
Research Article
Non-Perfect-Fluid Space-Times in Thermodynamic Equilibrium
and Generalized Friedmann Equations

Konrad Schatz, Horst-Heino von Borzeszkowski, and Thoralf Chrobok

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany

Correspondence should be addressed to Konrad Schatz; konrads@justmail.de

Received 9 June 2016; Revised 29 August 2016; Accepted 13 October 2016

Academic Editor: Sergei D. Odintsov

Copyright © 2016 Konrad Schatz et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We determine the energy-momentum tensor of nonperfect fluids in thermodynamic equilibrium and, respectively, near to it. To
this end, we derive the constitutive equations for energy density and isotropic and anisotropic pressure as well as for heat-flux
from the corresponding propagation equations and by drawing on Einstein’s equations. Following Obukhov on this, we assume the
corresponding space-times to be conform-stationary and homogeneous. This procedure provides these quantities in closed form,
that is, in terms of the structure constants of the three-dimensional isometry group of homogeneity and, respectively, in terms of the
kinematical quantities expansion, rotation, and acceleration. In particular, we find a generalized form of the Friedmann equations.
As special cases we recover Friedmann andGödel models as well as nontilted Bianchi solutions with anisotropic pressure. All of our
results are derived without assuming any equations of state or other specific thermodynamic conditions a priori. For the considered
models, results in literature are generalized to rotating fluids with dissipative fluxes.

1. Introduction

In this paper, we consider systems described by Einstein’s
equations:

𝑅𝑎𝑏 − 12𝑅𝑔𝑎𝑏 = 𝑇𝑎𝑏 (1)

with an energy-momentum tensor and equations of state,
neither of which are specified by any ad hoc assumptions.
Instead, we discuss the whole question from a thermody-
namic perspective (we emphasize that we approach this with-
out any specific thermodynamic conditions as done, e.g., in
[1]; i.e., we refrain from applying linear or extended thermo-
dynamics). This consideration is discussed for a class of cos-
mologically interesting metrics (introduced and shown to be
observationally admissible in [2–5], see (5) below). In terms
of the temperature and the kinematic invariants characteriz-
ing the matter, our consideration provides a class of general
equations of state (“matter equations”) which are compatible
with Einstein’s equations and correspond to generalized
Friedmann equations. This framework can find (and has
found) applications in relativistic cosmology and astro-
physics. Basically, it allows to go beyond the standard phase

cosmology (governed by phases with certain equations of
state like inflation, radiation, and dust that have to be fitted
by fine-tuning) and to describe the cosmological state transi-
tions fromphase to phase by intermediate stages. However, in
[6–9] a fine-tuned sudden passage from the decelerated to the
accelerated regime, as observed today, produces inadequa-
cies. These are then avoided by ad hoc introduced equations
of state where viscosity originates from geometry (e.g.,𝐻, 𝐻̇).
Our calculations can provide a theoretical foundation of such
equations. Furthermore, this framework also contributes to a
physical discussion of no-go theorems like the shear-free fluid
conjecture [10]. For instance, this thermodynamic approach
enables one to sharpen the theorem (proved in [11], without
explicitly referring to thermodynamics) which states for non-
vanishing acceleration that rotation and expansion cannot
simultaneously be equal to zero: in [11] it has been shown
that models with vanishing acceleration do not allow for
nonvanishing rotation.

Ehlers et al. have proven [12] that the high isotropy of the
cosmic microwave background (CMB) and the vanishing of
shear 𝜎𝑎𝑏 of a congruence of curves (for the definition of the
quantities, shear, rotation, acceleration, and expansion, see [1]
or see also Section 2) are closely related to the requirement
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that there exists a conformal Killing vector field (in [13], it
is shown that while for 𝜎𝑎𝑏 = 0 fluids the CKV property is
essential, for 𝜎𝑎𝑏 ̸= 0 fluids this property has to be generalized
to conformal collineation) being parallel to the tangents of the
curves (i.e., to the velocity of a streaming fluid). In detail, it
was shown (Lemma 3 in [12]) that a space-time admits a time-
like conformal Killing vector field (CKV)

𝜉𝑎;𝑏 + 𝜉𝑏;𝑎 = Φ𝑔𝑎𝑏 (2)

with 𝜉𝑎 = 𝛼𝑢𝑎, if and only if there is a velocity field 𝑢𝑎 with𝑢𝑎𝑢𝑎 = −1 satisfying
𝜎𝑎𝑏 = 0,

(𝑢̇[𝑎 − Θ3 𝑢[𝑎);𝑏] = 0, (3)

where 𝑢̇𝑎 is the acceleration and Θ the expansion. Oliver Jr.
and Davis [14] showed that (3) is a necessary and sufficient
condition for the existence of a CKV in the case of rotating
space-times, too. In the following, we consider such conform-
stationary space-times (according to [15, 16] this is equivalent
to parallax-free cosmological models).

In particular, the second condition allows implying a
parameter 𝛼 which can be identified as the inverse tempera-
ture, 𝛼 = 1/𝑇, so that 𝜉𝑎 = 𝑢𝑎/𝑇 can be interpreted as temper-
ature vector. This parameter occurs if the second equation in
(3) is rewritten as (Theorem 2.1 in [14])

𝛼,𝑎𝛼 = 𝑢̇𝑎 − Θ3 𝑢𝑎. (4)

Additionally, we assume that the considered space-
times are spatially homogeneous. This reduction to Bianchi-
type models still allows for the matter distribution to be
anisotropic, while the CMB is isotropic.

Altogether we are led to the subclass of tilted Bianchi
models constructed by Obukhov [2–5] that admit a CKV,

𝑑𝑠2 = 𝑔𝑎𝑏𝑑𝑥𝑎𝑑𝑥𝑏
= −𝑑𝑡2 + 2𝑎𝑛𝑎̂𝑑𝑥𝑎̂𝑑𝑡 + 𝑎2𝛾𝑎̂𝑏̂𝑑𝑥𝑎̂𝑑𝑥𝑏̂.

(5)

Thereby, rotating and expanding models with acceleration
and isotropic CMB are considered in [2–5]. In contrast to
that, in [17–19], Ehlers-Geren-Sachs theorems were, partly in
a generalized version, used to study and determine a class
of space-times containing also inhomogeneous cosmological
models, with nontrivial acceleration but zero rotation.

To complete notation used in (5), we define

𝑛𝑎̂ = ]𝜇̂𝑒𝜇̂𝑎̂,
𝛾𝑎̂𝑏̂ = 𝛽𝜇̂]̂𝑒𝜇̂𝑎̂𝑒]̂𝑏̂ (6)

with ]𝜇̂ and 𝛽𝜇̂]̂ as arbitrary constants. Here the triad compo-
nents 𝑒𝜇̂𝑎̂ = 𝑒𝜇̂𝑎̂(𝑥𝑘̂) form a basis which is invariant under the
spatial isometries of the Bianchi models. Accordingly, their
Lie derivative with respect to the generating Killing vector

fields (KV) vanishes (for details see [20]). The components𝑒𝜇̂𝑎̂(𝑥𝑘̂) are supposed to be functions of the space-like canonic
coordinates only and determine the metric (5) as to the
Bianchi-type. The coordinate 𝑡 = 𝑥0 denotes the proper time
with respect to a fluid particle and 𝑎 = 𝑎(𝑡) is the scale factor.

Furthermore, Latin indices are used for the coordinate
while Greek indices are used for the tetrad description of
the tensor components. All indices with hat denote the three
spatial dimensions, for example, 𝑎̂ = 1, 2, 3 and 𝛼̂ =(1), (2), (3), whereas those without hat run through all four
space-time dimensions, 𝑎 = 0, 1, 2, 3 and 𝛼 = (0), (1), (2), (3).

Regarding the thermodynamic proposition, we follow the
Eckart approach and assume that themodel under considera-
tion is in thermodynamic (near)equilibrium [21]. The Eckart
approach to the relativistic Theory of Irreversible Processes
[22] (see also [23–25]) is based on the balance equations for
the particle number (where 𝜇 represents mass density and
V = (1/𝜇) the specific volume)

(𝜇𝑢𝑎);𝑎 = 0, (7)

the energy-momentum

𝑇𝑎𝑏;𝑏 = 0 (8)

(in particular, regarding (7), the null-component can be
interpreted as the first law of thermodynamics [26, 27], i.e.,
as the conservation of internal energy), and the entropy

𝜎 = 𝑠𝑎;𝑎 ≥ 0, (9)

where 𝑠𝑎 denotes the entropy vector and 𝜎 the density of
the nonnegative entropy production. In the case of ther-
modynamic equilibrium (vanishing of entropy production),
appropriated supplementary conditions have to be added by
hand. In the general-relativistic version of this theory the
framework is completed by Einstein’s gravitational equations
(1). However, in the general-relativisticTheory of Irreversible
Processes no further assumptions have to be introduced ad
hoc in order to yield thermodynamic equilibrium [21].

Now, if the entropy vector is defined according to [23, 24,
28],

𝑠𝑎 = 𝜇𝑠𝑢𝑎 + 𝑞𝑎𝑇 , (10)

the entropy production can be reformulated as

𝜎 = 𝑢𝑏𝑇 (𝑇𝑎𝑏 − 𝜌𝑢𝑎𝑢𝑏 − 𝑝ℎ𝑎𝑏)
;𝑎
+ (𝑞𝑎𝑇 )

;𝑎

. (11)

Here 𝑞𝑎 denotes the heat-flux, 𝜌 the energy density, 𝑝 the
pressure, and 𝑢𝑎/𝑇 the temperature vector and ℎ𝑎𝑏 = 𝑔𝑎𝑏 +𝑢𝑎𝑢𝑏. Finally, by decomposing the energy-momentum tensor
(27) this yields [28]

𝜎 = −(𝑢𝑏𝑇 )
;𝑎
(𝑇𝑎𝑏 − 𝜌𝑢𝑎𝑢𝑏 − 𝑝ℎ𝑎𝑏) . (12)
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As shown in [21], regarding the conformal Killing equation
(2), the second term in brackets turns out to be traceless
which results in a vanishing entropy production 𝜎

(𝑇𝑎𝑏 − 𝜌𝑢𝑎𝑢𝑏 − 𝑝ℎ𝑎𝑏) (𝜉𝑎;𝑏 + 𝜉𝑏;𝑎) = 0. (13)

This shows that nonperfect fluids are not necessarily incom-
patible with reversible thermodynamics [28–30]. However,
for space-times without a CKV or KV (13) can only be
solved by assuming a perfect fluid. That this CKV property
is not purely mathematical but has also a physical meaning is
supported by the following arguments.

Firstly, the derivations of (12) and (13), given in [28], show
that the quantities 𝜌, 𝑝, and 𝑇 are thermodynamically well
determined. Indeed, it is assumed that the specific entropy 𝑠
is given as a function of the specific internal energy 𝑢 and the
specific volume V; that is,

𝑠 = 𝑠 (𝑢, V) , (14)

so that (Gibbs equation)

𝑇𝑑𝑠 = 𝑑𝑢 + 𝑝𝑑V,
𝜕𝑠𝜕𝑢 = 1𝑇,
𝜕𝑠𝜕V = 𝑝𝑇.

(15)

Moreover, for a comoving observer the relation 𝜌 = 𝜇(1 +𝑢) holds. For the thermodynamic quantities defined in this
way (13) is valid. Secondly, (13) has the following solutions:
Either the fluid is perfect or the temperature vector has to
be a CKV (containing the special case of a Killing vector
field). Therefore, the CKV property is justified by defining
equilibrium or near-equilibrium states in the framework of
reversible thermodynamics [21].

This is confirmed by the fact that 𝜉𝑎 = 𝑢𝑎/𝑇, being a
CKV, leads to some well-knownmodels like Friedmann’s and
Gödel’s space-timeswith the corresponding equations of state
(see Section 3.2). Furthermore, it should be emphasized that
the justification of the thermodynamic meaning of the CKV
condition given via (13), that is, in the context of phenomeno-
logical continuum theory, is supported by considerations in
the framework of kinetic theory, where the CKV property of𝜉𝑎 in combination with related equations of state for some
special cases is derived from Boltzmann’s equation [31–34].

Based on the existence of such a CKV one can derive a
set of four propagation equations for nonperfect fluids (see
[11]), which link the propagation of the matter content to the
kinematic description of the space-time (see Section 3).

The paper is organized as follows: In Section 2, we
introduce a suitable tetrad frame that allows us to establish
manageable equations. In addition, the decomposition of
the energy-momentum tensor with respect to kinematic
invariants is shortly reviewed and their form in tetrads for the
space-times (5) is derived. Subsequently, by solving the prop-
agation equations, we deduce in Section 3 general expressions
for the whole matter content depending on the structure
constants and the kinematic invariants, respectively. After

checking the consistencywith Einstein’s equations the general
case of a nonperfect fluid and particular cases like nontilted
[35] and stationary models are discussed. Among the special
cases that can be recovered are the Friedmann and the Gödel
models. In Section 4 we discuss the results and provide
alternative formulations, relevant for further observational
and thermodynamic considerations.

2. Tetrad Formulation and
Kinematic Invariants

In the following, we introduce tetrads (see, e.g., [36]) that
allow for a convenient separation of the variable objects, 𝑎(𝑡)
and 𝑒𝜇̂𝑎̂(𝑥𝑘̂), and the constants, ]𝜇̂ and 𝛽𝜇̂]̂ in (5). Defining

𝑒̂𝛼𝑏 fl (0 0
0 𝑒𝛼̂𝑏̂) ,

̌𝑒𝛼𝑏 fl (0 0
0 𝑒𝛼̂𝑏̂)

(16)

with

̌𝑒𝛼𝑏𝑒̂𝛽𝑏 = (0 0
0 𝛿𝛽̂
𝛼̂

) , (17)

the tetrads can be chosen as

𝜃𝛼𝑏 = 𝛿𝛼0𝛿0𝑏 + 𝑎𝑒̂𝛼𝑏,
𝜃𝛼𝑏 = 𝛿0𝛼𝛿𝑏0 + 𝑎−1 ̌𝑒𝛼𝑏. (18)

To fulfill the relations

𝑔𝑎𝑏 = 𝜁𝜇]𝜃𝜇𝑎𝜃]𝑏, (19)

the constant and symmetric matrix 𝜁𝜇] has to take the form
𝜁𝜇] = (−1 ]]̂

]𝜇̂ 𝛽𝜇̂]̂ ) . (20)

The structure constants of the isometry groups acting on the
space-like hypersurfaces and specific to the Bianchi models
can be expressed by a 4-dimensional representation:

𝐶̂𝛾𝛽𝛼 fl 2 ̌𝑒[𝛼𝑏|𝑒̂𝛾𝑏,𝑐| ̌𝑒𝛽]𝑐, (21)

such that 𝐶̂𝛾0𝛼 = 0, 𝐶̂𝛾𝛽0 = 0, and 𝐶̂0𝛽𝛼 = 0. Expressions
for the curvature tensors and scalars in terms of these newly
introduced tetrads are derived in Appendix B.

On the basis of these preliminaries, we now introduce the
kinematic invariants and the respective decomposition of the
energy-momentum tensor.

Assuming a one-component fluid with the four-velocity𝑢𝑎, such that 𝑢𝑎𝑢𝑎 = −1, the gradient of 𝑢𝑎 can be
decomposed kinematically [1]:

𝑢𝑎;𝑏 = 𝜔𝑎𝑏 + 𝜎𝑎𝑏 + Θ3 ℎ𝑎𝑏 − 𝑢̇𝑎𝑢𝑏. (22)
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Thus, rotation, shear, acceleration, and expansion as well as
the scalar quantities of rotation and acceleration read

𝜔𝑎𝑏 = ℎ𝑐𝑎ℎ𝑑𝑏𝑢[𝑐;𝑑] = 𝑢[𝑎;𝑏] + 𝑢̇[𝑎𝑢𝑏],
𝜎𝑎𝑏 = ℎ𝑐𝑎ℎ𝑑𝑏𝑢(𝑐;𝑑) − Θ3 ℎ𝑎𝑏,
𝑢̇𝑎 = 𝑢𝑎;𝑏𝑢𝑏,
Θ = 𝑢𝑎;𝑎,
𝜔2 = (12)𝜔𝛼𝛽𝜔𝛼𝛽,
𝑢̇2 = 𝑢̇𝛼.

(23)

Choosing 𝑢𝑎 = 𝛿𝑎0 , these kinematic quantities are rewritten
in the tetrad representation and for the space-times (5) as fol-
lows (the subscript ‖ denotes the covariant tetrad derivative)

𝜔𝛼𝛽 = 𝑢[𝛼‖𝛽] + 𝑢̇[𝛼𝑢𝛽] = 12𝑎𝐶̂𝛾𝛽𝛼𝜁𝛾0, (24)

𝑢̇𝛼 = 𝑢𝛼‖𝜌𝑢𝜌 = 𝑎̇𝑎ℎ0𝛼, (25)

Θ = 𝑢𝜇‖𝜇 = Ω𝜇𝜇0 = 3 𝑎̇𝑎 , (26)

where 𝑢𝛼 = 𝜁𝛼0.
According to [1], the energy-momentum tensor can be

decomposed with respect to the timelike velocity field 𝑢𝑎:𝑇𝑎𝑏 = 𝜌𝑢𝑎𝑢𝑏 + 𝑝ℎ𝑎𝑏 + 2𝑢(𝑎𝑞𝑏) + 𝜋𝑎𝑏. (27)

Here the quantities can be identifiedwith the appropriate pro-
jections, 𝜌 = 𝑇𝑎𝑏𝑢𝑎𝑢𝑏 for the energy density, 𝑝 = (1/3)𝑇𝑎𝑏ℎ𝑎𝑏
for the isotropic pressure, 𝑞𝑎 = −𝑇𝑐𝑏𝑢𝑏ℎ𝑐𝑎 for the heat-flux,
and 𝜋𝑎𝑏 = 𝑇𝑐𝑑ℎ𝑐𝑎ℎ𝑑𝑏 − 𝑝ℎ𝑎𝑏 for the anisotropic pressure.
3. Matter Equations

The conditions for the temperature vector 𝑢𝑏𝑇−1, being a
CKV, are

Φ = 23 Θ𝑇 , (28)

Θ = 3𝑇( 1𝑇),0 . (29)

Both can be found in [14] (the latter reproduces the 0-
component of (4)).The two results (28) and (29) are obtained
by inserting 𝑢𝑏𝑇−1 into (2) and multiplying this equation by𝑢𝑎𝑢𝑏 and 𝑔𝑎𝑏, respectively.

Furthermore, integration of (29) leads to an expression
for the temperature scalar,

𝑇 = 1
𝑇𝑐𝑎 , (30)

and the conformal factor,

Φ = 2 𝑇𝑐𝑎̇, (31)

where 𝑇𝑐 is the constant of integration.

The existence of the CKV has far-reaching consequences
for the geometry of the space-time and, factoring in Einstein’s
field equations, for the matter. By drawing on the Ricci
identity for the CKV and the Bianchi identity subsequently,
we deduce a set of four propagation equations [11, 21]. The
first two describe the evolution of the energy density 𝜌 and
the isotropic pressure 𝑝:

− 12◻Φ + Φ̈ − Φ;𝑚𝑢̇𝑚 + 12𝑇 (3𝑝̇ + 𝜌̇) + Θ (3𝑝 + 𝜌)3𝑇
= 0,

3◻Φ − (3𝑝̇ − 𝜌̇)𝑇 − 2Θ (3𝑝 − 𝜌)3𝑇 = 0.
(32)

The other two equations describe the change of the heat-flux𝑞𝑎,
ℎ𝑏𝑎𝑞̇𝑏 = 𝑇Φ̇,𝑏ℎ𝑏𝑎 − 𝑇Φ,𝑚𝜔𝑚𝑎 − 13𝑇Φ,𝑚Θℎ𝑚𝑎 − 23Θ𝑞𝑎

− 𝑞𝑘𝜔𝑘𝑎,
(33)

and the anisotropic pressure 𝜋𝑎𝑏,
ℎ𝑚𝑎 ℎ𝑏𝑐 𝜋̇𝑏𝑚 = −𝑇2 ℎ𝑎𝑐◻Φ − 𝑇ℎ𝑚𝑎 ℎ𝑏𝑐Φ,𝑚;𝑏 + ℎ𝑎𝑐 𝑝̇ − 𝜌̇2

+ 2𝜋𝑘(𝑎𝜔𝑐)𝑘 − 2Θ3 𝜋𝑎𝑐 + Θ (𝑝 − 𝜌)3 ℎ𝑎𝑐.
(34)

3.1. Solutions of the Propagation Equations. The reformula-
tion of the dynamic equations (32)–(34) in terms of the space-
times (5) and some tedious algebra brings us to a set of ordi-
nary differential equations which can be solved analytically.

To this end, we decouple (32) to

𝜌̇ = −23Θ𝜌 − 𝑇◻Φ − 𝑇Φ̈ + 𝑇Φ,𝑚𝑢̇𝑚,
𝑝̇ = −23Θ𝑝 + 23𝑇◻Φ − 13𝑇Φ̈ + 13𝑇Φ,𝑚𝑢̇𝑚.

(35)

By means of (18), (35) can be rewritten as

(𝑎2𝜌)
,0
+ 2...𝑎𝑎 (𝜁00 + 1) + 2𝑎̈𝑎̇ (2𝜁00 − 1)

+ 2𝑎̈𝐶̂𝛾𝜅𝛾𝜁𝜅0 = 0,
(𝑎2𝑝)

,0
+ 23 ...𝑎𝑎 (1 − 2𝜁00) − 23 𝑎̈𝑎̇ (7𝜁00 + 1)

− 43 𝑎̈𝐶̂𝛾𝜅𝛾𝜁𝜅0 = 0.
(36)
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Integrating (36) yields

𝜌 = −2 ( 𝑎̇𝑎),0 (𝜁00 + 1) − 3 ( 𝑎̇𝑎)
2 𝜁00 − 2 𝑎̇𝑎2 𝐶̂𝛾𝜅𝛾𝜁𝜅0

+ 1𝑎2 𝜌𝑐,
(37)

𝑝 = 23 ( 𝑎̇𝑎),0 (2𝜁00 − 1) + 3 ( 𝑎̇𝑎)
2 𝜁00 + 43 𝑎̇𝑎2 𝐶̂𝛾𝜅𝛾𝜁𝜅0

+ 1𝑎2 𝑝𝑐,
(38)

where the objects 𝜌𝑐 and 𝑝𝑐 represent the summed constants
of integration of the additive antiderivatives; see Appendix C.
For concrete cosmological or astrophysicalmodels, for exam-
ple, stars, the boundaries of the respective integrals are
specified.

With the identity

ℎ𝜌𝜇 (𝜁𝜇𝜅𝜔𝛼𝜅 + ℎ]𝛼𝑢𝛾Ω𝛾𝜇]) = 0 (39)

and (24), the tetrad formulations for the propagation equa-
tions of the heat-flux (33) and the anisotropic pressure (34)
together with the kinematic quantities (24)–(26) yield the
following integrable partial differential equations:

(𝑞𝛼𝑎2),0 + 2 (𝑎̈𝑎̇ − ...𝑎𝑎) ℎ0𝛼 + 𝑎̈𝐶̂𝛾̂𝛼𝜎𝜁𝛾̂0𝜁𝜎0 = 0,
3 (𝑎2𝜋𝛼𝛾),0 + 2 (𝑎̈𝑎̇ − ...𝑎𝑎) (ℎ𝛼𝛾 (𝜁00 + 1) −3ℎ0𝛼ℎ0𝛾)

+ 2𝑎̈𝐶̂𝜌𝜇𝜅𝜁𝜅0 (𝛿𝜇𝜌ℎ𝛼𝛾 − 3𝛿𝜇(𝛼ℎ𝛾)𝜌) = 0
(40)

for the heat-flux and the anisotropic pressure, respectively.
Integration and reorganization of terms bring the wanted

solutions

𝑞𝛼 = 2 (𝑎̇𝑎),0 ℎ0𝛼 + 𝑎̇𝑎2 𝐶̂𝛾𝜎𝛼𝜁𝛾0𝜁𝜎0 + 1𝑎2 𝑞𝑐𝛼, (41)

𝜋𝛼𝛽 = 23 ( 𝑎̇𝑎),0 ℎ0𝛼 (ℎ𝛼𝛽 (𝜁00 + 1) − 3ℎ0𝛼ℎ0𝛽)
+ 23 𝑎̇𝑎2 𝐶̂𝜌𝜅𝜇𝜁𝜅0 (𝛿𝜇𝜌ℎ𝛼𝛽 − 3𝛿𝜇(𝛼𝜁𝛽)𝜌)
+ 1𝑎2 𝜋𝑐𝛼𝛽,

(42)

where, similarly to the case of the energy density (37) and
the isotropic pressure (38) above, the objects 𝑞𝑐𝛼 and 𝜋𝑐𝛼𝛾
represent the constants of integration (see Appendix C).

With the help of the kinematic quantities (24)–(26) and
(A.1)–(A.4) of Appendix A the solutions (37), (38), (41), and
(42) can be rewritten as follows:

𝜌 = 13Θ2 + 3𝑢̇2 − 2𝑢̇𝛾‖𝛾 + 𝑇2 𝑇𝑐2 𝜌𝑐, (43)

𝑝 = −23Θ̇ − 13Θ2 − 𝑢̇2 + 43 𝑢̇𝛾‖𝛾 + 𝑇2 𝑇𝑐2 𝑝𝑐, (44)

𝑞𝛼 = 23Θ̇ℎ0𝛼 + 2𝜔𝛼𝛾𝑢̇𝛾 + 𝑇2 𝑇𝑐2 𝑞𝑐𝛼, (45)

𝜋𝛼𝛽 = −23Θ̇ℎ0𝛼ℎ0𝛽 − 2𝑢̇2ℎ𝛼𝛽 + 23 𝑢̇𝛾‖𝛾ℎ𝛼𝛽
− 2𝑇𝑢̇𝜅𝐶̂𝜌𝜅(𝛼ℎ𝛽)𝜌 + 𝑇2 𝑇𝑐2 𝜋𝑐𝛼𝛽

(46)

or, in terms of purely kinematic quantities,

𝜋𝛼𝛽 = 23Θ̇ (2ℎ0(𝛼𝑢𝛽) − 3ℎ0𝛼ℎ0𝛽) + 23 (𝑢̇𝛾‖𝛾 − 9𝑢̇2) ℎ𝛼𝛽
+ 4𝑢̇(𝛼‖𝛽) − 43Θ𝑢̇(𝛼𝑢𝛽) + 4𝜔𝜅(𝛼𝑢𝛽)𝑢̇𝜅 + 4𝑢̇𝛼𝑢̇𝛽
− 4𝑢̇2𝑢𝛼𝑢𝛽 + 𝑇2 𝑇𝑐2 𝜋𝑐𝛼𝛽.

(47)

The expressions (43) and (44) can be understood as general-
ized Friedmann equations.

According to (27), we can now reconstruct the energy-
momentum tensor by inserting the four solutions above:

𝑇𝛼𝛽 = −23Θ̇ (𝜁𝛼𝛽 + 𝛿0𝛼𝛿0𝛽) + 13 (6𝑢̇𝛾‖𝛾 − Θ2 − 9𝑢̇2) 𝜁𝛼𝛽
− 2𝑇 𝑇𝑐 𝑢̇𝜅𝐶̂𝜌𝜅(𝛼𝜁𝛽)𝜌 + 𝑇2 𝑇𝑐2 𝐸𝐼𝑐𝛼𝛽,

(48)

or

𝑇𝛼𝛽 = 23Θ̇ (2ℎ0(𝛼𝑢𝛽) − 3ℎ0(𝛼ℎ0𝛽) − ℎ𝛼𝛽)
− 𝑢̇2 (7ℎ𝛼𝛽 + 𝑢𝛼𝑢𝛼) + 13 (𝑢̇𝛾‖𝛾 − Θ2) 𝜁𝛼𝛽
+ 4 (𝑢̇(𝛼‖𝛽) + 𝑢̇𝛼𝑢̇𝛽) + 𝑇2 𝑇𝑐2 𝐸𝐼𝑐𝛼𝛽,

(49)

where

𝐸𝐼𝑐𝛼𝛽 = 𝜌𝑐 𝜁𝛼0𝜁𝛽0 + 𝑝𝑐 ℎ𝛼𝛽 + 2 𝑞𝑐(𝛼𝜁𝛽)0 + 𝜋𝑐𝛼𝛽. (50)

In order to verify the consistency of solutions (43)–(46)
with Einstein’s field equations and in order to recover special
cases, the constants of integration are determined by the
calculations of Appendix C. The matter equations (43)–(46)
then take the exclusively kinematic forms:

𝜌 = 13Θ2 + 3𝑢̇2 − 2𝑢̇𝛾‖𝛾 − 12𝑅̃𝑇2 𝑇𝑐2 + 2𝜔2, (51)

𝑝 = −23Θ̇ − 13Θ2 − 𝑢̇2 + 43 𝑢̇𝛾‖𝛾 + 16𝑅̃𝑇2 𝑇𝑐2 + 23𝜔2, (52)

𝑞𝛼 = 23Θ̇ℎ0𝛼 + 𝜔𝛼𝛾𝑢̇𝛾 + 𝜔𝜏𝛾‖𝛾ℎ𝜏𝛼, (53)

𝜋𝛼𝛽 = 23Θ̇ (2ℎ0(𝛼𝑢𝛽) − 3ℎ0𝛼ℎ0𝛽) − 2 (2𝑢̇2 + 𝜔2) 𝑢𝛼𝑢𝛽
+ 13 (2𝑢̇𝛾‖𝛾 − 18𝑢̇2 − 2𝜔2 + 𝑅̃𝑇2 𝑇𝑐2) ℎ𝛼𝛽
− 𝑅̃𝛼𝛽𝑇2 𝑇𝑐2 − 43Θ𝑢̇(𝛼𝑢𝛽) + 4𝑢̇(𝛼‖𝛽) + 4𝑢̇𝛼𝑢̇𝛽
+ 2𝜔𝜅(𝛼𝑢𝛽)𝑢̇𝜅 − 2𝜔𝜏𝜇‖𝜇ℎ𝜏(𝛼𝑢𝛽),

(54)
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in which for the latter, 𝜋𝛼𝛽, relation (A.3) was used in addi-
tion. By multiplying these expressions with the tetrads, one
obtains the coordinate representation without any additional
terms.

Notice that (51) and (52) satisfy the Raychaudhuri equa-
tion:

𝜌 + 3𝑝 = −2Θ̇ − 23Θ2 + 4𝜔2 + 2𝑢̇𝑎;𝑎. (55)

3.2. Special Cases

3.2.1. Nontilted Models. The nontilted limit (ℎ0𝛼 = 0) leads to
purely expanding models, that is, those with vanishing rota-
tion and acceleration. In this case also the coefficients 𝑛𝑎̂ of (5)
become zero, so that the space-times are conformally static
[37, 38].

Following up on this premise, (51) and (52) turn into the
equations

𝜌 = 3 ( 𝑎̇𝑎)
2 − 𝑅̃2𝑎2 ,

𝑝 = − (𝑎̇𝑎)
2 − 2 𝑎̈𝑎 + 𝑅̃6𝑎2 .

(56)

These correspond to the Friedmann equations

13𝜌 = (𝑎̇𝑎)
2 + 𝑘𝑎2 ,

−𝑝 = 2 𝑎̈𝑎 + ( 𝑎̇𝑎)
2 + 𝑘𝑎2 ,

(57)

if the curvature parameter 𝑘 and the Ricci scalar 𝑅̃ of the 3-
dimensional Bianchi spaces are related by

𝑘 = −16𝑅̃. (58)

This result is in accordance with [39, p. 474]. The two
constants of integration are then related by

𝑝𝑐 = −13 𝜌𝑐 = 16 𝑅̃. (59)

Furthermore, the heat-flux (53) is identically zero, while
for the anisotropic pressure (54) one gets

𝜋𝛼𝛽 = 𝜋𝑐𝛼𝛽𝑇2 𝑇𝑐2 = −𝑅̃𝛼𝛽𝑇2 𝑇𝑐2 + 13𝑅̃𝑇2 𝑇𝑐2ℎ𝛼𝛽. (60)

According to Section 4 of [37], the nonperfect fluid models
investigated here can be subdivided into three further classes.
In detail, this amounts to determining the number of distinct
eigenvalues of the anisotropic pressure (60): If 𝜋𝛼𝛽 has three
different eigenvalues, the space-time is of Petrov-type I. In the
case of two different eigenvalues, one obtains Petrov-type D.
Finally, if there is only one eigenvalue, it can only be zero and
results in 𝜋𝛼𝛽 vanishing identically. Therefore, only this latter
case is in general a sufficient condition for obtaining perfect
fluid Friedmann models.

An example for a nontilted space-time subclass of (5)
which does not contain Friedmannmodels is provided by the
Bianchi-type IV metric

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2 (𝑑𝑥2𝛽11 + 2𝑑𝑥𝑒𝑥 (𝑑𝑧𝛽13
+ 𝑑𝑦 (𝛽12 + 𝑥𝛽13)) + 𝑒2𝑥 (𝑑𝑧2𝛽33
+ 2𝑑𝑦𝑑𝑧 (𝛽23 + 𝑥𝛽33)
+ 𝑑𝑦2 (𝛽22 + 2𝑥𝛽23 + 𝑥2𝛽33)))

(61)

with canonic coordinates (𝑥0 → 𝑡, 𝑥1 → 𝑥, 𝑥2 → 𝑦, 𝑥3 → 𝑧)
and undetermined constants𝛽𝑎̂𝑏̂ introduced in (5). Since here
one finds three distinct eigenvalues for (60), models (61) are
of Petrov-type I.

For the particular case 𝛽𝑎̂𝑏̂ = 1, metric (61) takes the form

𝑑𝑠2
= −𝑑𝑡2

+ 𝑎2 (𝑑𝑥2 + 𝑒2𝑥 (𝑑𝑧2 + 2𝑥𝑑𝑦𝑑𝑧 + 𝑑𝑦2 (1 + 𝑥2)))
(62)

which coincides exactly with the example discussed in [37]
(see (4.9) therein).

3.2.2. Stationary Models. We check the consistency of our
results with the stationary limit as to [3, 4]. Accordingly, for
vanishing expansion and generally nontrivial rotation, (51)
and (52) reduce to

𝜌 = 𝜌𝑐 𝑇𝑐2𝑇2 = −12𝑅̃𝑇2 𝑇𝑐2 + 2𝜔2,
𝑝 = 𝑝𝑐 𝑇𝑐2𝑇2 = 16𝑅̃𝑇2 𝑇𝑐2 + 23𝜔2,

(63)

so that

𝑝 = 𝑝𝑐
𝜌𝑐𝜌 = const. (64)

In the perfect fluid limit with vanishing heat-flux and
anisotropic pressure, one obtains from (53) the condition

𝑞𝛼 = 𝑞𝑐𝛼 𝑇𝑐2𝑇2 = 𝜔𝜅𝜇‖𝜇ℎ𝛼𝜅 = 0 (65)

and from (54)

𝜋𝛼𝛽 = 𝜋𝑐𝛼𝛽 𝑇𝑐2𝑇2
= −𝑅̃𝛼𝛽𝑇2 𝑇𝑐2 + 13𝑅̃𝑇2 𝑇𝑐2ℎ𝛼𝛽

− 23𝜔2 (3𝑢𝛼𝑢𝛽 + ℎ𝛼𝛽) − 2𝜔𝜏𝜇‖𝜇ℎ𝜏(𝛼𝑢𝛽) = 0.
(66)

As a more concrete ansatz we choose a Bianchi-type III
subclass of space-times (5):

(𝑑𝑠)2 = (𝑑𝑡)2 − 2√Σ𝑎𝑒𝑀𝑥1𝑑𝑡𝑑𝑥2
− 𝑎2 ((𝑑𝑥1)2 + 𝐾𝑒2𝑀𝑥1 (𝑑𝑥2)2 + (𝑑𝑥3)2) , (67)
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where ]𝑎̂ = (0, √Σ, 0) and 𝛽𝑎̂𝑏̂ = diag (1, 𝐾, 1) and 𝑒𝜇̂𝑎̂ =
diag (1, 𝑒𝑀𝑥1 , 1) with 𝐾,𝑀, and Σ being constant. Admitting
in general nonvanishing rotation and expansion, this metric
is also denoted as the Gödel-type model (see [3, 4]). By
this choice, the heat-flux (65) vanishes identically, while the
anisotropic pressure condition (66) holds only for at least
either of the two relations:

𝐾 = −Σ2
or 𝑀 = 0. (68)

Furthermore, one has

𝑅̃ = 𝑀2 (4𝐾 + 3Σ)2 (𝐾 + Σ) ,
𝜔2 = 𝑀2Σ4𝑎2 (𝐾 + Σ)

(69)

or, by (68), respectively,

𝑅̃ = 𝑀2,
𝜔2 = 𝑀22𝑎2 .

(70)

This yields 𝑝𝑐 = 𝜌𝑐 and thus, for expression (64),

𝑝 = 𝜌 = 12𝑅̃𝑇2 𝑇𝑐2 = 𝜔2. (71)

According to, for example, [28], this is just the equation of
state of the classical Gödel space-time. Indeed, in [3] it is
stated that𝐾 = −(1/2)Σ yields closed timelike curves.

4. Discussion

In this paper, we considered homogeneous and conform-sta-
tionary space-times (5) with Bianchi group invariance and
an arbitrary matter source, which allows for generally tilted
models.

By solving the propagation equations (32)–(34), we
deduce explicit expressions for the energy density (37), the
isotropic pressure (38), the heat-flux (41), and the anisotropic
pressure (42) in terms of the scale factor, the tetrad com-
ponents (18), and the structure constants. These results are
rewritten in terms of the kinematic quantities, as to be found
in (43), (44), (45), and (47), and are combined to the energy-
momentum tensor, (48) or (49). Similar equations are ad hoc
assumed in [6–9] in order to solve problems arising during
cosmological evolution for different reasons.

In addition to the Raychaudhuri equation and the other
propagation and constraint equations (see, e.g., [1, 40]), we
obtain equations in which the expressions for thematter con-
tent are decoupled and independent of higher derivatives of
the kinematic quantities (except for the expansion and accel-
eration) or depending on the electric part of the Weyl tensor.
Particularly, no equations of state or further thermodynamic
relations have to be assumed to arrive at these results. Here

it should be emphasized that the vanishing shear does not
necessarily imply a zero anisotropic pressure as required by
linear thermodynamics. It should also be pointed out that
more-component fluids or a cosmological constant can easily
be included.

Equations (37), (38), (41), and (42) represent a class
of models which does not only contain physically relevant
space-times. To take into account well-motivated (energy)
conditions or global aspects (as considered in [41]) which
should provide broader restrictions is therefore a subject of
future research.

Moreover, inspection of (43), (44), (45), and (47) under-
lines that further thermodynamic assumptions like an equa-
tion of state, Fourier’s law, Cauchy’s law, or expressions
from extended thermodynamics will further restrict possible
solutions. This becomes manifest, if one rewrites (37), (38),
(41), and (42) with the help of (29):

𝜌 = −(𝑇̇𝑇)
2 (5𝜁00 + 2) + 2𝑇̈𝑇 (𝜁00 + 1)

+ 2𝑇̇ 𝑇𝑐 𝐶̂𝛾𝜅𝛾𝜁𝜅0 + 𝑇2 𝑇𝑐2 𝜌𝑐,
(72)

𝑝 = 13 (𝑇̇𝑇)
2 (13𝜁00 − 2) − 23 𝑇̈𝑇 (2𝜁00 − 1)

− 43𝑇̇ 𝑇𝑐 𝐶̂𝛾𝜅𝛾𝜁𝜅0 + 𝑇2 𝑇𝑐2 𝑝𝑐,
(73)

𝑞𝛼 = 2(𝑇̇2 − 𝑇̈𝑇𝑇2 )ℎ0𝛼 − 𝑇̇ 𝑇𝑐 𝐶̂𝛾𝜎𝛼𝜁𝛾0𝜁𝜎0
+ 𝑇2 𝑇𝑐2 𝑞𝑐𝛼,

(74)

𝜋𝛼𝛽 = 23 (𝑇̇2 − 𝑇̈𝑇𝑇2 )(ℎ𝛼𝛽 (𝜁00 + 1) − 3ℎ0𝛼ℎ0𝛽)
− 23𝑇̇ 𝑇𝑐 𝐶̂𝜌𝜅𝜇𝜁𝜅0 (𝛿𝜇𝜌ℎ𝛼𝛽 − 3𝛿𝜇(𝛼𝜁𝛽)𝜌)
+ 𝑇2 𝑇𝑐2 𝜋𝑐𝛼𝛽.

(75)

These equations describe the temperature dependence of the
matter content which has to be fulfilled for the considered
class of models.

Expressions (72) and (73) can be used to construct
equations of state. For instance, one can combine the two in
such a way that the outcome does not contain the structure
constants:

𝑝 + 2𝜌 = 3(𝑇̇𝑇)
2 (𝜁00 − 2) + 6𝑇̈𝑇

+ 𝑇2 𝑇𝑐2 (2 𝜌𝑐 +3 𝑝𝑐)
(76)

which is a possible equation of state for the considered space-
time class. This relation clearly shows that the pressure has
a difficult dependence on the temperature and its first and
second derivatives. Of course, 𝜌 has an explicit temperature
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dependence as given in (72), but assuming the validity of
simple equations of state, like 𝑝(𝜌) ∝ 𝜌𝛼, an effective fine-
tuning has to be done in order to prevent an additional
temperature dependence of 𝑝.

It becomes obvious from (74) and (75) that the assump-
tion of Fourier’s or Cauchy’s laws consequently generates
additional strong restrictions on the space-time and itsmatter
content. The same is true for other ad hoc introduced
constitutive equations. This includes nonlinear ones like the
heat-flux law of Israel-Stewart-type [23] which is physically
motivated by the fact that it overcomes stability and causality
problems arising in the linear case. Our point, however, is to
ask for those constitutive equations and equations of state,
respectively, which follow from the conservation laws in a
prescribed geometry and a given temperature field.Thus, it is
not in the sense of the present consideration, to additionally
impose ad hoc constitutive equations on (74) and (75). In
nonrelativistic continuum thermodynamics the situation is
different. There, one has to complete the system of basic
equations resting on the conservation or balance equations by
adding such ad hoc relations manually. If (74) and (75) differ
from those ansatzesmade by hand, this can have a variety of
reasons and implications. To call only one, if therewere severe
thermodynamic arguments for one of the linear or nonlinear
ad hoc ansatzes, for example, for the heat-flux, one was
obliged to ask under which condition it is compatible with
(74).

This view is reinforced by the results obtained in [42].
There, it was shown that in conform-stationary models the
heat-fluxmust vanish for zero anisotropic pressure and under
the assumption of a heat-flux law of the Israel-Stewart type.
An example for physical processes inwhich this does not hold
(Landau damping) is also provided in [42].

Moreover, the form of expressions (74) and (75), which
denotes the modified laws of Fourier and Cauchy, is pointing
in a direction that is to be found in various formulations of
extended thermodynamics [23, 43]. This becomes evident if
one rewrites (75) with the help of (72) and (74):

𝜋𝛼𝛽
= 𝑇2
2 (𝑇̈𝑇 − 𝑇̇2) (𝑞𝛼 + 𝑇̇ 𝑇𝑐 𝐶̂𝛾𝜎𝛼𝜁𝛾0𝜁𝜎0 − 𝑇2 𝑇𝑐2 𝑞𝑐𝛼)
⋅ (𝑞𝛽 + 𝑇̇ 𝑇𝑐 𝐶̂𝛾𝜎𝛽𝜁𝛾0𝜁𝜎0 − 𝑇2 𝑇𝑐2 𝑞𝑐𝛽)
− ℎ𝛼𝛽(13𝜌 + (𝑇̇𝑇)

2 𝜁00 − 13𝑇2 𝑇𝑐2 𝜌𝑐)
+ 2𝑇̇ 𝑇𝑐 𝐶̂𝜌𝜅(𝛼𝜁𝛽)𝜌𝜁𝜅0 + 𝑇2 𝑇𝑐2 𝜋𝑐𝛼𝛽.

(77)

As a constitutive quantity𝜋𝛼𝛽 is a functionwhich is linear and
quadratic in the heat-flow and linear in the energy density,
while the temperature is also included with its first and
second time derivative.

The consideration of simple models like nontilted or
stationary ones leads back to, for example, the well-known
Friedmann or the Gödel space-times (in both cases the

constants of integration are determined; see Section 3) and
similar anisotropicmodels as discussed in [37]. In this context
expressions (43) and (44) or (51) and (52), respectively, can be
understood as generalized Friedmann equations.

By rewriting (43), (44), (45), and (47) in terms of the
observational quantities 𝐻 = 𝑎̇/𝑎 for the Hubble function
and (𝑎̇/𝑎)⋅ = −𝐻2(1 + 𝑞) for the deceleration parameter 𝑞
one receives limits on acceleration, rotation, heat-flux, and
anisotropic pressure.

The corresponding equations take the form

𝜌 = 𝜁00𝐻2 (2𝑞 − 1) + 2𝐻2 (1 + 𝑞) − 2𝐻1𝑎𝐶̂𝛾𝜅𝛾𝜁𝜅0
+ 1𝑎2 𝜌𝑐,

(78)

𝑝 = 13𝜁00𝐻2 (5 − 4𝑞) + 23𝐻2 (1 + 𝑞) + 43 𝐻𝑎 𝐶̂𝛾𝜅𝛾𝜁𝜅0
+ 1𝑎2 𝑝𝑐,

(79)

𝑞𝛼 = −2𝐻2 (1 + 𝑞) ℎ0𝛼 + 𝐻𝑎 𝐶̂𝛾𝜅𝛼𝜁𝛾0𝜁𝜅0 + 1𝑎2 𝑞𝑐𝛼, (80)

𝜋𝛼𝛽 = −23𝐻2 (1 + 𝑞) (ℎ𝛼𝛽 (𝜁00 + 1) − 3ℎ0𝛼ℎ0𝛽)
+ 23 𝐻𝑎 𝐶̂𝜌𝜅𝜇𝜁𝜅0 (𝛿𝜇𝜌ℎ𝛼𝛽 − 3𝛿𝜇(𝛼𝜁𝛽)𝜌)
+ 1𝑎2 𝜋𝑐𝛼𝛽,

(81)

so that the matter content can be described by the observable
quantities 𝐻 and 𝑞 and the model-dependent constants 𝜁00,ℎ0𝛼, and 𝐶̂𝛼𝛽𝛾 as well as the constants of integration, eventually
given by initial or boundary conditions.

In analogy to the calculations which lead to (76), one
obtains from (78) and (79)

2𝜌 + 𝑝 = 3𝐻2 (2𝑞 + 2 + 𝜁00) + 1𝑎2 (2 𝜌𝑐 +3 𝑝𝑐) (82)

which can again be regarded as an equation of state given by
observational quantities.The class ofmodelswe consider here
may have an anisotropic behavior of the Hubble flow and the
galaxy distribution function [3, 4]. In this context, the obser-
vation of a large-scale flow of galaxies, called “dark flow,” with
respect to the CMB is remarkable (see [44] for a review).
A detailed discussion of this and other possibly observable
effects in nonrotating models can be found in [17–19].

Refraining from possible further restrictions on relations
(78)–(81), one finds the following hypothetical scenario.

For a large scale factor 𝑎 ≫ 0, the structure constants
and the constants of integration are negligible, such that, for
the behavior of the matter content, the expansion rate𝐻 and
the deceleration rate 𝑞 are most important. Moreover, one
sees that 𝑞 has critical values at which the behavior of the
matter variables changes. For instance, in the case of large
accelerations (𝑞 < −1), which for cosmologicalmodelsmeans
a strongly increasing expansion and for local models (like
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stars) a strongly increasing collapse, most matter variables
change the sign. All matter variables display generally the
same dependence on the expansion rate𝐻 and are therefore
of likewise importance. A more detailed discussion can only
be achieved if the dependence on 𝜁00 and ℎ0𝛼 is fixed for
specified Bianchi models.

For small values of the scale factor 𝑎, that is, in the early
cosmological phase or for objects which become very dense,
the structure and the integration constants become much
more important in comparison to𝐻 and 𝑞. Besides, all matter
variables show the same behavior and are therefore of equal
importance. When the scale factor 𝑎(𝑡) increases, the heat-
flux and the anisotropic pressure essentially behave like the
energy and the pressure; they dilute.

As a final remark, we would like to stress out that our
results are obtained using the phenomenological approach
to relativistic thermodynamics. As indicated in the intro-
duction, in this context the vanishing entropy production
(13) is a necessary condition for equilibrium, whereas it is
a necessary and sufficient condition for the description of
reversible processes. To consider the compatibility of these
results with relativistic kinetic theory would be an interesting
task for further investigations.

Appendix

A. Kinematic Relations

The following relations between the kinematic invariants are
used to obtain and simplify results of the Sections 3 and 4 in
kinematic terms.

𝑢̇𝛾‖𝛾 = 13 ((Θ̇ + Θ2) (𝜁00 + 1) + 𝑇Θ𝐶̂𝛾𝜅𝛾𝜁𝜅0) , (A.1)

𝑢̇2 = 19Θ2 (𝜁00 + 1) = 19Θ2ℎ00, (A.2)

𝑢̇𝛼‖𝛽 = 13Θ̇ℎ0𝛼𝛿0𝛽 + 𝑢̇2 (ℎ𝛼𝛽 + 𝑢𝛼𝑢𝛽)
+ 13Θ (𝑢𝛼𝑢̇𝛽 + 𝜔𝛼𝛽) − 𝑢̇𝛼𝑢̇𝛽
− 𝜔𝜅(𝛼𝑢𝛽)𝑢̇𝜅 − 12𝑇𝑢̇𝜅𝐶̂𝜇𝜅(𝛼ℎ𝛽)𝜇,

(A.3)

𝜔𝜏𝜇‖𝜇ℎ𝛼𝜏 = 𝜔𝛼𝜇𝑢̇𝜇 − 12𝑇𝜔]𝜅𝐶̂𝜏𝜇𝜎𝜁𝜇𝜅𝜁]𝜎ℎ𝛼𝜏
+ 𝑇𝜔𝛼𝜅𝐶̂𝜌𝜇𝜌𝜁𝜇𝜅.

(A.4)

B. Tetrad Formulation of Curvature

The connection coefficients in the tetrad formulation (see
Section 2), the so-called Ricci rotation coefficients, can be
expressed in terms of the Christoffel symbols Γ𝑐𝑑𝑏,

Ω𝑐𝜇] = 𝜃𝜇𝑑𝜃]𝑏Γ𝑐𝑑𝑏 − 𝜃]𝑏𝜃𝜇𝑏,𝑐, (B.1)

or, due to (18) by the structure constants (21), respectively,

Ω𝜌𝜇] = 𝑎̇𝑎 (𝛿𝜇𝜌𝛿0] − 𝜁]𝜌𝜁𝜇0)
+ 12𝑎𝜁𝜅𝜇 (𝐶̂𝛾]𝜌𝜁𝜅𝛾 + 𝐶̂𝛾𝜌𝜅𝜁]𝛾 − 𝐶̂𝛾𝜅]𝜁𝜌𝛾) .

(B.2)

Determining the Riemannian curvature tensor by the Ricci-
identity and the tetrads,

𝑅𝑚𝑏𝑐𝑑𝜃𝛼𝑚 = 𝜃𝛼𝑏;𝑐;𝑑 − 𝜃𝛼𝑏;𝑑;𝑐, (B.3)

the Ricci tensor can be brought to the form

𝑅𝛼𝛽
= −(𝑎̇𝑎),0 (2𝛿0𝛼𝛿0𝛽 + 𝜁00𝜁𝛼𝛽) − 3 ( 𝑎̇𝑎)

2 𝜁00𝜁𝛼𝛽
− 𝑎̇𝑎2 (𝐶̂𝛾𝜅𝛽𝜁𝜅0𝜁𝛼𝛾 + 𝐶̂𝛾𝜅𝛼𝜁𝜅0𝜁𝛽𝛾 + 𝐶̂𝜌𝜇𝜌𝜁𝜇0𝜁𝛼𝛽)
− 12𝑎2 𝑅̃𝛼𝛽

(B.4)

with
𝑅̃𝛼𝛽

= −12 (−𝐶̂𝛾𝜅𝛽𝐶̂𝜌𝜇𝜌𝜁𝛼𝛾𝜁𝜇𝜅 + 𝐶̂𝜇]𝛽𝐶̂]
𝛼𝜇

− 𝐶̂𝛾𝜅𝛼𝐶̂𝜌𝜇𝜌𝜁𝛽𝛾𝜁𝜇𝜅
− 𝐶̂𝜇]𝛽𝐶̂𝜏𝜎𝛼𝜁𝜇𝜏𝜁]𝜎 + 12𝐶̂𝛾𝜅]𝐶̂𝜏𝜇𝜎𝜁𝛽𝛾𝜁𝜇𝜅𝜁𝛼𝜏𝜁]𝜎) .

(B.5)

Accordingly, the Ricci scalar becomes

𝑅 = −6 (𝑎̇
a
)
,0
𝜁00 − 12 ( 𝑎̇𝑎)

2 𝜁00 − 6 𝑎̇𝑎2 𝐶̂𝜌𝜇𝜌𝜁𝜇0
− 1𝑎2 𝑅̃

(B.6)

with

𝑅̃ = 𝐶̂𝛾𝜅𝛾𝐶̂𝜌𝜇𝜌𝜁𝜇𝜅 − 12𝐶̂𝜇]𝛽𝐶̂]
𝛼𝜇𝜁𝛼𝛽

+ 14𝐶̂𝜇]𝛽𝐶̂𝜏𝜎𝛼𝜁]𝜎𝜁𝜇𝜏𝜁𝛼𝛽.
(B.7)

The expressions 𝑅̃𝛼̂𝛽̂ of (B.5) and equivalently 𝑅̃ of (B.7) can
be identified with the Ricci tensor and the Ricci scalar of 3-
dimensional Bianchi spaces [45].

This results in the following shape of the Einstein tensor:

𝐺𝛼𝛽 = 𝑅𝛼𝛽 − 12𝑅𝜁𝛼𝛽
= 2(𝑎̈ − 𝑎̇2𝑎2 )(𝜁𝛼𝛽𝜁00 − 𝛿0𝛼𝛿0𝛽) + 3 ( 𝑎̇𝑎)

2 𝜁𝛼𝛽𝜁00
+ 2 𝑎̇𝑎2 𝐶̂𝜌𝜅𝜇𝜁𝜅0 (𝛿𝜇𝜌𝜁𝛼𝛽 − 𝛿𝜇(𝛼𝜁𝛽)𝜌)
+ 1𝑎2 (−𝑅̃𝛼𝛽 + 12𝑅̃𝜁𝛼𝛽) .

(B.8)
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C. Constants of Integration

From the field equations, 𝐺𝛼𝛽 = 𝑇𝛼𝛽, in terms of the tetrad
formulation from Section 2 and together with (5), one finds

−𝑅̃𝛼𝛽 + 12𝑅̃𝜁𝛼𝛽 = 𝐸𝐼𝑐𝛼𝛽. (C.1)

Then, because of (50) the constants of integration, that is,
𝜌𝑐, 𝑝𝑐, 𝑞𝑐𝛼, and 𝜋𝑐𝛼𝛽, for the energy density, the isotropic
pressure, the heat-flux, and the anisotropic pressure (43)–
(46), become, in this order,

𝜌𝑐 = 𝐸𝐼𝑐𝛼𝛽𝑢𝛼𝑢𝛽 = −12𝑅̃ + 2 ( 𝜔
𝑇𝑐 𝑇)

2 , (C.2)

𝑝𝑐 = 13 𝐸𝐼𝑐𝛼𝛽ℎ𝛼𝛽 = 16𝑅̃ + 23 ( 𝜔
𝑇𝑐 𝑇)

2 , (C.3)

𝑞𝑐𝛼 = − 𝐸𝐼𝑐𝛽𝛾𝑢𝛽ℎ𝛾𝛼 = 1
𝑇𝑐2𝑇2 (𝜔𝜅𝜇‖𝜇ℎ𝛼𝜅 − 𝜔𝛼𝜇𝑢̇𝜇) , (C.4)

𝜋𝑐𝛼𝛽 = 𝐸𝐼𝑐𝛾𝛿ℎ𝛾𝛼ℎ𝛿𝛽 − 𝑝𝑐 ℎ𝛼𝛽
= −𝑅̃𝛼𝛽 + 13𝑅̃ℎ𝛼𝛽 − 23 ( 𝜔

𝑇𝑐 𝑇)
2 (3𝑢𝛼𝑢𝛽 + ℎ𝛼𝛽)

− 2
𝑇𝑐2𝑇2 (𝜔𝜌(𝛼𝑢𝛽)𝑢̇𝜌 + 𝜔𝜏𝜇‖𝜇ℎ𝜏(𝛼𝑢𝛽)) ,

(C.5)

where in (C.4) and (C.5) it was made use of relation (A.4). If
one reinserts the constants of integration (C.2)–(C.5) into the
matter equations (43)–(46), they take the purely kinematic
forms (51)–(54).

The summarized constants of integration, 𝜌𝑐, 𝑝𝑐, 𝑞𝑐𝛼, and
𝜋𝑐𝛼𝛽, in this paper are pieced together as follows:

𝜌𝑐 fl − 𝜌𝑐̃ −2𝑐1 (2𝜁00 − 1) − 2𝑐2 (𝜁00 + 1)
− 2𝑐3𝐶̂𝛾𝜅𝛾𝜁𝜅0,
𝑝𝑐 fl − 𝑝𝑐̃ −23𝑐2 (1 − 2𝜁00) + 23𝑐1 (7𝜁00 + 1) + 43
⋅ 𝑐3𝐶̂𝛾𝜅𝛾𝜁𝜅0,
𝑞𝑐𝛼 fl − 𝑞𝑐̃𝛾 (ℎ𝛾𝛼 − ℎ0𝛼𝑢𝛾) − 2 (𝑐1 + 𝑐2) ℎ0𝛼
− 𝑐3𝐶̂𝛾𝛼𝜎𝜁𝛾0𝜁𝜎0,
𝜋𝑐𝛼𝛽 fl 13 (− 𝜋𝑐̃𝛾𝛿 (ℎ𝛾𝛼 − ℎ0𝛼𝑢𝛾) (ℎ𝛿𝛽 − ℎ0𝛽𝑢𝛿)
− 2 (𝑐1 − 𝑐2) (ℎ𝛼𝛽 (𝜁00 + 1) − 3ℎ0𝛼ℎ0𝛽)
+ 2𝑐3𝐶̂𝜌𝜇𝜅𝜁𝜅0 (𝛿𝜇𝜌ℎ𝛼𝛽 − 3𝛿𝜇(𝛼ℎ𝛽)𝜌)) .

(C.6)

The occurring objects 𝑐1, 𝑐2, 𝑐3, 𝜌𝑐̃, 𝑝𝑐̃, 𝑞𝑐̃𝛼̂, and 𝜋𝑐̃𝛼̂𝛽̂ are
the actual constants of integration yielded by the following
integrals, which are to be calculated in Section 3.1:

∫ 𝑎̈𝑎̇ 𝑑𝑥0 = 𝑎̇22 + 𝑐1,
∫ ...𝑎𝑎 𝑑𝑥0 = 𝑎̈𝑎 − 𝑎̇22 + 𝑐2,
∫ 𝑎̈ 𝑑𝑥0 = 𝑎̇ + 𝑐3,
∫ (𝑎2𝜌)

,0
𝑑𝑥0 = 𝑎2𝜌 + 𝜌𝑐̃,

∫ (𝑎2𝑝)
,0
𝑑𝑥0 = 𝑎2𝑝 + 𝑝𝑐̃,

∫ (𝑎2𝑞𝛼),0 𝑑𝑥0 = 𝑎2𝑞𝛼 + 𝑞𝑐̃𝛽 (ℎ𝛾𝛼 − ℎ0𝛼𝑢𝛾) ,
∫ 3 (𝑎2𝜋𝛼𝛽),0 𝑑𝑥0

= 𝑎2𝜋𝛼𝛽 + 𝜋𝑐̃𝛾𝛿 (ℎ𝛾𝛼 − ℎ0𝛼𝑢𝛾) (ℎ𝛿𝛽 − ℎ0𝛽𝑢𝛿) .

(C.7)

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] G. F. R. Ellis, “Relativistic cosmology,” in Proceedings of the
International School of Physics “Enrico Fermi”, Course 47:
General Relativity and Cosmology, R. K. Sachs, Ed., pp. 104–182,
Academic Press, New York, NY, USA, 1971.

[2] V. A. Korotky and Y. N. Obukhov, “Bianchi-II rotating world,”
Astrophysics and Space Science, vol. 260, no. 4, pp. 425–439, 1998.

[3] Y. N. Obukhov, “Observations in rotating cosmologies. Gauge
theories of fundamental interactions,” in Proceedings of the
32nd Semester in the Stefan Banach International Mathematical
Center, M. Pawlowski and R. Raczka, Eds., World Scientific,
Warsaw, Poland, 1990.

[4] Y. N. Obukhov, “On physical foundations and observational
effects of cosmic rotation,” in Colloquium on Cosmic Rotation,
M. Scherfner, Ed., Wissenschaft und Technik, 2000.

[5] Y. N. Obukhov, T. Chrobok, and M. Scherfner, “Shear-free
rotating inflation,” Physical Review D, vol. 66, no. 4, Article ID
043518, 2002.

[6] S. Capozziello, V. F. Cardone, E. Elizalde, S. Nojiri, and S.
D. Odintsov, “Observational constraints on dark energy with
generalized equations of state,” Physical Review D—Particles,
Fields, Gravitation and Cosmology, vol. 73, no. 4, Article ID
043512, 2006.

[7] R. Myrzakulov and L. Sebastiani, “Bounce solutions in viscous
fluid cosmology,” Astrophysics and Space Science, vol. 352, no. 1,
pp. 281–288, 2014.

[8] S. Nojiri and S. D. Odintsov, “Final state and thermodynamics
of a dark energy universe,” Physical Review D, vol. 70, no. 10,
Article ID 103522, 2004.



Journal of Gravity 11

[9] S. Nojiri and S. D. Odintsov, “Inhomogeneous equation of state
of the universe: phantom era, future singularity, and crossing
the phantom barrier,” Physical Review D, vol. 72, Article ID
023003, 2005.

[10] R. Treciokas and G. F. R. Ellis, “Isotropic solutions of the
Einstein-Boltzmann equations,”Communications inMathemat-
ical Physics, vol. 23, no. 1, pp. 1–22, 1971.

[11] T. Chrobok and H.-H. V. Borzeszkowski, “Thermodynamic
equilibrium and rotating space-time,” inGödel-Type Spacetimes:
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