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A generalized binomial theorem is developed in terms of Bell polynomials and by applying this identity some sums involving inverse
binomial coefficient are calculated. A technique is derived for calculating a class of hypergeometric transformation formulas and
also some curious 𝑞 series identities.

1. Introduction

Someof themost recent developments are on the use of differ-
ent techniques for obtaining sums of hypergeometric series.
In this paper, we present a new method for calculating the
following summations and also a generalized theorem related
to these series is investigated. We investigated the following
summations formula with some restrictions for the functions
𝑓(𝑘, 𝑦):

∞

∑

𝑘=1

(−1)
𝑚𝑘

𝑥
𝑘+𝑛

[(𝑘)
𝑛+1
]
𝑚
𝑓 (𝑘, 𝑦) ,

∞

∑

𝑘=1

(−1)
𝑚𝑘

𝑥
𝑘+𝑛

[(𝑘)
𝑛+1
]
𝑚
.

(1)

We assume that the function 𝑓(𝑘 − 𝑛, 𝑦) has no poles at
(𝑛 − 𝑘 + 𝑙), where 𝑙 is an integer ranged from 1 ≤ 𝑙 ≤
𝑘.

As it turns out, the above summation formula for the
constant function 𝑓(𝑘, 𝑦) = 1 gives us a new generalized
hypergeometric transformation formula of the type

𝑚+1
𝐹
𝑚

[
[
[

[

𝑚+1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1 1 1 ⋅ ⋅ ⋅ 1

𝑛 + 2 ⋅ ⋅ ⋅ 𝑛 + 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

; (−1)
𝑚

𝑥
]
]
]

]

󳨀→

𝑑
𝑚

𝑑𝑟𝑚
𝑚
𝐹
𝑚−1

[
[
[

[

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−𝑟 ⋅ ⋅ ⋅ −𝑟

1 1 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

; −𝑥
]
]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑟=𝑛

.

(2)

We further investigated some 𝑞 series closely related to the
famous Roger-Ramanujan identities.

∞

∑

V=1

(𝑞)V−1

(𝑞)
𝑟+V
(𝑎𝑞
𝑟

)
V
. (3)
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In our present investigation dealing with the series identity,
we shall also make use of other such higher transcendental
functions, the Riemann Zeta function and Hurwitz Zeta
function, which are defined by

𝜁 (𝑠) =

∞

∑

𝑘=1

1

𝑘𝑠
,

𝜁 (𝑠, 𝑎 + 1) =

∞

∑

𝑘=1

1

(𝑘 + 𝑎)
𝑠
= 𝜁 (𝑠) − 𝐻

(𝑠)

𝑎
,

(4)

where𝐻(𝑠)
𝑎

is the generalized harmonic numbers defined by

𝐻
(𝑠)

𝑎
=

𝑎

∑

𝑘=1

1

𝑘𝑠
=
(−1)
𝑠

Γ𝑠
[𝜓
(𝑠−1)

(1) − 𝜓
(𝑠−1)

(𝑎 + 1)] ;

for 𝑠 ≥ 1, 𝑎 ≥ 0.

(5)

In the above identity we used the 𝜓 notation for denoting the
generalized polygamma function of order𝑚which is given by
the𝑚+ 1th times logarithmic derivative of Gamma function

𝜓
(𝑚)

(𝑧) =
𝑑
𝑚

𝑑𝑧𝑚
𝜓
(1)

(𝑧) =
𝑑
𝑚+1

𝑑𝑧𝑚+1
ln Γ (𝑧) ;

𝜓 (1) = −𝛾.

(6)

𝛾 denotes the famous Euler-Mascheroni constant.The deriva-
tives of generalized harmonic number are given:

𝑑
𝑚

𝑑𝑛𝑚
𝐻
(𝑝)

𝑛
= (−1)

𝑚+1
Γ (𝑚 + 𝑝)

Γ (𝑝)
𝜁 (𝑚 + 𝑝, 𝑛 + 1) . (7)

And we used (𝜆)V for the Pochhammer symbol defined (for
𝜆, V ∈ 𝐶 and in terms of the Gamma function) by

(𝜆)V =
Γ (𝜆 + V)
Γ (𝜆)

= 𝜆 (𝜆 + 1) ⋅ ⋅ ⋅ (𝜆 + V − 1) ;

(𝜆)
0
= 1.

(8)

The generalized hypergeometric function is defined by

𝑝
𝐹
𝑞
[

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑝

𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑞

; 𝑧]

=

∞

∑

𝑘=0

(𝑎
1
)
𝑘
(𝑎
2
)
𝑘
⋅ ⋅ ⋅ (𝑎
𝑝
)
𝑘

(𝑏
1
)
𝑘
(𝑏
2
)
𝑘
⋅ ⋅ ⋅ (𝑏
𝑞
)
𝑘

𝑧
𝑘

𝑘!
.

(9)

The notation for generalized hypergeometric functions was
introduced by Pochhammer in 1870 and modified by Barnes
[1] and later by Maier and Slater [2]. A number of notational
variations are commonly used. Most common notation is
introduced by Graham et al. [3] using square brackets and a
semicolon.

The complete Bell polynomials of order 𝑛 are defined as

𝑌
𝑛
[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
] = ∑

𝑘
1
+2𝑘
2
+3𝑘
3
+⋅⋅⋅+𝑛𝑘

𝑛
=𝑛

𝑛!

𝑘
1
!𝑘
2
! ⋅ ⋅ ⋅ 𝑘
𝑛
!

⋅ (
𝑥
1

1!
)

𝑘
1

(
𝑥
2

2!
)

𝑘
2

⋅ ⋅ ⋅ (
𝑥
𝑛

𝑛!
)

𝑘
𝑛

.

(10)

First few terms of these polynomials can be derived by

𝑌
1
[𝑥
1
] = 𝑥
1
,

𝑌
2
[𝑥
1
, 𝑥
2
] = 𝑥
2

1
+ 𝑥
2
,

𝑌
3
[𝑥
1
, 𝑥
2
, 𝑥
3
] = 𝑥
3

1
+ 3𝑥
1
𝑥
2
+ 𝑥
3
.

(11)

2. Main Results

Theorem 1. For integers𝑚 > 0, 𝑛 ⩾ 0,
∞

∑

𝑘=1

(−1)
𝑚𝑘

𝑥
𝑘+𝑛

[(𝑘)
𝑛+1
]
𝑚
𝑓 (𝑘, 𝑦) =

(−1)
𝑚

𝑚! (𝑛!)
𝑚
𝐹
(𝑚)

𝑚
(𝑛, 𝑥, 𝑦)

−

𝑛

∑

𝑘=0

𝑚

∑

𝑗=0

(−1)
𝑗

𝑥
𝑘

𝑚! (𝑛!)
𝑚
(
𝑛

𝑘
)

𝑚

(
𝑚

𝑗
)𝑓
(𝑚−𝑗)

(𝑘 − 𝑛, 𝑦)

⋅ 𝑌
𝑚
[𝑚𝐵
1
, . . . , 𝑚𝐵

𝑚
] ,

(12)

where [𝐹
𝑚
(𝑟, 𝑥, 𝑦) = ∑

∞

𝑘=0
𝑥
𝑘

(
𝑟

𝑘
)
𝑚

𝑓(𝑘 − 𝑟, 𝑦) and
𝐹
(𝑚)

𝑚
(𝑛, 𝑥, 𝑦) = (𝑑

𝑚

/𝑑𝑟
𝑚

)𝐹
𝑚
(𝑟, 𝑥, 𝑦)|

𝑟=𝑛
.

Proof. Let us define a function 𝐹
𝑚
(𝑟, 𝑥, 𝑦) where 𝑟, 𝑥, 𝑦 ∈ R

such that

𝐹
𝑚
(𝑟, 𝑥, 𝑦) =

∞

∑

𝑘=0

𝑥
𝑘

(
𝑟

𝑘
)

𝑚

𝑓 (𝑘 − 𝑟, 𝑦) . (13)

We also assume the function 𝑓(𝑘 − 𝑟, 𝑦) has no poles at (𝑛 −
𝑘 + 𝑙) for each 𝑙 and𝑚 such that

1 ⩽ 𝑙 ⩽ 𝑘, 𝑚 ∈ Z
+

. (14)

We introduce another notation for the 𝑚th derivative with
respect to 𝑟 of the defined function 𝐹

𝑚
(𝑟, 𝑥, 𝑦):

𝐹
(𝑚)

𝑚
(𝑛, 𝑥, 𝑦) =

𝑑
𝑚

𝑑𝑟𝑚
𝐹
𝑚
(𝑟, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

. (15)

Furthermore, we see the series also defined for 𝑟. It can be
extended to the interval [0,∞], because when 𝑘 → (𝑟 + 𝑙),
where 𝑟 is a positive integer, the further terms of the series
just vanish.

lim
𝑘→(𝑟+𝑙)

[(
𝑟

𝑘
)

𝑚

𝑓 (𝑘 − 𝑟, 𝑦)] = 0. (16)

Making use of certain special properties of Bell polynomials
we can evaluate successive derivative of a given function. Let
us consider a function 𝑓(𝑥, 𝑦, 𝑧) which has a Taylor series
expansion around 𝑥; the detailed procedure of these kinds
is extensively discussed in the paper [4]. Following the same
process discussed in [5, 6] we can write the following elegant
identity by virtue of Bell polynomials:

𝑑
𝑛

𝑑𝑟𝑛
𝑒
𝑓(𝑟,𝑥,𝑦)

= 𝑒
𝑓(𝑟,𝑥,𝑦)

𝑌
𝑛
[𝑓
1

(𝑟, 𝑥, 𝑦) , 𝑓
2

(𝑟, 𝑥, 𝑦) , . . . ,

𝑓
𝑛

(𝑟, 𝑥, 𝑦)] .

(17)
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The following identity can be recovered from the same
method used in [5, page 8]:

𝑑
𝑗

𝑑𝑟𝑗
(
𝑟

𝑘
)

𝑚

= (
𝑟

𝑘
)

𝑚

𝑌
𝑗
[𝑚 (𝐻

𝑟
− 𝐻
𝑟−𝑘
) ,

𝑚 (𝐻
1

𝑟
− 𝐻
1

𝑟−𝑘
) , . . . , 𝑚 (𝐻

𝑗−1

𝑟
− 𝐻
𝑗−1

𝑟−𝑘
)] .

(18)

𝐻
𝑗

𝑟
represents the 𝑗th order derivative harmonic number𝐻(1)

𝑟

with respect to 𝑟. The derivative of harmonic numbers can be
evaluated by using the formula given in

𝐻
𝑗−1

𝑟
− 𝐻
𝑗−1

𝑟−𝑘
=
𝑑
𝑗−1

𝑑𝑟𝑗−1
(𝐻
(1)

𝑟
− 𝐻
(1)

𝑟−𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

= (−1)
𝑗−1

Γ (𝑗) (𝐻
(𝑗)

𝑛
− 𝐻
(𝑗)

𝑛−𝑘
) = 𝐵
𝑗
.

(19)

Hence, upon considering (18) and (19), we find

𝑑
𝑗

𝑑𝑟𝑗
(
𝑟

𝑘
)

𝑚󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

= (
𝑛

𝑘
)

𝑚

𝑌
𝑗
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑗
] . (20)

The above identity was derived extensively in [5] and a
modified version was calculated in [7]. Now differentiating
(13)𝑚 times with respect to 𝑟 and considering the case 𝑟 = 𝑛,
where 𝑟 is a positive integer as well as using the definition
from (15), we can derive

𝐹
(𝑚)

𝑚
(𝑛, 𝑥, 𝑦) =

𝑑
𝑚

𝑑𝑟𝑚
𝐹
𝑚
(𝑟, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

=

∞

∑

𝑘=0

𝑚

∑

𝑗=0

𝑥
𝑘

(
𝑚

𝑗
)
𝑑
𝑗

𝑑𝑟𝑗
(
𝑟

𝑘
)

𝑚󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

⋅
𝑑
𝑚−𝑗

𝑑𝑟𝑚−𝑗
𝑓 (𝑘 − 𝑟, 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

.

(21)

Making use of the identity derived in (20) we find

𝐹
(𝑚)

𝑚
(𝑛, 𝑥, 𝑦) =

𝑛

∑

𝑘=0

𝑚

∑

𝑗=0

𝑥
𝑘

(
𝑚

𝑗
)𝑓
𝑚−𝑗

(𝑘 − 𝑟, 𝑦) (
𝑛

𝑘
)

𝑚

⋅ 𝑌
𝑗
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑗
]

+

∞

∑

𝑘=𝑛+1

𝑚

∑

𝑗=0

𝑥
𝑘

(
𝑚

𝑗
)𝑓
𝑚−𝑗

(𝑘 − 𝑟, 𝑦) (
𝑛

𝑘
)

𝑚

⋅ 𝑌
𝑗
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑗
] .

(22)

From the asymptotic properties of Bell polynomials we have

𝑌
𝑗
[𝑓(

1

𝑥
) , 𝑓
2

(
1

𝑥
) , . . . , 𝑓

𝑗

(
1

𝑥
)]

= 𝑓
𝑗

(
1

𝑥
) ∑

𝑘
1
+2𝑘
2
+⋅⋅⋅+𝑗𝑘

𝑗
=𝑗

𝐺(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑗
) .

(23)

Considering the above property in (23), for 𝑚 ≥ 1 and
𝑛, 𝑙 ∈ 𝑍

+ are both positive integers, we can readily evaluate
the following limits:

lim
𝑘→(𝑛+𝑙)

(
𝑛

𝑘
)

𝑚

𝑌
1
[𝑚Γ (1) (𝐻

(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)] = 0,

lim
𝑘→(𝑛+1)

(
𝑛

𝑘
)

𝑚

𝑌
2
[𝑚Γ (1) (𝐻

(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
) ,

− 𝑚Γ (2) (𝐻
(2)

𝑛
− 𝐻
(2)

𝑛−𝑘
)] = 0.

(24)

Considering next few cases, we can move to final relation

lim
𝑘→(𝑛+1)

(
𝑛

𝑘
)

𝑚

𝑌
𝑚−1
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑚−1
] = 0, (25)

where 𝐵
𝑚
is defined as in (19). Recalling the properties of Bell

polynomials mentioned in (25) if we consider the limit 𝑘 →
(𝑛 + 𝑙) for 𝑙 = 1, 2, . . . ,∞ we observe that for every 0 ≤ 𝑗 ≤ 𝑚
the limiting value vanishes but it surprisingly gives us limiting
value for 𝑗 = 𝑚.

lim
𝑘→(𝑛+𝑙)

𝑚

∑

𝑗=0

𝑥
𝑘

(
𝑚

𝑗
)𝑓
𝑚−𝑗

(𝑘 − 𝑟, 𝑦) (
𝑛

𝑘
)

𝑚

⋅ 𝑌
𝑗
[𝑚𝐵
1
, . . . , 𝑚𝐵

𝑗
] = 0

+ lim
𝑘→(𝑛+𝑙)

[𝑥
𝑘

(
𝑚

𝑚
)𝑓
𝑚−𝑚

(𝑘 − 𝑟, 𝑦) (
𝑛

𝑘
)

𝑚

⋅ 𝑌
𝑚
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑚
]] = 𝑥

𝑛+𝑙

𝑓 (𝑙, 𝑦)

⋅ lim
𝑘→(𝑛+𝑙)

[(
𝑛

𝑘
)

𝑚

𝑌
𝑚
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑚
]] .

(26)

Furthermore, expanding the product of generalized har-
monic numbers in asymptotic form with Big 𝑂 notation, we
can further deduce

(𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)
𝑚
1

(𝐻
(2)

𝑛
− 𝐻
(2)

𝑛−𝑘
)
𝑚
2

⋅ ⋅ ⋅ (𝐻
(𝑖)

𝑛
− 𝐻
(𝑖)

𝑛−𝑘
)
𝑚
𝑖

=
1

(𝑛 − 𝑘 + 1)
𝑢
+ 𝑂(

1

(𝑛 − 𝑘 + 1)
V) + ⋅ ⋅ ⋅

(27)

with 𝑢 = 𝑚
1
+ 2𝑚
2
+ ⋅ ⋅ ⋅ + 𝑖𝑚

𝑖
and𝑚

1
+ 2𝑚
2
+ ⋅ ⋅ ⋅ + 𝑖𝑚

𝑖
> V.

Substituting the above asymptotic identity in (26) we find

lim
𝑘→(𝑛+𝑙)

[(
𝑛

𝑘
)

𝑚

𝑌
𝑚
[𝑚𝐵
1
, . . . , 𝑚𝐵

𝑚
]] = lim
𝑘→(𝑛+𝑙)

(
𝑛

𝑘
)

𝑚

⋅ {
1

(𝑛 − 𝑘 + 1)
𝑚
+ 𝑂(

1

(𝑛 − 𝑘 + 1)
𝑚−1
) + ⋅ ⋅ ⋅}

⋅ 𝑌
𝑚
[𝑚Γ (1) , . . . , (−1)

𝑚−1

𝑚Γ (𝑚)] .

(28)
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After some tedious calculations we find

lim
𝑘→(𝑛+𝑙)

[(
𝑛

𝑘
)

𝑚

𝑌
𝑚
[𝑚𝐵
1
, . . . , 𝑚𝐵

𝑚
]]

= [
(−1)
𝑙−1

Γ (𝑙) Γ (𝑛 + 1)

Γ (𝑛 + 𝑙 + 1)
]

𝑚

⋅ 𝑌
𝑚
[𝑚Γ (1) , . . . , (−1)

𝑚−1

𝑚Γ (𝑚)] .

(29)

In view of the known identity for Bell polynomials,

𝑌
𝑚
[𝑚Γ (1) , . . . , (−1)

𝑚−1

𝑚Γ (𝑚)] = 𝑚!. (30)

We can finally obtain a closed form for the limit

lim
𝑘→(𝑛+𝑙)

[(
𝑛

𝑘
)

𝑚

𝑌
𝑚
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑚
]]

= [
(−1)
𝑙−1

𝑛!

𝑙
𝑛+1

]

𝑚

𝑚!.

(31)

Substituting the limiting value of (26) in (31), we can readily
obtain a closed form for the required limit

lim
𝑘→(𝑛+𝑙)

𝑚

∑

𝑗=0

𝑥
𝑘

(
𝑚

𝑗
)𝑓
𝑚−𝑗

(𝑘 − 𝑟, 𝑦) (
𝑛

𝑘
)

𝑚

⋅ 𝑌
𝑗
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑗
] = 𝑥
𝑛+𝑙

𝑓 (𝑙, 𝑦)

⋅ [
(−1)
𝑙−1

𝑛!

𝑙
𝑛+1

]

𝑚

𝑚!.

(32)

Applying the above limiting value, we have
∞

∑

𝑘=𝑛+1

𝑚

∑

𝑗=0

𝑥
𝑘

(
𝑚

𝑗
)𝑓
𝑚−𝑗

(𝑘 − 𝑟, 𝑦) (
𝑛

𝑘
)

𝑚

⋅ 𝑌
𝑗
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑗
] = 𝑚!

∞

∑

𝑘=1

𝑥
𝑛+𝑘

𝑓 (𝑘, 𝑦)

⋅ [
(−1)
𝑘−1

𝑛!

𝑘
𝑛+1

]

𝑚

= (−1)
𝑚

𝑚! (𝑛!)
𝑚

⋅

∞

∑

𝑘=1

(−1)
𝑚𝑘

𝑥
𝑘+𝑛

[𝑘
𝑛+1
]
𝑚
𝑓 (𝑘, 𝑦) .

(33)

Finally by combining (22) and (33), we finally obtain Theo-
rem 1.

Theorem 2. For integers𝑚 > 0, 𝑛 ⩾ 0,
∞

∑

𝑘=1

(−1)
𝑚𝑘

𝑥
𝑘+𝑛

[(𝑘)
𝑛+1
]
𝑚
𝑓 (𝑘 + 𝑛, 𝑦)

=
(−1)
𝑚

𝑚! (𝑛!)
𝑚
[𝑄
(𝑚)

𝑚
(𝑛, 𝑥, 𝑦)

−

𝑛

∑

𝑘=0

𝑥
𝑘

𝑓 (𝑘, 𝑦) (
𝑛

𝑘
)

𝑚

𝑌
𝑚
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑚
]] ,

(34)

where𝑄
𝑚
(𝑟, 𝑥, 𝑦) = ∑

∞

𝑘=0
𝑥
𝑘

(
𝑟

𝑘
)
𝑚

𝑓(𝑘, 𝑦) and 𝑄(𝑚)
𝑚
(𝑛, 𝑥, 𝑦) =

(𝑑
𝑚

/𝑑𝑟
𝑚

)𝑄
𝑚
(𝑟, 𝑥, 𝑦)|

𝑟=𝑛
.

Proof. The proof is similar to the previous one. Similarly as
before we consider the function

𝑄
𝑚
(𝑟, 𝑥, 𝑦) =

∞

∑

𝑘=0

𝑥
𝑘

(
𝑟

𝑘
)

𝑚

𝑓 (𝑘, 𝑦) . (35)

Then by the same process and with same restrictions we can
easily obtainTheorem 2.

Theorem 3. For integers𝑚 > 0, 𝑛 ⩾ 0, and |𝑥| < 1,

𝐹
(𝑚)

𝑚
(𝑛, 𝑥)

=
𝑑
𝑚

𝑑𝑟𝑚
𝑚
𝐹
𝑚−1

[
[
[

[

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−𝑟 ⋅ ⋅ ⋅ −𝑟

1 1 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

; −𝑥
]
]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑟=𝑛

=
𝑚! (𝑛!)

𝑚

(−1)
𝑚

∞

∑

𝑘=1

(−1)
𝑚𝑘

𝑥
𝑘+𝑛

[(𝑘)
𝑛+1
]
𝑚

+

𝑛

∑

𝑘=0

𝑥
𝑘

(
𝑛

𝑘
)

𝑚

𝑌
𝑚
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑚
]

=
𝑥
𝑛+1

𝑚!

(𝑛 + 1)
𝑚 𝑚+1

𝐹
𝑚

[
[
[

[

𝑚+1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1 1 1 ⋅ ⋅ ⋅ 1

𝑛 + 2 ⋅ ⋅ ⋅ 𝑛 + 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

; (−1)
𝑚

𝑥
]
]
]

]

+

𝑛

∑

𝑘=0

𝑥
𝑘

(
𝑛

𝑘
)

𝑚

𝑌
𝑚
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑚
] .

(36)

Proof. Let us take 𝑓(𝑘, 𝑦) = 1 as a constant function in
Theorem 1:

∞

∑

𝑘=1

(−1)
𝑚𝑘

𝑥
𝑘+𝑛

[(𝑘)
𝑛+1
]
𝑚

=
(−1)
𝑚

𝑚! (𝑛!)
𝑚
𝐹
(𝑚)

𝑚
(𝑛, 𝑥)

−

𝑛

∑

𝑘=0

𝑥
𝑘

(
𝑛

𝑘
)

𝑚

𝑌
𝑚
[𝑚𝐵
1
, 𝑚𝐵
2
, . . . , 𝑚𝐵

𝑚
] .

(37)
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It proves the first part of Theorem 3. Writing the function
𝐹
(𝑚)

𝑚
(𝑛, 𝑥) and 𝐹

𝑚
(𝑛, 𝑥) as Hyper geometric functions defined

in first section we can derive

𝑚! (𝑛!)
𝑚

(−1)
𝑚

∞

∑

𝑘=1

(−1)
𝑚𝑘

𝑥
𝑘+𝑛

[(𝑘)
𝑛+1
]
𝑚

=
𝑥
𝑛+1

𝑚!

(𝑛 + 1)
𝑚 𝑚+1

𝐹
𝑚

[
[
[

[

𝑚+1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1 1 1 ⋅ ⋅ ⋅ 1

𝑛 + 2 ⋅ ⋅ ⋅ 𝑛 + 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

; (−1)
𝑚

𝑥
]
]
]

]

,

𝐹
𝑚
(𝑟, 𝑥) =

∞

∑

𝑘=0

𝑥
𝑘

(
𝑟

𝑘
)

𝑚

=
𝑚
𝐹
𝑚−1

[
[
[

[

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−𝑟 ⋅ ⋅ ⋅ −𝑟

1 1 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

; −𝑥
]
]
]

]

.

(38)

Finally combining (37) and (38) we can easily obtain Theo-
rem 3.

Theorem 4. For integers 𝑛 ⩾ 0 and |𝑥| < 1,

∞

∑

𝑘=1

𝑥
𝑘+𝑛

(𝑘)
𝑛+1

𝐻
(1)

𝑛+𝑘
=

𝑛

∑

𝑘=1

𝑥
𝑘

𝑛!
(
𝑛

𝑘
)𝐻
(1)

𝑘
(𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)

+
1

(1 + 𝑥) 𝑛!
Φ(

1

1 + 𝑥
, 2, 𝑛 + 1)

−
(1 + 𝑥)

𝑛

𝑛!
[𝐻
(1)

𝑛
ln (1 + 𝑥)

+ ln (1 + 𝑥) ln( 𝑥

1 + 𝑥
) + 𝜁 (2, 𝑛 + 1)] .

(39)

Proof. Considering Theorem 2 for 𝑚 = 1, 𝑦 = 1, 𝑓(𝑘, 𝑦) =
𝐻
(1)

𝑘
and using the property of bell polynomials,

∞

∑

𝑘=1

𝑥
𝑘+𝑛

(𝑘)
𝑛+1

𝐻
(1)

𝑛+𝑘
=
−1

𝑛!
[
𝑑

𝑑𝑟
𝑄
1
(𝑟, 𝑥, 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

−

𝑛

∑

𝑘=0

𝑥
𝑘

(
𝑛

𝑘
)𝐻
(1)

𝑘
(𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)] .

(40)

Taking into account an identity derived in Boyadzhiev’s
paper [8] titled “Harmonic Number Identities via Euler’s
Transform,”

𝑄
1
(𝑟, 𝑥, 1) = 𝐻

(1)

𝑟
(1 + 𝑥)

𝑟

−

𝑟

∑

𝑘=1

(1 + 𝑥)
𝑟−𝑘

𝑘

= 𝐻
(1)

𝑟
(1 + 𝑥)

𝑟

+ (1 + 𝑥)
𝑟 ln( 𝑥

1 + 𝑥
)

−

∞

∑

𝑘=1

(1 + 𝑥)
−𝑘

𝑘 + 𝑟
.

(41)

Differentiating the identity in (41) with respect to 𝑟 and using
the known formula (𝑑/𝑑𝑟)𝐻(1)

𝑟
|
𝑟=𝑛
= 𝜁(2, 𝑛 + 1),

𝑑

𝑑𝑟
𝑄
1
(𝑟, 𝑥, 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

= (1 + 𝑥)
𝑛

[𝐻
(1)

𝑛
ln (1 + 𝑥)

+ ln (1 + 𝑥) ln( 𝑥

1 + 𝑥
) + 𝜁 (2, 𝑛 + 1)]

−

∞

∑

𝑘=0

(1 + 𝑥)
−𝑘−1

(𝑘 + 𝑛 + 1)
2
= (1 + 𝑥)

𝑛

[𝐻
(1)

𝑛
ln (1 + 𝑥)

+ ln (1 + 𝑥) ln( 𝑥

1 + 𝑥
) + 𝜁 (2, 𝑛 + 1)] −

1

(1 + 𝑥)

⋅ Φ (
1

1 + 𝑥
, 2, 𝑛 + 1) .

(42)

Considering the above expression together with (40) we can
concludeTheorem 2. Special case ofTheorem 2 for 𝑥 = 1 can
be found in [5]. Theorem 2 also generalizes many identities
derived in [9].The finite summation in the right-hand side of
Theorem 2 can be obtained from [7, 10] for different values
of 𝑥. Interested readers can also find some computer assisted
proofs of these identities in [11].

Theorem 5. For integers 𝑛 ≥ 0,

∞

∑

𝑘=1

(−1)
𝑘

[(𝑘)
𝑛+1
]
2
𝐻
(1)

𝑛+𝑘
=
1

(𝑛!)
2

𝑛

∑

𝑘=1

(
𝑛

𝑘
)

2

⋅ 𝐻
(1)

𝑘
[(𝐻
(2)

𝑛
− 𝐻
(2)

𝑛−𝑘
) − 2 (𝐻

(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)
2

]

+
1

(𝑛!)
2
(
2𝑛

𝑛
) [4 (𝐻

(1)

2𝑛
− 𝐻
(1)

𝑛
) (𝐻
(2)

2𝑛
− 𝐻
(2)

𝑛
)

+ 2𝐻
(3)

2𝑛
− 3𝐻
(3)

2𝑛
+ 𝜁 (3)] +

1

(𝑛!)
2

⋅ (
2𝑛

𝑛
) [(2𝐻

(1)

𝑛
− 𝐻
(1)

2𝑛
)

⋅ {2 (𝐻
(1)

2𝑛
− 𝐻
(1)

𝑛
)
2

+ (𝐻
(1)

𝑛
− 𝐻
(1)

2𝑛
) + 𝜁 (2)}] .

(43)

Proof. Setting 𝑚 = 2, 𝑦 = 2, 𝑥 = 1, and 𝑓(𝑘, 𝑦) = 𝐻(2)
𝑘

in
Theorem 2 and by virtue of Bell polynomials

∞

∑

𝑘=1

(−1)
𝑘

[(𝑘)
𝑛+1
]
2
𝐻
(1)

𝑛+𝑘
=

1

2 (𝑛!)
2

[

[

𝑑
2

𝑑𝑟2
𝑄
2
(𝑟, 1, 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

+

𝑛

∑

𝑘=1

(
𝑛

𝑘
)

2

⋅ 𝐻
(1)

𝑘
[2 (𝐻

(2)

𝑛
− 𝐻
(2)

𝑛−𝑘
) − 4 (𝐻

(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)
2

]]

]

.

(44)
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The following harmonic number identity can be found in
many texts of mathematical literatures. Mainly Chu and De
Donno [12] and Paule and Schneider [11] discussed these
types of summation formulas in great detail.

𝑄
2
(𝑟, 1, 1) =

𝑟

∑

𝑘=1

(
𝑟

𝑘
)

2

𝐻
(1)

𝑘
= (
2𝑟

𝑟
) (2𝐻

(1)

𝑟
− 𝐻
(1)

2𝑟
) . (45)

Differentiating (45) two times with respect to 𝑟 and using
the formula involving differentiation of generalized harmonic
numbers stated in the first section,

𝑑
2

𝑑𝑟2
𝑄
2
(𝑟, 1, 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

=
𝑑
2

𝑑𝑟2
[(
2𝑟

𝑟
) (2𝐻

(1)

𝑟
− 𝐻
(1)

2𝑟
)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

= (
2𝑛

𝑛
) [8 (𝐻

(1)

2𝑛
− 𝐻
(1)

𝑛
) (𝐻
(2)

2𝑛
− 𝐻
(2)

𝑛
) + 4𝐻

(3)

2𝑛

− 6𝐻
(3)

2𝑛
+ 2𝜁 (3)] + (

2𝑛

𝑛
) [2 (2𝐻

(1)

𝑛
− 𝐻
(1)

2𝑛
)

⋅ {2 (𝐻
(1)

2𝑛
− 𝐻
(1)

𝑛
)
2

+ (𝐻
(1)

𝑛
− 𝐻
(1)

2𝑛
) + 𝜁 (2)}] .

(46)

Finally substituting the expressions of (45) and (46) in (44),
we easily obtainTheorem 5.

Some Special Corollaries

Corollary 6. For integers 𝑛 ≥ 0, 𝑝 ≤ 𝑛,

𝑥
𝑛+1

𝑛 + 1
(
𝑛 + 1

𝑝
)
2
𝐹
1
[
1 1

𝑛 − 𝑝 + 2
; −𝑥]

=

𝑛

∑

𝑘=1

𝑥
𝑘

(
𝑛

𝑘
)(
𝑘

𝑝
) (𝐻
(1)

𝑛−𝑘
− 𝐻
(1)

𝑛
) + 𝑥
𝑝

(1 + 𝑥)
𝑛−𝑝

⋅ (
𝑛

𝑝
) {ln (1 + 𝑥) + (𝐻(1)

𝑛
− 𝐻
(1)

𝑛−𝑝
)} .

(47)

Using the following identity (48) given in Volume 2 of Gould’s
book [13] and consideringTheorem 2 for𝑚 = 1; 𝑓(𝑘, 𝑝) = ( 𝑘

𝑝
)

and

𝑛

∑

𝑘=0

𝑥
𝑘

(
𝑛

𝑘
)(
𝑘

𝑝
) = 𝑥

𝑝

(1 + 𝑥)
𝑛−𝑝

(
𝑛

𝑝
) . (48)

Some special cases of this formula can be found in the published
literature [14–16].

Corollary 7. For integers 𝑛 ≥ 0, 𝑝 ≥ 1,

𝑝−1

∑

𝑖=0

(−𝑧)
𝑖

(
𝑛 + 𝑝 + 1

𝑖
)
2
𝐹
1
[

1 1

𝑛 + 𝑝 − 𝑖 + 2
; 1] = (1

− 𝑧)
𝑛−𝑝+1

2
𝐹
1
[
1 1

𝑛 + 𝑝 + 2
; 𝑧] + (𝑛 + 𝑝 + 1)

⋅ (−𝑧)
𝑛+𝑝

{ln (1 + 𝑥) + (𝐻(1)
𝑛
− 𝐻
(1)

𝑛+𝑝
)} −

𝑛

∑

𝑘=0

(−1)
𝑘

⋅
(
𝑛

𝑘
) (
𝑛+𝑝+1

𝑝
)

(
𝑘+𝑝

𝑝
)

(𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)

⋅ {(1 − 𝑧)
𝑘+𝑝

−

𝑝−1

∑

𝑖=0

(−𝑧)
𝑖

(
𝑘 + 𝑝

𝑖
)} .

(49)

Considering the following identity (50) illustrated in
Volume 2 of Gould’s book [13] and using Theorem 2
for 𝑝 ≥ 1 𝑥 = −1, 𝑚 = 1; 𝑓(𝑘, 𝑝, 𝑧) =

(1/ (
𝑘+𝑝

𝑘
)) [(1 − 𝑧)

𝑘+𝑝

− ∑
𝑝−1

𝑖=0
(−𝑧)
𝑖

(
𝑘+𝑝

𝑖
)],

𝑛

∑

𝑘=1

(−1)
𝑘

(
𝑛

𝑘
)𝑓 (𝑘, 𝑝, 𝑧) =

(−1)
𝑝

(
𝑛+𝑝

𝑝
)
𝑧
𝑛+𝑝

. (50)

Corollary 8. For integers 𝑛 ≥ 0 and 𝑝 ≥ 0,

(−1)
𝑛

(𝑛 + 1)
𝑝+1

∏
𝛼

𝑖=1
𝑌
𝑖

𝛼+𝑝+1
𝐹
𝛼+𝑝

[
[
[

[

1 1

𝑝−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑛 + 2 ⋅ ⋅ ⋅ 𝑛 + 2

𝛼

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑌
1
⋅ ⋅ ⋅ 𝑌
𝛼

𝑛 + 1 ⋅ ⋅ ⋅ 𝑛 + 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝

𝑌
1
+ 1 ⋅ ⋅ ⋅ 𝑌

𝛼
+ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛼

; 1
]
]
]

]

=

𝛼

∑

𝑗=1

(𝑋
𝑗
)
𝑝−1

(𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑋
𝑗

)

𝑛! (
𝑛−𝑋
𝑗

𝑛
)∏
𝛼

𝑖=1,𝑖 ̸=𝑗
(𝑋
𝑗
− 𝑋
𝑖
)

+

𝑛

∑

𝑘=1

(−1)
𝑘

(𝑘)
𝑝

(
𝑛

𝑘
)

𝑛!∏
𝛼

𝑖=1
(𝑘 − 𝑋

𝑖
)
(𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
) .

(51)
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Proof. The following identity is given in Volume 5 of Gould’s
book [13]:

𝑛

∑

𝑘=1

(−1)
𝑘

(𝑘)
𝑝

(
𝑛

𝑘
)

𝑛!∏
𝛼

𝑖=1
(𝑘 − 𝑋

𝑖
)
= −

𝛼

∑

𝑗=1

(𝑋
𝑗
)
𝑝−1

(
𝑛−𝑋
𝑗

𝑛
)∏
𝛼

𝑖=1,𝑖 ̸=𝑗
(𝑋
𝑗
− 𝑋
𝑖
)
. (52)

Considering Theorem 2 for 𝑥 = −1, 𝑚 = 1; 𝑓(𝑘,𝑋
𝑖
) =

𝑘
𝑝

/∏
𝛼

𝑖=1
(𝑘 −𝑋

𝑖
) and also using (52) we can immediately find

Corollary 8.

Corollary 9. For integers 𝑛 ≥ 0, 𝑏 ≥ 𝑐, 𝑏, and 𝑐 are positive
integers,

3
𝐹
2
[
1 1 𝑛 + 𝑏 − 𝑐 + 2

𝑛 + 2 𝑛 + 𝑏 + 2
; 1] =

(−1)
𝑛

(𝑛 + 1)

( 𝑛+𝑏+1
𝑐
)

⋅

𝑛

∑

𝑘=1

(−1)
𝑘

(
𝑛

𝑘
)

( 𝑘+𝑏
𝑐
)
(𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)

−
(−1)
𝑛

(𝑛 + 1)

( 𝑛+𝑏+1
𝑐
)
[

−𝑐

(𝑛 + 𝑐)
2

( 𝑛+𝑏
𝑏−𝑐
)

+
𝑐

(𝑛 + 𝑐) (
𝑛+𝑏

𝑏−𝑐
)
(𝐻
(1)

𝑛−𝑐
− 𝐻
(1)

𝑛+𝑏
)] .

(53)

Using the following identity (54) given in Volume 5 of Gould’s
book [13] and considering Theorem 2 for 𝑥 = −1, 𝑚 =

1; 𝑓(𝑘, 𝑏, 𝑐) = 1/ ( 𝑘+𝑏
𝑐
)

𝑛

∑

𝑘=1

(−1)
𝑘

(
𝑛

𝑘
)

( 𝑘+𝑏
𝑐
)
=

𝑐

(𝑛 + 𝑐) (
𝑛+𝑏

𝑏−𝑐
)
. (54)

Terminating version of these kinds of hypergeometric series goes
back to Bailey [15].

Differentiation of Laguerre Polynomials with respect to Its
Order. Let 𝐿

𝑛
(𝑥) be the Laguerre Polynomials defined by

𝐿
𝑛
(𝑥) =

𝑛

∑

𝑘=1

(−1)
𝑘

(
𝑛

𝑘
)
𝑥
𝑘

𝑘!
. (55)

Corollary 10. For integers 𝑛 ≥ 0,

𝑑

𝑑𝑟
𝐿
𝑟
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

=
(−𝑥)
𝑛+1

(𝑛 + 1) (𝑛 + 1)!
2
𝐹
2
[
1 1

𝑛 + 2 𝑛 + 2
; 𝑥]

+

𝑛

∑

𝑘=1

(−𝑥)
𝑘

𝑘!
(
𝑛

𝑘
) (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
) .

(56)

Using the previous identity (55) for Laguerre Polynomials and
considering Theorem 2 for 𝑥 = −𝑥, 𝑚 = 1; 𝑓(𝑘) = 1/𝑘! we
can easily derive Corollary 10.

Corollary 11. For integers𝑚 ≥ 1, 𝑛 ≥ 0, and 𝑝 = 𝑚 + 𝑛,

4
𝐹
3
[

1 1 𝑝 𝑝

𝑛 + 2 𝑝 + 1 𝑝 + 1
; 1] = (−1)

𝑛+1

(𝑛 + 1) (𝑚

+ 𝑛)
2

[
1

𝑚 (
𝑝

𝑛
)
(𝐻
(1)

𝑝
− 𝐻
(1)

𝑚−1
) (𝐻
(1)

𝑛
− 𝐻
(1)

𝑝
) + 𝜁 (2)

− 𝐻
(2)

𝑝
] + (−1)

𝑛

(𝑛 + 1) (𝑚 + 𝑛)
2

⋅

𝑛

∑

𝑘=1

(−1)
𝑘

(𝑘 + 𝑚)
2
(
𝑛

𝑘
) (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
) .

(57)

Making use of the following identity (58) derived in [17] and
considering Theorem 2 for 𝑥 = −1, 𝑚 = 1; 𝑓(𝑘,𝑚) = 1/(𝑘 +
𝑚)
2,

𝑛

∑

𝑘=1

(−1)
𝑘

(𝑘 + 𝑚)
2
(
𝑛

𝑘
) =

1

𝑚 (
𝑚+𝑛

𝑛
)
(𝐻
(1)

𝑚+𝑛
− 𝐻
(1)

𝑚−1
) . (58)

Corollary 12. For integers𝑚 ≥ 1, 𝑛 ≥ 0, and 𝑝 = 𝑚 + 𝑛,

5
𝐹
4
[

1 1 𝑝 𝑝 𝑝

𝑛 + 2 𝑝 + 1 𝑝 + 1 𝑝 + 1
; 1] = (−1)

𝑛

(𝑛

+ 1) (𝑚 + 𝑛)
3

𝑛

∑

𝑘=1

(−1)
𝑘

(𝑘 + 𝑚)
3
(
𝑛

𝑘
) (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)

−
(−1)
𝑛

(𝑛 + 1) 𝑝
3

𝑚(
𝑝

𝑛
)

{𝜁 (2, 𝑝 + 1) (𝐻
(1)

𝑝
− 𝐻
(1)

𝑚−1
)

+ 𝜁 (3, 𝑝 + 1)} −
(−1)
𝑛

(𝑛 + 1) 𝑝
3

2𝑚 (
𝑝

𝑛
)

(𝐻
(1)

𝑛
− 𝐻
(1)

𝑝
)

⋅ {(𝐻
(1)

𝑝
− 𝐻
(1)

𝑚−1
)
2

+ (𝐻
(2)

𝑝
− 𝐻
(2)

𝑚−1
)} .

(59)

Making use of the following identity (60) derived in [17] and
considering Theorem 2 for 𝑥 = −1, 𝑚 = 1; 𝑓(𝑘,𝑚) = 1/(𝑘 +
𝑚)
3,

𝑛

∑

𝑘=1

(−1)
𝑘

(𝑘 + 𝑚)
3
(
𝑛

𝑘
)

=
1

2𝑚 (
𝑚+𝑛

𝑛
)
[(𝐻
(1)

𝑚+𝑛
− 𝐻
(1)

𝑚−1
)
2

+ (𝐻
(2)

𝑚+𝑛
− 𝐻
(2)

𝑚−1
)] .

(60)
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Corollary 13. For 𝑥 > −1 and integers 𝑛, 𝑝 ≥ 0,

𝑝+2
𝐹
𝑝+1

[
[
[

[

1 1

𝑝−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑛 + 2 𝑛 + 2 𝑛 + 2 ⋅ ⋅ ⋅ 𝑛 + 2

𝑛 + 1 ⋅ ⋅ ⋅ 𝑛 + 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝

; −𝑥
]
]
]

]

=
(−1)
𝑛+1

(𝑛 + 1)
𝑝−1

𝑛

∑

𝑘=0

𝑥
𝑘

(
𝑛

𝑘
)𝑘
𝑝

(𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
) +

(−1)
𝑛

(𝑛 + 1)
𝑝−1

⋅

𝑝

∑

𝑗=0

𝑥
𝑗

(1 + 𝑥)
𝑛−𝑗

(
𝑛

𝑗
) 𝑗!𝑆 (𝑝, 𝑗)

⋅ [ln (1 + 𝑥) + (𝐻(1)
𝑛
− 𝐻
(1)

𝑛−𝑗
)] ,

(61)

where 𝑆(𝑝, 𝑗) are Stirling numbers of the second kind. Consid-
ering the following identity (62) given in [8] for 𝑥 = 𝑦 and
applying Theorem 2 for, 𝑥 = 1, 𝑚 = 1; 𝑓(𝑘, 𝑝) = 𝑘𝑝,

𝑛

∑

𝑘=0

𝑥
𝑘

(
𝑛

𝑘
) 𝑘
𝑝

=

𝑝

∑

𝑗=0

𝑥
𝑗

(1 + 𝑥)
𝑛−𝑗

(
𝑛

𝑗
) 𝑗!𝑆 (𝑝, 𝑗) . (62)

Corollary 14. For |𝑥| < 1 and integers 𝑛 ≥ 0,

𝑥
𝑛+1

𝑛 + 1
2
𝐹
1
[
1 1

𝑛 + 2
; 𝑥]

= (−1)
𝑛+1

(1 − 𝑥)
𝑛 ln (1 + 𝑥)

+ (−1)
𝑛

𝑛

∑

𝑘=0

(−𝑥)
𝑘

(
𝑛

𝑘
) (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
) .

(63)

Proof. Substituting𝑚 = 1 in Theorem 3,

∞

∑

𝑘=1

(−1)
𝑘

𝑥
𝑘+𝑛

(𝑘)
𝑛+1

= −
1

𝑛!
[𝐹
(1)

1
(𝑛, 𝑥) −

𝑛

∑

𝑘=0

𝑥
𝑘

(
𝑛

𝑘
) (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)] .

(64)

Using Newton’s binomial theorem we have

𝐹
1
(𝑟, 𝑥) =

𝑟

∑

𝑘=0

𝑥
𝑘

(
𝑟

𝑘
) . (65)

This implies

𝐹
(1)

1
(𝑛, 𝑥) =

𝑑

𝑑𝑟
𝐹
1
(𝑟, 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

=
𝑑

𝑑𝑟
(1 + 𝑥)

𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

= (1 + 𝑥)
𝑛 ln (1 + 𝑥) .

(66)

Substituting the value of 𝐹(1)
1
(𝑛, 𝑥) from (66) in (64) and after

somemodifications we can obtain Corollary 14.Themodified
version ofCorollary 14 can be found in [18]. Zeilberger proved
quite interesting properties of these types of hypergeometric
functions in [19].

Corollary 15. For integers 𝑛 ≥ 0,

1

(𝑛 + 1)
2 3
𝐹
2
[
1 1 1

𝑛 + 2 𝑛 + 2
; 1]

= (
2𝑛

𝑛
) [2 (𝐻

(1)

2𝑛
− 𝐻
(1)

𝑛
)
2

+ 𝐻
(2)

𝑛
− 2𝐻
(2)

2𝑛
+ 𝜁 (2)]

−

𝑛

∑

𝑘=0

(
𝑛

𝑘
)

2

[2 (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)
2

− (𝐻
(2)

𝑛
− 𝐻
(2)

𝑛−𝑘
)] .

(67)

Proof. Substituting𝑚 = 2 and 𝑥 = 1 in Theorem 3 and using
the property of Bell polynomials,

∞

∑

𝑘=1

1

[(𝑘)
𝑛+1
]
2
= −

1

2 (𝑛!)
2

[

[

𝐹
(2)

2
(𝑛, 1) −

𝑛

∑

𝑘=0

(
𝑛

𝑘
)

2

⋅ [4 (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)
2

− 2 (𝐻
(2)

𝑛
− 𝐻
(2)

𝑛−𝑘
)]]

]

.

(68)

Another classical result, special case of the Vandermonde
Convolution, is given by

𝐹
2
(𝑟, 1) =

𝑟

∑

𝑘=0

(
𝑟

𝑘
)

2

= (
2𝑟

𝑟
) . (69)

Hence we have

𝐹
(2)

2
(𝑛, 1) =

𝑑
2

𝑑𝑟2
(
2𝑟

𝑟
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

= (
2𝑛

𝑛
) [4 (𝐻

(1)

2𝑛
− 𝐻
(1)

𝑛
)
2

+ 2𝐻
(2)

𝑛
− 4𝐻
(2)

2𝑛

+ 2𝜁 (2)] .

(70)

Considering the value of𝐹(2)
2
(𝑛, 1) from (70) in (68) we finally

recover Corollary 15.

Corollary 16. For integers 𝑛 ≥ 0,

1

(𝑛 + 1)
2 3
𝐹
2
[
1 1 1

𝑛 + 2 𝑛 + 2
; −1]

=
(−1)
𝑛

2
𝑛−3

√𝜋

Γ ((𝑛 + 2) /2) Γ ((1 − 𝑛) /2)
[𝜁 (2,

1 − 𝑛

2
)

+ 𝜁 (2,
𝑛 + 2

2
)] +

𝑛

∑

𝑘=0

(−1)
𝑛+𝑘

(
𝑛

𝑘
)

2

⋅ [2 (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)
2

− (𝐻
(2)

𝑛
− 𝐻
(2)

𝑛−𝑘
)]

+
(−1)
𝑛+1

2
𝑛−1

√𝜋

Γ ((𝑛 + 2) /2) Γ ((1 − 𝑛) /2)
[(ln 2)2

+ ln 2 (𝐻(1)
−(𝑛+1)/2

− 𝐻
(1)

𝑛/2
) + (𝐻

(1)

−(𝑛+1)/2
− 𝐻
(1)

𝑛/2
)
2

] .

(71)
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Proof. Substituting𝑚 = 2 and𝑥 = −1 inTheorem 3 and using
the property of Bell polynomials,

∞

∑

𝑘=1

(−1)
𝑘+𝑛

[(𝑘)
𝑛+1
]
2
= −

1

2 (𝑛!)
2

[

[

𝐹
(2)

2
(𝑛, −1)

−

𝑛

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
)

2

⋅ [4 (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)
2

− 2 (𝐻
(2)

𝑛
− 𝐻
(2)

𝑛−𝑘
)]]

]

.

(72)

Considering another classical result illustrated in Gould’s
book [13] Volume 5 which first appeared in American Math
Monthly, for the case 𝑧 = 𝑟, we have

𝐹
2
(𝑟, −1) =

𝑟

∑

𝑘=0

(−1)
𝑘

(
𝑟

𝑘
)

2

=
2
𝑟

√𝜋

Γ ((𝑟 + 2) /2) Γ ((1 − 𝑟) /2)
.

(73)

Hence we have

𝐹
(2)

2
(𝑛, −1) =

𝑑
2

𝑑𝑟2
{

2
𝑟

√𝜋

Γ ((𝑟 + 2) /2) Γ ((1 − 𝑟) /2)
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑛

=
(−1)
𝑛

2
𝑛−2

√𝜋

Γ ((𝑛 + 2) /2) Γ ((1 − 𝑛) /2)
[𝜁 (2,

1 − 𝑛

2
)

+ 𝜁 (2,
𝑛 + 2

2
)]

+
2
𝑛

√𝜋

Γ ((𝑛 + 2) /2) Γ ((1 − 𝑛) /2)
[(ln 2)2

+ ln 2 (𝐻(1)
−(𝑛+1)/2

− 𝐻
(1)

𝑛/2
) + (𝐻

(1)

−(𝑛+1)/2
− 𝐻
(1)

𝑛/2
)
2

] .

(74)

Substituting the value of 𝐹(2)
2
(𝑛, −1) from (74) in (72) we

can immediately obtain Corollary 16. Various special cases
of Corollary 16 can be found in several works of Wimp
[20, 21].

Corollary 17. For integers 𝑛 ≥ 0,

1

(𝑛 + 1)
3 4
𝐹
3
[

1 1 1 1

𝑛 + 2 𝑛 + 2 𝑛 + 2
; −1] =

(−1)
𝑛

6

⋅ 𝐹
(3)

3
(𝑛, −1) −

𝑛

∑

𝑘=0

(−1)
𝑛+𝑘

2
(
𝑛

𝑘
)

3

⋅ [9 (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)
3

− 9 (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
) (𝐻
(2)

𝑛
− 𝐻
(2)

𝑛−𝑘
)

+ 2 (𝐻
(3)

𝑛
− 𝐻
(3)

𝑛−𝑘
)] .

(75)

Proof. Substituting𝑚 = 3 and𝑥 = −1 inTheorem 3 and using
the property of Bell polynomials,

∞

∑

𝑘=1

(−1)
𝑘+𝑛

[(𝑘)
𝑛+1
]
3
= −

1

3! (𝑛!)
3

[

[

𝐹
(3)

3
(𝑛, −1)

−

𝑛

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
)

3

𝑌
3
[𝑚𝐵
1
, 𝑚𝐵
2
, 𝑚𝐵
3
]]

]

.

(76)

Considering another classical result illustrated in volume 5
of Gould’s book [13] which first appeared in American Math
Monthly, considering for the case 𝑧 = 𝑟 that

𝐹
3
(𝑟, −1) =

𝑟

∑

𝑘=0

(−1)
𝑘

(
𝑟

𝑘
)

3

=
Γ (𝑟 + 1) Γ (−𝑟)√𝜋

2Γ3 ((𝑟 + 2) /2) Γ (−3𝑟/2)
[1 + (−1)

𝑟

]

=
Γ (𝑟 + 1) Γ (−𝑟)

2Γ3 ((𝑟 + 2) /2) Γ (−3𝑟/2)

+
√𝜋Γ
2

(𝑟 + 1) Γ (−𝑟)

2𝑟+1Γ4 ((𝑟 + 2) /2) Γ (−3𝑟/2) Γ ((𝑟 − 1) /2)

= 𝑦
1
+ 𝑦
2
,

(77)

hence we have

ln (𝑦
1
) = ln Γ (𝑟 + 1) + ln Γ (−𝑟) − ln 2

− 3 ln Γ (𝑟 + 2
2
) − ln Γ (−3𝑟

2
) ,

ln (𝑦
2
) =
1

2
ln𝜋 + 2 ln Γ (𝑟 + 1) + ln Γ (−𝑟)

− (𝑟 + 1) ln 2 − 4 ln Γ (𝑟 + 2
2
)

− ln Γ (−3𝑟
2
) − ln Γ (𝑟 − 1

2
) .

(78)

Now differentiating the above identities with respect to 𝑟 and
using the definition of polygamma function,

𝑑

𝑑𝑟
𝑦
1
= 𝑦
1
[𝜓 (𝑟 + 1) − 𝜓 (−𝑟) −

3

2
𝜓(
𝑟 + 2

2
)

+
3

2
𝜓(
−3𝑟

2
)] = 𝑦

1
𝜃
0
(𝑟) ,

𝑑

𝑑𝑟
𝑦
2
= 𝑦
2
[2𝜓 (𝑟 + 1) − 𝜓 (−𝑟) − ln 2 − 2𝜓(𝑟 + 2

2
)

+
3

2
𝜓(
−3𝑟

2
) −
1

2
𝜓(
𝑟 − 1

2
)] = 𝑦

2
𝜌
0
(𝑟) .

(79)
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We also define

𝜃
1
(𝑟) =

𝑑

𝑑𝑟
𝜃
0
(𝑟)

= 𝜓
(1)

(𝑟 + 1) + 𝜓
(1)

(−𝑟) −
3

4
𝜓
(1)

(
𝑟 + 2

2
)

−
9

4
𝜓
(1)

(
−3𝑟

2
) ,

𝜃
2
(𝑟) =

𝑑
2

𝑑𝑟2
𝜃
0
(𝑟)

= 𝜓
(2)

(𝑟 + 1) − 𝜓
(2)

(−𝑟) −
3

8
𝜓
(2)

(
𝑟 + 2

2
)

+
27

8
𝜓
(2)

(
−3𝑟

2
) ,

𝜌
1
(𝑟) =

𝑑

𝑑𝑟
𝜌
0
(𝑟)

= 2𝜓
(1)

(𝑟 + 1) + 𝜓
(1)

(−𝑟) − 𝜓
(1)

(
𝑟 + 2

2
)

−
1

4
𝜓
(1)

(
𝑟 − 1

2
) −
9

4
𝜓
(1)

(
−3𝑟

2
) ,

𝜌
2
(𝑟) =

𝑑
2

𝑑𝑟2
𝜌
0
(𝑟)

= 2𝜓
(2)

(𝑟 + 1) − 𝜓
(1)

(−𝑟) −
1

2
𝜓
(2)

(
𝑟 + 2

2
)

−
1

8
𝜓
(2)

(
𝑟 − 1

2
) +
27

8
𝜓
(2)

(
−3𝑟

2
) .

(80)

Finally we have

𝐹
(3)

3
(𝑛, −1)

= 𝑦
1
[𝜃
3

0
(𝑛) + 3𝜃

0
(𝑛) 𝜃
1
(𝑛) + 𝜃

2
(𝑛)]

+ 𝑦
2
[𝜌
3

0
(𝑛) + 3𝜌

0
(𝑛) 𝜌
1
(𝑛) + 𝜌

2
(𝑛)] ,

𝑌
3
[𝑚𝐵
1
, 𝑚𝐵
2
, 𝑚𝐵
3
]

= 27 (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
)
3

− 27 (𝐻
(1)

𝑛
− 𝐻
(1)

𝑛−𝑘
) (𝐻
(2)

𝑛
− 𝐻
(2)

𝑛−𝑘
)

+ 6 (𝐻
(3)

𝑛
− 𝐻
(3)

𝑛−𝑘
) .

(81)

Compiling (76), (77), and (81)we can obtainCorollary 17.

Some 𝑞 Series Identities. 𝑞-Pochhammer symbol, also called 𝑞-
shifted factorial, is a 𝑞-analog of the common Pochhammer
symbol. It is defined as

(𝑎; 𝑞)
𝑛
= (1 − 𝑎) (1 − 𝑎𝑞) ⋅ ⋅ ⋅ (1 − 𝑎𝑞

𝑛−1

) ,

(𝑞; 𝑞)
𝑛
= (𝑞)
𝑛
= (1 − 𝑞) (1 − 𝑞

2

) ⋅ ⋅ ⋅ (1 − 𝑞
𝑛

) .

(82)

And the 𝑞 binomial coefficients also known as Gaussian
coefficients, Gaussian polynomials, or Gaussian binomial
coefficients are

[
𝑛

𝑚
]

𝑞

=
(𝑞)
𝑛

(𝑞)
𝑛−𝑘
(𝑞)
𝑘

. (83)

Let us define

𝑄 (𝑞, 𝑛,𝑚) =
𝑑
𝑚

𝑑𝑛𝑚
[ln (𝑞)

𝑛
]
𝑚

,

𝐻
(𝑚)

(𝑎;𝑞)
𝑛

=

𝑛−1

∑

𝑘=0

1

(1 − 𝑎𝑞𝑘)
𝑚
;

𝑆 (𝑞,𝑚) =

∞

∑

𝑘=1

𝑞
𝑘

(1 − 𝑞𝑘)
𝑘
𝑚−1

,

𝑅 (𝑞, 𝑎) =

∞

∑

𝑘=1

𝑎
𝑘

(1 − 𝑞𝑘)
.

(84)

The operator 𝑞𝐷, used extensively in several references, was
recently used by authors in [3, 8, 22].

(𝑞𝐷)
𝑚

𝑓 (𝑞) =

𝑚

∑

𝑘=0

{
𝑚

𝑘
}𝑞
𝑘

𝑓
(𝑘)

(𝑞) ,

(𝑞𝐷)
𝑚

𝑞
𝑘

= 𝑘
𝑚

𝑞
𝑘

.

(85)

Now by the properties of Bell Polynomials we have

𝑑
𝑚

𝑑𝑛𝑚
[(𝑞)
𝑛
]
𝑚

=
𝑑
𝑚

𝑑𝑛𝑚
𝑒
[ln(𝑞)

𝑛
]
𝑚

= [(𝑞)
𝑛
]
𝑚

⋅ 𝑌
𝑚
[𝑚𝑄 (𝑞, 𝑛, 1) , 𝑚𝑄 (𝑞, 𝑛, 2) , . . . , 𝑚𝑄 (𝑞, 𝑛,𝑚)] .

(86)

We can further deduce

[ln (𝑞)
𝑛
]
𝑚

= 𝑚 ln (𝑞)
𝑛

= 𝑚 [ln (1 − 𝑞) + ln (1 − 𝑞2) + ⋅ ⋅ ⋅ + ln (1 − 𝑞𝑛)]

= −𝑚

∞

∑

𝑘=1

𝑞
𝑘

𝑘
[1 + 𝑞

𝑘

+ ⋅ ⋅ ⋅ + 𝑞
𝑘(𝑛−1)

]

= −𝑚

∞

∑

𝑘=1

𝑞
𝑘

(1 − 𝑞
𝑛𝑘

)

𝑘 (1 − 𝑞𝑘)
.

(87)

This implies

𝑑
𝑚

𝑑𝑛𝑚
[ln (𝑞)

𝑛
]
𝑚

= 𝑚 (ln 𝑞)𝑚
∞

∑

𝑘=1

𝑞
𝑘(𝑛+1)

𝑘
𝑚

𝑘 (1 − 𝑞𝑘)

= 𝑚 (ln 𝑞)𝑚 𝑆 (𝑞,𝑚)

− 𝑚 (ln 𝑞)𝑚
∞

∑

𝑘=1

𝑘
𝑚−1

𝑞
𝑘

[1 + 𝑞
𝑘

+ ⋅ ⋅ ⋅ + 𝑞
𝑘(𝑛−1)

] .

(88)
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From the geometric series we have
∞

∑

𝑘=1

𝑞
𝑘

=
1

1 − 𝑞
− 1. (89)

Applying the operator 𝑞𝐷 on both sides𝑚 times,
∞

∑

𝑘=1

𝑘
𝑚

𝑞
𝑘

= (
1

1 − 𝑞
− 1) +

𝑚

∑

𝑘=1

{
𝑚

𝑘
}

𝑞
𝑘

𝑘!

(1 − 𝑞)
𝑘+1

. (90)

By means of this identity we have
∞

∑

𝑘=1

𝑘
𝑚−1

[𝑞
𝑘

+ ⋅ ⋅ ⋅ + 𝑞
𝑛𝑘

] =

𝑛

∑

V=1

∞

∑

𝑘=1

𝑘
𝑚−1

𝑞
V𝑘

= (𝐻
(1)

(𝑞)
𝑛

− 𝑛) +

𝑛

∑

V=1

𝑚−1

∑

𝑘=1

{
𝑚 − 1

𝑘
}

𝑞
V𝑘
𝑘!

(1 − 𝑞V)
𝑘+1

.

(91)

Finally

𝑑
𝑚

𝑑𝑛𝑚
[ln (𝑞)

𝑛
]
𝑚

= 𝑄 (𝑞, 𝑛,𝑚)

= 𝑚 (ln 𝑞)𝑚 𝑆 (𝑞,𝑚)

− 𝑚 (ln 𝑞)𝑚
∞

∑

𝑘=1

𝑘
𝑚−1

𝑞
𝑘

[1 + 𝑞
𝑘

+ ⋅ ⋅ ⋅ + 𝑞
𝑘(𝑛−1)

]

= 𝑚 (ln 𝑞)𝑚 𝑆 (𝑞,𝑚) − 𝑚 (ln 𝑞)𝑚 (𝐻(1)
(𝑞)
𝑛

− 𝑛)

− 𝑚 (ln 𝑞)𝑚
𝑛

∑

V=1

𝑚−1

∑

𝑘=1

{
𝑚 − 1

𝑘
}

𝑞
V𝑘
𝑘!

(1 − 𝑞V)
𝑘+1

.

(92)

Now

𝑄 (𝑞, 𝑛, 𝑘,𝑚) =
𝑑
𝑚

𝑑𝑛𝑚

{

{

{

ln([
𝑛

𝑘
]

𝑞

)

𝑚

}

}

}

=
𝑑
𝑚

𝑑𝑛𝑚
{[ln (𝑞)

𝑛
]
𝑚

− [ln (𝑞)
𝑘
]
𝑚

− [ln (𝑞)
𝑛−𝑘
]
𝑚

}

= 𝑚 (ln 𝑞)𝑚 (𝐻(1)
(𝑞)
𝑛−𝑘

− 𝐻
(1)

(𝑞)
𝑛

+ 𝑘)

− 𝑚 (ln 𝑞)𝑚
𝑛

∑

V=𝑛−𝑘+1

𝑚−1

∑

𝑢=1

{
𝑚 − 1

𝑢
}

𝑞
V𝑢
𝑢!

(1 − 𝑞V)
𝑢+1

= 𝑚 (ln 𝑞)𝑚 (𝐻(1)
(𝑞)
𝑛−𝑘

− 𝐻
(1)

(𝑞)
𝑛

+ 𝑘)

− 𝑚 (ln 𝑞)𝑚
𝑘

∑

V=1

𝑚−1

∑

𝑢=1

{
𝑚 − 1

𝑢
}
𝑞
(𝑛−𝑘+V)𝑢

𝑢!

(1 − 𝑞𝑛−𝑘+V)
𝑢+1
.

(93)

By virtue of Bell Polynomials we have

𝑑
𝑚

𝑑𝑛𝑚
([
𝑛

𝑘
]

𝑞

)

𝑚

=
𝑑
𝑚

𝑑𝑛𝑚
𝑒
ln([ 𝑛
𝑘
]
𝑞
)
𝑚

= ([
𝑛

𝑘
]

𝑞

)

𝑚

⋅ 𝑌
𝑚
[𝑚𝑄 (𝑞, 𝑛, 𝑘, 1) , 𝑚𝑄 (𝑞, 𝑛, 𝑘, 2) , . . . ,

𝑚𝑄 (𝑞, 𝑛, 𝑘, 𝑚)] .

(94)

Case 1. Substituting𝑚 = 1 in (94),

𝑑

𝑑𝑛
[
𝑛

𝑘
]

𝑞

= [
𝑛

𝑘
]

𝑞

ln 𝑞 [𝑘 + 𝐻(1)
(𝑞)
𝑛−𝑘

− 𝐻
(1)

(𝑞)
𝑛

] . (95)

And for 𝑟 is an integer,

𝑑

𝑑𝑛
[
𝑛

𝑘
]

𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛=𝑟

= [
𝑟

𝑘
]

𝑞

ln 𝑞 [𝑘 + 𝐻(1)
(𝑞)
𝑟−𝑘

− 𝐻
(1)

(𝑞)
𝑟

] . (96)

Finally using the definition of (93) we can derive

lim
𝑘→𝑟+V

𝑄 (𝑞, 𝑟, 𝑘, 1)

= lim
𝑘→𝑟+V

{

{

{

[
𝑟

𝑘
]

𝑞

ln 𝑞 [𝑘 + 𝐻(1)
(𝑞)
𝑟−𝑘

− 𝐻
(1)

(𝑞)
𝑟

]
}

}

}

= ln 𝑞
(−1)

V
(𝑞)
𝑟
(𝑞)V−1

𝑞V(V−1)/2 (𝑞)
𝑟+V
.

(97)

Case 2. Substituting 𝑚 = 2 in (94), we already derived the
expression for 𝑄(𝑞, 𝑟, 𝑘, 1).

𝑄 (𝑞, 𝑟, 𝑘, 2)

= 2 (ln 𝑞)2 {𝑘 + 𝐻(1)
(𝑞)
𝑟−𝑘

− 𝐻
(1)

(𝑞)
𝑟

−

𝑘

∑

V=1

𝑞
𝑛−𝑘+V

(1 − 𝑞𝑛−𝑘+V)
2
}

= 2 (ln 𝑞)2 {𝑘 + 𝐻(2)
(𝑞)
𝑟−𝑘

− 𝐻
(2)

(𝑞)
𝑟

} .

(98)

Finally using (94) for𝑚 = 2 we have

𝑑
2

𝑑𝑛2
([
𝑛

𝑘
]

𝑞

)

2

= ([
𝑛

𝑘
]

𝑞

)

2

⋅ 𝑌
2
[2𝑄 (𝑞, 𝑛, 𝑘, 1) , 2𝑄 (𝑞, 𝑛, 𝑘, 2)] = ([

𝑛

𝑘
]

𝑞

)

2

⋅ {4 (𝑄 (𝑞, 𝑛, 𝑘, 1))
2

+ 2𝑄 (𝑞, 𝑛, 𝑘, 2)} = 4 (ln 𝑞)2

⋅ ([
𝑛

𝑘
]

𝑞

)

2

⋅ [{𝑘 + 𝐻
(1)

(𝑞)
𝑛−𝑘

− 𝐻
(1)

(𝑞)
𝑛

}
2

+ {𝑘 + 𝐻
(2)

(𝑞)
𝑛−𝑘

− 𝐻
(2)

(𝑞)
𝑛

}] .

(99)

From previous calculation discussed in (97) we have

lim
𝑘→𝑟+V

{

{

{

[
𝑟

𝑘
]

𝑞

[𝑘 + 𝐻
(1)

(𝑞)
𝑟−𝑘

− 𝐻
(1)

(𝑞)
𝑟

]
}

}

}

2

=
(𝑞)
2

𝑟
(𝑞)
2

V−1

𝑞V(V−1) (𝑞)
2

𝑟+V

.

(100)
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By the same procedure we have

lim
𝑘→𝑟+V

[
𝑟

𝑘
]

2

𝑞

[𝑘 + 𝐻
(2)

(𝑞)
𝑟−𝑘

− 𝐻
(2)

(𝑞)
𝑟

] = −
(𝑞)
2

𝑟
(𝑞)
2

V−1

𝑞V(V−1) (𝑞)
2

𝑟+V

. (101)

So finally

lim
𝑘→𝑟+V

4 (ln 𝑞)2([
𝑛

𝑘
]

𝑞

)

2

⋅ [{𝑘 + 𝐻
(1)

(𝑞)
𝑛−𝑘

− 𝐻
(1)

(𝑞)
𝑛

}
2

+ {𝑘 + 𝐻
(2)

(𝑞)
𝑛−𝑘

− 𝐻
(2)

(𝑞)
𝑛

}]

= 0.

(102)

Theorems Closely Related to Roger-Ramanujan Identities

Roger-Ramanujan Identities. Rogers Ramanujan identities are
given in

∞

∑

𝑘=0

𝑞
𝑘
2

(𝑞; 𝑞)
𝑘

=
1

(𝑞; 𝑞5)
∞
(𝑞4; 𝑞5)

∞

,

∞

∑

𝑘=0

𝑞
𝑘(𝑘+1)

(𝑞; 𝑞)
𝑘

=
1

(𝑞2; 𝑞5)
∞
(𝑞3; 𝑞5)

∞

.

(103)

Roger discovered these identities in 1894 [23, 24], but they
were entirely ignored until Ramanujan rediscovered them
about 20 years later. A detailed history of these identities
can be found in great detail in the survey article written by
Andrews [25].

Theorem 18. One has

∞

∑

V=1

(𝑞)V−1

(𝑞)
𝑟+V
(𝑎𝑞
𝑟

)
V

=
(𝑎; 𝑞)
𝑟

(−𝑎)
𝑟

(𝑞)
𝑟
𝑞𝑟(𝑟−1)/2

[𝑅 (𝑞, 𝑎) + 𝑟 − 𝐻
(1)

(𝑎;𝑞)
𝑟

]

−

𝑟

∑

𝑘=0

(−𝑎)
𝑘−𝑟

𝑞
(𝑘−𝑟)(𝑘+𝑟−1)/2

(𝑞)
𝑘
(𝑞)
𝑟−𝑘

[𝑘 + 𝐻
(1)

(𝑞)
𝑟−𝑘

− 𝐻
(1)

(𝑞)
𝑟

] .

(104)

Proof. From the 𝑞 binomial theorem,

(𝑎; 𝑞)
𝑛
=

∞

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−𝑎)
𝑘

𝑞
𝑘(𝑘−1)/2

. (105)

Differentiating both sides of (105) with respect to 𝑛 at the
point 𝑛 = 𝑟 (integer),

𝑑

𝑑𝑛
(𝑎; 𝑞)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛=𝑟

= ln 𝑞 (𝑎; 𝑞)
𝑟

∞

∑

V=1

(𝑎𝑞
𝑟

)
V

1 − 𝑞V

= ln 𝑞
∞

∑

𝑘=0

(−𝑎)
𝑘

𝑞
𝑘(𝑘−1)/2

[
𝑟

𝑘
]

𝑞

[𝑘 + 𝐻
(1)

(𝑞)
𝑟−𝑘

− 𝐻
(1)

(𝑞)
𝑟

]

= ln 𝑞
𝑟

∑

𝑘=0

(−𝑎)
𝑘

𝑞
𝑘(𝑘−1)/2

[
𝑟

𝑘
]

𝑞

[𝑘 + 𝐻
(1)

(𝑞)
𝑟−𝑘

− 𝐻
(1)

(𝑞)
𝑟

]

+ ln 𝑞 (−𝑎)𝑟 (𝑞)
𝑟
𝑞
𝑟(𝑟−1)/2

∞

∑

V=1

(𝑞)V−1

(𝑞)
𝑟+V
(𝑎𝑞
𝑟

)
V
.

(106)

After some calculations we haveTheorem 18:
∞

∑

V=1

(𝑞)V−1

(𝑞)
𝑟+V
(𝑎𝑞
𝑟

)
V

=
(𝑎; 𝑞)
𝑟

(−𝑎)
𝑟

(𝑞)
𝑟
𝑞𝑟(𝑟−1)/2

[𝑅 (𝑞, 𝑎) + 𝑟 − 𝐻
(1)

(𝑎;𝑞)
𝑟

]

−

𝑟

∑

𝑘=0

(−𝑎)
𝑘−𝑟

𝑞
(𝑘−𝑟)(𝑘+𝑟−1)/2

(𝑞)
𝑘
(𝑞)
𝑟−𝑘

[𝑘 + 𝐻
(1)

(𝑞)
𝑟−𝑘

− 𝐻
(1)

(𝑞)
𝑟

] .

(107)

Theorem 19. One has
𝑛

∑

𝑘=0

𝑞
𝑘
2

[
𝑟

𝑘
]

2

𝑞

⋅ [{𝑘 + 𝐻
(1)

(𝑞)
𝑟−𝑘

− 𝐻
(1)

(𝑞)
𝑟

}
2

+ {𝑘 + 𝐻
(2)

(𝑞)
𝑟−𝑘

− 𝐻
(2)

(𝑞)
𝑟

}]

= [
2𝑟

𝑟
]

𝑞

[{𝑟 + 𝐻
(1)

(𝑞)
𝑟

− 𝐻
(1)

(𝑞)
2𝑟

}
2

+
1

2
𝑆 (𝑞, 2)

+ 𝐻
(1)

(𝑞)
2𝑟

− 𝐻
(2)

(𝑞)
2𝑟

+
1

2
(𝐻
(2)

(𝑞)
𝑟

− 𝐻
(1)

(𝑞)
𝑟

)] .

(108)

Proof. The proof is similar to the previous one. For this case
we have to consider the identity

∞

∑

𝑘=0

𝑞
𝑘
2

[
𝑛

𝑘
]

2

𝑞

= [
2𝑛

𝑛
]

𝑞

. (109)

Differentiating (109) with respect to 𝑛 two times when 𝑛 = 𝑟
(integer) and considering (99) and (102) together we have,

𝑟

∑

𝑘=0

𝑞
𝑘
2

[
𝑟

𝑘
]

2

𝑞

⋅ [{𝑘 + 𝐻
(1)

(𝑞)
𝑟−𝑘

− 𝐻
(1)

(𝑞)
𝑟

}
2

+ {𝑘 + 𝐻
(2)

(𝑞)
𝑟−𝑘

− 𝐻
(2)

(𝑞)
𝑟

}]

=
𝑑
2

𝑑𝑛2
[
2𝑛

𝑛
]

𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛=𝑟

.

(110)
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Using the same idea stated above we can calculate

𝑑

𝑑𝑛
ln[
2𝑛

𝑛
]

𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛=𝑟

= 2 ln 𝑞 {𝑟 + 𝐻(1)
(𝑞)
𝑟

− 𝐻
(1)

(𝑞)
2𝑟

} ,

𝑑
2

𝑑𝑛2
ln[
2𝑛

𝑛
]

𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛=𝑟

= 4 (ln 𝑞)2

⋅ [𝐻
(1)

(𝑞)
2𝑟

− 𝐻
(2)

(𝑞)
2𝑟

+
1

2
{𝐻
(2)

(𝑞)
𝑟

− 𝐻
(1)

(𝑞)
𝑟

} +
1

2
𝑆 (𝑞, 2)] .

(111)

By virtue of Bell polynomials we can derive further

𝑑
2

𝑑𝑛2
[
2𝑛

𝑛
]

𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛=𝑟

= [
2𝑛

𝑛
]

𝑞

[{𝑟 + 𝐻
(1)

(𝑞)
𝑟

− 𝐻
(1)

(𝑞)
2𝑟

}
2

+
1

2
𝑆 (𝑞, 2) + 𝐻

(1)

(𝑞)
2𝑟

− 𝐻
(2)

(𝑞)
2𝑟

+
1

2
(𝐻
(2)

(𝑞)
𝑟

− 𝐻
(1)

(𝑞)
𝑟

)] .

(112)

Finally plugging back the above identity in (110)we can obtain
Theorem 19.

3. Conclusion

Wewould like to enrich the subject by doing further research
in this field. In our upcoming paper, we will use the theorems
of this paper to prove some series identities related to the
Hurwitz Zeta function and also generalize a new theorem.
Also we will derive some closed form identities related to
double differentiation of Legendre Polynomials with respect
to their order and we will derive some new generating
function identities involving generalized harmonic numbers
and Stirling polynomials.

By using the same techniques derived in this paper one
can find various hypergeometric transformation formulas
and their 𝑞-analog. We will consider a curious generalization
expression such as

∞

∑

V=1

{(𝑞)V−1}
𝑚

{(𝑞)
𝑟+V}
𝑚
(𝑎𝑞
𝑟

)
V (113)

in our upcoming paper.
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