea level 𝐶1 ≅ 340m/s and 𝑔 ≈10m/s2, we find 𝑘 > 8.64 × 10−5m−1 or 𝜆 < 0.72 × 105m.
Thus, this condition embraces the entire range of wavelengths
from capillary to tsunami, and the more 𝑘 is, the better
it is performed. For example, if a value of the length of
gravitational wave is 𝜆 ≈ 100m, for air, 𝜃1 ≈ 0.71 × 103 ≫ 1
and for water, in which 𝐶2 ≅ 1500m/s, 𝜃2 ≈ 0.14 × 105 ≫ 1.
It is also evident that 𝑈2𝑝/𝐶22 ≪ (𝑈𝑝 − 𝑉0)2/𝐶21 ≪ 1 and it is
then easy to verify that 𝛿1 = 1 and 𝛿2 = 𝛾 = −1. Thus, for
perturbed pressure, we will, respectively, have the following:

𝑃1 (𝑥, 𝑧, 𝑡) = 𝐴 exp (−𝑘𝑧) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] ,𝑃2 (𝑥, 𝑧, 𝑡)= [𝐵1 exp (𝑘𝑧) + 𝐵2 exp (−𝑘𝑧)] exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] .
(68)

For the components of the velocities 𝑉⃗1 and 𝑉⃗2 from formulas
(64), neglecting the value 𝑔𝑃𝑎/𝐶2, we will find

𝑉1𝑥 (𝑥, 𝑧, 𝑡) = 𝑘𝐴 exp (−𝑘𝑧)𝜌01 (𝜔 − 𝑘𝑉0) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] ,
𝑉1𝑧 (𝑥, 𝑧, 𝑡) = 𝑖 𝑘𝐴 exp (−𝑘𝑧)𝜌01 (𝜔 − 𝑘𝑉0) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] ,
𝑉2𝑥 (𝑥, 𝑧, 𝑡) = 𝑘 [𝐵1 exp (𝑘𝑧) + 𝐵2 exp (−𝑘𝑧)]𝜌02𝜔⋅ exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] ,
𝑉2𝑧 (𝑥, 𝑧, 𝑡) = −𝑖𝑘 [𝐵1 exp (𝑘𝑧) − 𝐵2 exp (−𝑘𝑧)]𝜌02𝜔⋅ exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] .

(69)

The kinematic conditions on the surface of discontinuity 𝑧 =𝜉(𝑥, 𝑡) ≅ 0 give
𝑖𝑘𝐴𝜌01 (𝜔 − 𝑘𝑉0) exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] = 𝜕𝜉𝜕𝑡 + 𝑉0 𝜕𝜉𝜕𝑥 ,

−𝑖𝑘 (𝐵1 − 𝐵2)𝜌02𝜔 exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] = 𝜕𝜉𝜕𝑡 .
(70)
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From (70) for 𝜉 we will have
𝜉 (𝑥, 𝑡) = 1𝑉0 [ 𝐴𝜌01 (𝜔 − 𝑘𝑉0) + 𝐵1 − 𝐵3𝜌02𝜔 ]

⋅ {exp [𝑖 (𝑘𝑥 − 𝜔𝑡)] − 1} . (71)

Thus, we have defined the function 𝜉(𝑥, 𝑡) from the kinematic
conditions on the fracture surface. We see that the amplitude
of the surface perturbation depends on the parameters of the
task, which is quite natural. Now, using boundary conditions
(27), we easily obtain three homogeneous linear equations for
coefficients 𝐴, 𝐵1, and 𝐵2.

[ 𝛼𝑘2𝑉0𝜌01 (𝜔 − 𝑘𝑉0) + 1]𝐴 + ( 𝛼𝑘2𝑉0𝜌02𝜔 − 1)𝐵1
− ( 𝛼𝑘2𝑉0𝜌02𝜔 + 1)𝐵2 = 0,𝐴𝜌01 (𝜔 − 𝑘𝑉0)2 + 𝜔 − 𝑘𝑉0𝜌02𝜔2 𝐵1 − 𝜔 − 𝑘𝑉0𝜌02𝜔2 𝐵2 = 0,

exp (−𝑘ℎ) 𝐵1 − exp (𝑘ℎ) 𝐵2 = 0.

(72)

Equating the determinant of this system to zero, we will find
the dispersion equation in the form of

[𝜌01 (𝜔 − 𝑘𝑉0)2 − 𝛼𝑘3] 𝑡ℎ (𝑘ℎ) + 𝜌02𝜔2 = 0. (73)

Despite the fact that the original system of (60) contains
acceleration of gravitation 𝑔, in (73), it is absent. This fact
is the specificity of the linear theory, according to which the
influence of this parameter is so small that it can be ignored.
Equation (73) has no solutions for 𝛼 = 0, which means
that the linear theory describes only the capillary waves. The
solution of this equation at 𝜌01 ≪ 𝜌02 is
𝜔
= 𝑘𝜌01𝑉0𝑡ℎ (𝑘ℎ) ± {𝑡ℎ (𝑘ℎ) [𝜌02𝛼𝑘 − 𝜌01𝜌02𝑉20 ]}1/2𝜌02 , (74)

and therefore, the stability condition of capillary waves is

𝑉0 ≤ √ 𝛼𝑘𝜌01 . (75)

From (75), it is easy to calculate that the wind with the speed
of 𝑉0 = 5m/s will blow off capillary waves whose length 𝜆 >1.6 cm. At 𝑉0 = 0, from (74), we have

𝑈𝑝 = 𝜔𝑘 = ±√ 𝑘𝛼𝜌02 𝑡ℎ (𝑘ℎ). (76)

Solution (76) refutes the existing opinion that the capillary
waves are generated only in the deep water. We see that they

are generated in deep (𝑘ℎ > 1, 𝑡ℎ(𝑘ℎ) ≈ 1) as well as in
shallow (𝑘ℎ < 1, 𝑡ℎ(𝑘ℎ) ≈ 𝑘ℎ) water. In the first case the
dispersion equation has the following form:

𝜔 = ±𝑘√𝑘𝛼𝜌 (77)

and in the second, it has the following form:

𝜔 = ±𝑘2√𝛼ℎ𝜌 . (78)

Since now there are no conditions limiting the length of
the capillary waves, let us consider the perturbation with
wavelength 𝜆 = 0.1m (𝑘 = 62.8m−1), for which, from
formulas (77) and (78), we find that in deep water (ℎ ≥ 0.5m)𝜔 = 0.13 s−1 and 𝑈𝑝 = 2 cm/sec and in shallow water (ℎ =0.05m) 𝜔 = 0.07 sec−1 and 𝑈𝑝 = 1 cm/sec. As we can see, as
the depth reduces 10 times, the frequency and phase velocity
of capillary wave fall 2 times.

4. Conclusion

It was noted above that the existing theory of gravitational
waves, which describes the propagation of mechanical vibra-
tions in the medium under the influence of Earth’s gravita-
tional field, gives satisfactory results. By saying so we meant
that they can be explained in terms of physics, but this does
not mean that they are correct. For example, the condition𝑘 < (𝜌2𝑔/𝛼)1/2 according to which the capillary is only the
waves whose length does not exceed 1.73 cm is not confirmed
by experiment. There is a classic experiment in which a steel
needle does not sink in a glass, filled to the brim with water.
This is because although the diameter of glass greatly exceeds
the above specified length, the force of surface tension
acts, which balances the pressure produced by the needle.
Expression (41) for the phase velocity of gravitational waves
in shallow water 𝑈𝑝√𝑔ℎ which is obtained from incorrect
linear theory and is used to determine the speed of tsunami
waves (see, e.g., [20]) also seems doubtful.This formula gives
satisfactory results in the distance from the shore, but it shows
that the speed of wave of tsunami should tend to zero at
run-up onto the shore, while it has enormous destructive
energy. We have shown that, in the linear theory, phase
velocity of surface wave is independent of the gravitational
acceleration, and therefore, the speed of tsunami waves must
be determined from the nonlinear theory. Since this wave
propagates at the interface between water and air, its speed
must be dependent on the thermodynamic parameters of
these two media and should accelerate while running up to
the shore.

From the foregoing it follows that our calculations and
arguments leave no doubt that they should be taken into
account in the study of dynamic processes in liquids and
gases.
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