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A general approach is presented to analyze tensegrity structures by examining their equilibrium. It belongs to the class of
equilibrium equations methods with force densities. The redundancies are treated by employing Castigliano’s second theorem,
which gives the additional required equations. The partial derivatives, which appear in the additional equations, are numerically
replaced by statically acceptable internal forceswhich are applied on the structure. For both statically determinate and indeterminate
tensegrity structures, the properties of the resulting linear system of equations give an indication about structural stability. This
method requires a relatively small number of computations, it is direct (there is no iteration procedure and calculation of auxiliary
parameters) and is characterized by its simplicity. It is tested on both 2D and 3D tensegrity structures. Results obtained with the
method compare favorably with those obtained by the Dynamic Relaxation Method or the Adaptive Force Density Method.

1. Introduction

Cable networks [1–3] and tensegrity structures [4] are dif-
ferent from conventional structures, such as spatial steel
frames or space steel trusses, in that they are lightweight
structures withmembers which transmit only tension (cables
and strings) or elements which transmit compression (bars
before buckling). In this article, we are studying only the
behavior of tensegrity structures.These structures are usually
defined as planar or spatial trusses with a discontinuous
set of members under compression, inside a continuous
network of members under tension. The word tensegrity
is an artificial word and it combines the words “tension”
and “integrity.” This word was coined several decades ago.
Professor Fuller, in the United States, was essentially involved
in the invention of this technical word. In one of his last
books, Fuller described the compressionmembers as “islands
of compression in a sea of tension” [4]. Using the same
concept, Emmerich [5] presented, in France in 1963, his
own tensegrity patent. Snelson, one of Fuller’s students,

describes this type of structures as “continuous tension and
discontinuous compression structures” [6].

Pretension, applied by means of tension members, plays
an essential role in the structural behavior of the tensegrities.
For the design of such structures, their stability is investigated
under both static and dynamic loads. During the last decades,
many methods have been proposed for the analysis of the
tensegrities. One of the most important methods is the
Dynamic Relaxation Method (DRM) which was used in
this research for checking the numerical results obtained
with the numerical scheme proposed in the present work.
DRM is one of the classical techniques. It belongs to the
family of methods under the title of three-term recursive
formulae. It is an iterative procedure which is based on the
fact that a system undergoing damped vibration, excited by
a constant force, ultimately comes to rest in the displaced
position of static equilibrium, obtained under the action
of the constant force. One of the numerous first papers,
written by pioneers of this method, is that of Papadrakakis
[7] which proposes an automatic procedure for the evaluation
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of the iteration parameters and it is mentioned here (without
underestimating the importance of other works in this
domain) as an example of an article which presents in a
strict, clear, and academic manner the way of implementing
this numerical procedure. Recent research, performed in
the domain of tensegrities, has given some new important
techniques. However, a general review of the older and of the
recent numerical schemes, developed in this area, is out of
the scope of the present paper. Juan and Mirats Tur present
an excellent review in their work [8] of the basic issues
about the statics of tensegrity structures. Among the new
methods, presented in literature during the last few years,
is that of Zhang and Ohsaki [9] which is also considered in
the present research for comparison purposes. Their method
is an Adaptive Force Density Method (AFDM). It first finds
a set of axial forces compatible with a given structure and
then estimates the corresponding nodal coordinates under
equilibrium conditions and constraints.

The technique implemented in the present work is a force
density method which belongs to the class of the Equilibrium
EquationsMethodswith ForceDensities (EEMFD).With this
method, the system of equilibrium equations is created by
considering the equilibrium of forces in all the joints. The
redundancies are treated by employing Castigliano’s second
theorem which gives the additional equations required to
have a solution [10]. The partial derivatives, which appear
in the additional equations, are numerically replaced by
statically acceptable internal forces acting along themembers.
Also, the properties of the matrix of the system of linear
equations are exploited because they give a strong indication
of the stability of the structure.

The assumptions adopted in the present research are the
following:

(1) Joints are frictionless but their mass is considered in
calculations unless otherwise specified.

(2) The self-weight of a member (for structures within
earth’s gravity field) is not neglected unless otherwise
specified. It is equally distributed at its ends.

(3) Live loads and pretensions on a member are trans-
ferred to the joints.They are equally distributed at the
ends of the member.

(4) Displacements on the joints and deformations of
the members of the structure are relatively small
compared with the dimensions of the structure.

(5) The axial force carried by a member is constant along
its length.

(6) The materials used, for all members of the structure,
obey Hooke’s Law for loadings below the yield stress.

The efficiency of this technique is based on its simplicity and
the small number of calculations required.Thus, the objective
is (i) to present the general idea and formulation and (ii) to
test the method in planar and spatial tensegrity structures of
any type of complexity and to compare it with the DRM or
the AFDM.

The outline of the rest of this paper is as follows: in
Section 2 we develop the formulation of a Comprehen-
sive Equilibrium Equations Method with Force Densities
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Figure 1: Equilibrium of an unconstrained node of a 2D tensegrity
structure.

(CEEMFD) and in Section 3 we discuss the treatment of
redundancies and we investigate the stability in this type of
structures. In Section 4, some applications of the method
are presented on planar and on spatial tensegrity structures.
The article ends with Section 5 in which conclusions and
proposals for future work are given.

2. A Comprehensive Equilibrium Equations
Method with Force Densities

An important concept related with tensegrity structures is
the “force density” [1–3]. For a member made of a material
obeying Hooke’s Law, with ends at 𝑖 and 𝑗 and with a length
𝐿 𝑖,𝑗 and a longitudinal force 𝐹𝑖,𝑗, the force density is defined
as follows:

𝑞𝑖,𝑗 =
𝐹𝑖,𝑗
𝐿 𝑖,𝑗 = (𝐸𝐴)𝑖,𝑗

𝜀𝑖,𝑗
𝐿 𝑖,𝑗 , (1)

where 𝜀𝑖,𝑗 is the strain, 𝐸 is the Young modulus [10], and
𝐴 is the effective cross-sectional area of the member. This
definition will be useful in the analysis which is presented
herewith. Force density has a negative sign in compression
and a positive sign in tension.

Figure 1 is used to exemplify the equilibrium of a typical
unconstrained node 𝑖, on the Oxy plane, which is connected
to joints 𝑗 and 𝑘, through members which have lengths 𝐿 𝑖,𝑗
and 𝐿 𝑖,𝑘. For the three-dimensional orthogonal Cartesian
coordinate system𝑂𝑥𝑦𝑧, where𝑁𝑚 joints are connected with
joint 𝑖, through 𝑁𝑚 members, the equilibrium equations, in
the direction of the axes 𝑂𝑥, 𝑂𝑦, and 𝑂𝑧 are given by

𝑁𝑚∑
𝑗=1

𝑥𝑖 − 𝑥𝑗
𝐿 𝑖,𝑗 𝐹𝑖,𝑗 =

𝑁𝑚∑
𝑗=1

(𝑥𝑖 − 𝑥𝑗) 𝑞𝑖,𝑗

=
𝑁𝑚∑
𝑗=1

𝑞𝑗,𝑖𝑥𝑖 −
𝑁𝑚∑
𝑗=1

𝑞𝑖,𝑗𝑥𝑗 = 𝐹(𝐸)𝑖,𝑥 ,
(2)
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𝑁𝑚∑
𝑗=1

𝑦𝑖 − 𝑦𝑗
𝐿 𝑖,𝑗 𝐹𝑖,𝑗 =

𝑁𝑚∑
𝑗=1

(𝑦𝑖 − 𝑦𝑗) 𝑞𝑖,𝑗

=
𝑁𝑚∑
𝑗=1

𝑞𝑗,𝑖𝑦𝑖 −
𝑁𝑚∑
𝑗=1

𝑞𝑖,𝑗𝑦𝑗 = 𝐹(𝐸)𝑖,𝑦 ,
(3)

𝑁𝑚∑
𝑗=1

𝑧𝑖 − 𝑧𝑗
𝐿 𝑖,𝑗 𝐹𝑖,𝑗 =

𝑁𝑚∑
𝑗=1

(𝑧𝑖 − 𝑧𝑗) 𝑞𝑖,𝑗 =
𝑁𝑚∑
𝑗=1

𝑞𝑗,𝑖𝑧𝑖 −
𝑁𝑚∑
𝑗=1

𝑞𝑖,𝑗𝑧𝑗

= 𝐹(𝐸)𝑖,𝑧 ,
(4)

where 𝑖 = 1, . . . , 𝑁 and 𝑁 is the total number of nodes on
the structure. In equations (2), (3), and (4) forces 𝐹(𝐸)𝑖,𝑥 , 𝐹(𝐸)𝑖,𝑦 ,
and 𝐹(𝐸)𝑖,𝑧 are the external loads which include gravity loads,
live loads, pretension, and even reactions in the case where
the node is a support. Gravity loads are assumed to act along
the negative 𝑦-axis, for 2D structures or along the negative
𝑧-axis for 3D structures. External loads, which appear on the
right hand side of (2), (3), and (4) have the following general
expressions:

𝐹(𝐸)𝑖,𝑥 = −
𝑁𝑚∑
𝑗=1

(𝑥𝑖 − 𝑥𝑗) 𝑡𝑖,𝑗 + 𝐵𝑖,𝑥 + 𝑅𝑖,𝑥,

𝐹(𝐸)𝑖,𝑦 = −
𝑁𝑚∑
𝑗=1

(𝑦𝑖 − 𝑦𝑗) 𝑡𝑖,𝑗 + 𝐵𝑖,𝑦 + 𝑅𝑖,𝑦,

𝐹(𝐸)𝑖,𝑧 = −𝐺𝑖 − 1
2
𝑁𝑚∑
𝑗=1

𝑤𝑖,𝑗𝐿 𝑖,𝑗 −
𝑁𝑚∑
𝑗=1

(𝑧𝑖 − 𝑧𝑗) 𝑡𝑖,𝑗 + 𝐵𝑖,𝑧

+ 𝑅𝑖,𝑧,

(5)

where 𝐺𝑖 is the self-weight of joint 𝑖 and𝑤𝑖,𝑗 is the weight per
unit length of a member with nodes at 𝑖 and 𝑗. Also, 𝑡𝑖,𝑗 is the
pretension per unit length of a member joining nodes 𝑖 and 𝑗.
Forces 𝐵𝑖,𝑥, 𝐵𝑖,𝑦, and 𝐵𝑖,𝑧 are the concentrated live loads and
𝑅𝑖,𝑥,𝑅𝑖,𝑦, and𝑅𝑖,𝑧 are the reaction forces (if they exist) on joint𝑖. Both live loads and reaction forces are assumed to be acting
along the positive directions of axes 𝑂𝑥, 𝑂𝑦, and 𝑂𝑧.

The equilibrium of the whole structure is considered
by introducing the connectivity matrix 𝑃. This matrix has
elements 𝑝𝑎,𝑐. Index 𝑎 takes values from 1 to 𝑁𝑏 (here 𝑁𝑏 is
the number of all members) and index 𝑐 takes values from 1
to𝑁. The elements 𝑝𝑎,𝑐 of matrix 𝑃 take the following values
[1–3]:

𝑝𝑎,𝑐 =
{{{{
{{{{
{

+1 if 𝑐 is the initial node of member 𝑎
−1 if 𝑐 is the final node of member 𝑎
0 if 𝑐 does not belong to member 𝑎.

(6)

It really does notmatter which node ofmember 𝑎we consider
first or last but oncewe consider a node 𝑐 to be the initial node
for the member, we also consider it as the initial node for any
other member that is connected with this node.

Also, matrix 𝑆 is introduced which has elements 𝑠𝑒,𝑑.
Index 𝑒 takes values from 1 to 𝑁 and index 𝑑 takes values

from 1 to 𝑁𝑠 (where 𝑁𝑠 is the number of supports of the
structure). Elements 𝑠𝑒,𝑑 of matrix 𝑆 are then defined as
follows:
𝑠𝑒,𝑑

= {
{
{
−1 if node 𝑒 coincides with the support 𝑑
0 if node 𝑒 is a different node from support 𝑑.

(7)

By introducing vectors 𝑥𝑐, 𝑦𝑐, and 𝑧𝑐 which contain the 𝑥-
coordinates, 𝑦-coordinates, and 𝑧-coordinates, respectively,
of all the 𝑁 nodes of the structure, the set of linear equi-
librium equations for all the joints of the structure can be
expressed in block form as shown below:

𝐴 ⋅ 𝑄𝑓 = [[[
[

𝑃𝑇 (𝑃 ⋅ 𝑥𝑐)𝑠𝑞 𝑆 𝑂 𝑂
𝑃𝑇 (𝑃 ⋅ 𝑦𝑐)𝑠𝑞 𝑂 𝑆 𝑂
𝑃𝑇 (𝑃 ⋅ 𝑧𝑐)𝑠𝑞 𝑂 𝑂 𝑆

]]]
]
⋅
[[[[[
[

𝑞
𝑅𝑥
𝑅𝑦
𝑅𝑧

]]]]]
]

= Ψ(𝐸), (8)

where vector 𝑄𝑓 contains all the force densities and reaction
forces of the structure. For spatial tensegrities it has dimen-
sions (𝑁𝑏 + 3𝑁𝑠) × 1. Vector 𝑞 contains all the unknown
force densities 𝑞𝑖,𝑗 which are inserted in 𝑞 according to
the ascending order of numbering of the elements of the
structure and it has dimensions 𝑁𝑏 × 1. Vectors 𝑅𝑥, 𝑅𝑦, and𝑅𝑧 contain the reaction forces on the supports and each one
of them has dimensions 𝑁𝑠 × 1. Vector Ψ(𝐸) contains all the
known external loads acting in the 𝑥, 𝑦, and 𝑧-directions,
respectively, on all the joints of the structure (gravity loads,
live loads, pretension, etc.) and for 3D tensegrities it has
dimensions 3𝑁× 1. Its componentsΨ(𝐸)𝑖,𝑥 ,Ψ(𝐸)𝑖,𝑦 , andΨ(𝐸)𝑖,𝑧 have
the same expression as for 𝐹(𝐸)𝑖,𝑥 , 𝐹(𝐸)𝑖,𝑦 , and 𝐹(𝐸)𝑖,𝑧 in equations
(2), (3), and (4), respectively, except that they do not contain
the reaction forces. Matrix 𝐴 is the global shape matrix of
the tensegrity and is very sparse. This means a significantly
smaller number of computations and memory space on a
computer compared with the classical finite element method.
For the creation of a computer code, definitions (6) and (7)
and formulation (8) are easy to use.

In the case of statically determinate structures, the set of
linear equilibriumequations (8) is the set of equations to solve
to directly find the unknown values of the force densities 𝑞𝑖,𝑗.
Considering all the𝑁 joints of the structure andwith the help
of matrix 𝑃, the set of equilibrium equations (2), (3), and (4),
for the whole structure, takes the following block form:

[[
[

𝐷 𝑂 𝑂
𝑂 𝐷 𝑂
𝑂 𝑂 𝐷

]]
]
⋅ [[
[

𝑥𝑐
𝑦𝑐
𝑧𝑐
]]
]

= [[[
[

𝐹(𝐸)𝑥
𝐹(𝐸)𝑦
𝐹(𝐸)𝑧

]]]
]

= [[[
[

(𝑅𝑥)gl + Ψ(𝐸)𝑥
(𝑅𝑦)gl + Ψ(𝐸)𝑦
(𝑅𝑧)gl + Ψ(𝐸)𝑧

]]]
]
, (9)

where (𝑅𝑥)gl, (𝑅𝑦)gl, and (𝑅𝑧)gl are global vectors of dimen-
sions𝑁×1which contain the unknown reaction forces. Also,
matrix𝐷, which is known as the force density matrix (FDM)
of the tensegrity, relates the nodal coordinates and the forces
which are acting on the structure and is given by

𝐷 = 𝑃𝑇 diag (𝑞) 𝑃. (10)
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The elements 𝑑𝑖,𝑗 of matrix𝐷 are as follows [1–3]:

𝑑𝑖,𝑗

=
{{{{{{{
{{{{{{{
{

−𝑞𝑖,𝑗 when 𝑖 ̸= 𝑗
𝑁𝑚∑
𝑝=1
(𝑝 ̸=𝑖)

𝑞𝑝,𝑗 when 𝑖 = 𝑗

0 if nodes 𝑖 and 𝑗 are not connected.

(11)

Matrix𝐷 is a Kirchhoff matrix and it is a symmetric positive
semidefinite matrix. It is also called discrete matrix or com-
binatorial Laplacian or admittance matrix and it contains
elements with a positive or a negative sign [8]. It has dimen-
sions𝑁 ×𝑁. A more general form of (9) is the following:

(𝐼 ⊗ 𝐷) ⋅ [[[
[

𝑥𝑐 − 𝐷−1 (𝑅𝑥)gl
𝑦𝑐 − 𝐷−1 (𝑅𝑦)gl
𝑧𝑐 − 𝐷−1 (𝑅𝑧)gl

]]]
]

= [[[
[

Ψ(𝐸)𝑥
Ψ(𝐸)𝑦
Ψ(𝐸)𝑧

]]]
]

= Ψ(𝐸), (12)

where 𝐼 is the 3 × 3 unit matrix. So, equations (8) and (12)
give the following elegant and important, at the same time,
relation:

(𝐼 ⊗ 𝐷) ⋅ [[[
[

𝑥𝑐 − 𝐷−1 (𝑅𝑥)gl
𝑦𝑐 − 𝐷−1 (𝑅𝑦)gl
𝑧𝑐 − 𝐷−1 (𝑅𝑧)gl

]]]
]
− 𝐴 ⋅ 𝑄𝑓 = 0. (13)

One may observe that equation (13) does not contain any
values of the external loads except from the reaction forces
on the supports.

3. Redundancies, Numerical Representation of
Castigliano’s Second Theorem, and Stability

The values of the elements of matrix 𝐴 in (8) depend directly
on the values of the coordinates of the nodes. For planar
problems it has dimensions 2𝑁 × (𝑁𝑏 + 2𝑁𝑠) and for spatial
structures it is of dimensions 3𝑁 × (𝑁𝑏 + 3𝑁𝑠). For the
statically determinate structures [10] and after inserting in
the set of equations (8) the known values of reactions on
the supports, matrix 𝐴 is reduced to a square matrix K𝑒 of
dimensions 2𝑁×2𝑁, in two dimensions and 3𝑁×3𝑁 in three
dimensions. Its properties, as a square matrix, give important
information about the stability of the form of the structure
under study. So, for statically determinate structures, the set
of linear equilibrium equations (8) has a solution if and only
if det |K𝑒| ̸= 0. Other equivalent conditions concerning
square matrix K𝑒, which secure the existence of a solution
are given in many references about numerical analysis (e.g.,
[11]). If matrix K𝑒 has a determinant equal to zero then, most
probably, the structure is unstable.

For the 2D case, the degree of redundancy is 𝑁𝑟 = 𝑁𝑏 +𝑁ur − 2𝑁 and for the 3D problems it is 𝑁𝑟 = 𝑁𝑏 + 𝑁ur −3𝑁, where 𝑁ur is the number of unknown reaction forces
on the supports. We say that the system of linear equations

has 𝑁𝑟 parametric solutions. Thus, we need an additional
number of 𝑁𝑟 equations which, in this study, are provided
by Castigliano’s second theorem. According to this theorem,
which is well presented in many classical books about solid
mechanics (e.g., Zhang and Ohsaki [9]), all the forces in
the bars or strings of the structure are expressed in terms
of any 𝑁𝑟, in number, forces 𝑄(𝑘), which are considered
as redundancies and are arbitrarily chosen among the 𝑁𝑏
forces 𝑄𝑖, acting as internal loads along the members of the
structure. It is assumed that no local mechanisms are formed.
Then, Castigliano’s second theorem gives the additional 𝑁𝑟
equations which are

𝜕𝑈
𝜕𝑄(𝑘) =

𝑁𝑏∑
𝑖=1

𝑄𝑖
(𝐸𝐴)𝑖 ⋅

𝜕𝑄𝑖
𝜕𝑄(𝑘) 𝐿 𝑖 = 0, 𝑘 = 1, . . . , 𝑁𝑟, (14)

where𝑈 is the total potential energy of the structure. Internal
forces 𝑄𝑖 are then expressed as

𝑄𝑖 = 𝑄(RL)𝑖 +
𝑁𝑟∑
𝑗=1

𝑄(𝑗)𝑖 𝑄(𝑗), 𝑖 = 1, . . . , 𝑁, (15)

where 𝑄(𝑗) are the unknown internal redundant forces. In
(15) forces 𝑄(RL)𝑖 represent a set of forces acting along each
member 𝑖 and being in equilibrium with all other real forces
acting on the same node. This set of forces is created by
removing the redundancies and solving the resulting stati-
cally determinate structure (which is now called fundamental
structure) under the action of its real loading. Then, solution
gives the values of 𝑄(RL)𝑖 . Also, in (15) forces 𝑄(𝑗)𝑖 represent a
set of forces in static equilibriumwhich appears when no real
loading is applied on the fundamental structure and when
the redundancy members (one at a time) are replaced with
a pair of unit forces, opposing each other and acting along
the member’s axis. One such pair of forces is acting each
time and for each pair the fundamental structure is solved.
Forces 𝑄(𝑗)𝑖 are then considered as quantities without the
unit of force. They are used as the coefficients of 𝑄(𝑗) and
their values constitute a group of statically acceptable internal
forces, acting along the redundantmembers.Then, the partial
derivative of 𝑄𝑖 with respect to 𝑄(𝑘) in (14) is expressed as

𝜕𝑄𝑖
𝜕𝑄(𝑘) = 𝑄(𝑘)𝑖 , 𝑘 = 1, . . . , 𝑁𝑟, 𝑖 = 1, . . . , 𝑁𝑏. (16)

Using (15) and (16), equations (14) take the form

𝑁𝑏∑
𝑖=1

𝑄(RL)𝑖 + ∑𝑁𝑟𝑗=1 𝑄(𝑗)𝑖 𝑄(𝑗)
(𝐸𝐴)𝑖 ⋅ 𝑄(𝑘)𝑖 𝐿 𝑖 = 0

or 𝛿(RL)𝑘 +
𝑁𝑟∑
𝑗=1

ℎ𝑘𝑗𝑄(𝑗) = 0,

𝑘 = 1, . . . , 𝑁𝑟,

(17)
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where

𝛿(RL)𝑘 =
𝑁𝑏∑
𝑖=1

𝑄(RL)𝑖 𝑄(𝑘)𝑖
(𝐸𝐴)𝑖 𝐿 𝑖,

ℎ𝑘𝑗 =
𝑁𝑏∑
𝑖=1

𝑄(𝑗)𝑖 𝑄(𝑘)𝑖
(𝐸𝐴)𝑖 𝐿 𝑖.

(18)

If there is a real relative displacement 𝛿(𝑠)
𝑘

between one end of
the redundant member 𝑘 and the joint at the other end, then
equation (17) does not have a zero on the right-hand side and
it takes the form

𝛿(𝑠)𝑘 = 𝛿(RL)𝑘 +
𝑁𝑟∑
𝑗=1

ℎ𝑘𝑗𝑄(𝑗), 𝑘 = 1, . . . , 𝑁𝑟. (19)

Equations (19) can be written in matrix form as follows:

[[[[
[

𝛿(𝑠)1
...

𝛿(𝑠)𝑁𝑟

]]]]
]

=
[[[[
[

𝛿(RL)1
...

𝛿(𝑠)𝑁𝑟

]]]]
]
+
[[[[
[

ℎ1,𝑖 ⋅ ⋅ ⋅ ℎ1,𝑁𝑟
... ... ...

ℎ1,𝑁𝑟 ⋅ ⋅ ⋅ ℎ𝑁𝑟 ,𝑁𝑟

]]]]
]
⋅
[[[[
[

𝑄(1)
...

𝑄(𝑁𝑟)

]]]]
]
, (20)

where 𝑄(𝑗) is also expressed in terms of force density 𝑞(𝑗) as
𝑄(𝑗) = 𝑞(𝑗)𝐿(𝑗). So, equilibrium equations (8) or (12) together
with (20) make a system of 2𝑁 + 𝑁𝑟 equations, in the case
of planar problems or 3𝑁 + 𝑁𝑟 equations, in the case of
3D problems, which is solved to give the values of all the
unknown forces on the members of the structure. Another
way to find the unknown internal forces of the structure is by
solving separately the system of linear equations (20) for𝑄(𝑗).
Next, by substituting the known values of𝑄(𝑗) in (8) or (12) we
mayfind the values of all other forces𝑄𝑖 of themembers of the
tensegrity structure. However, it is preferable to consider the
complete system of 2𝑁+𝑁𝑟 or 3𝑁+𝑁𝑟 equilibrium equations
in order to have the opportunity to investigate the stability of
the whole structure.

The existence of solution, for the resulting systemof linear
equationsK𝑒 ⋅𝛽 = 𝛾, is an indication of the stability condition
of the structure. If the solution exists then it is unique. One
can be certain about the existence of the solutionwhen square
matrix K𝑒 has one of the following properties [11]:

(1) Matrix K𝑒 has a rank 𝜌 equal to the rank of the
augmented matrix (K𝑒/𝛾).

(2) The determinant of the square matrix K𝑒 is not equal
to zero; that is, det |K𝑒| ̸= 0.

(3) The inverse K−1𝑒 of the square matrix K𝑒 exists and
gives K−1𝑒 K𝑒 = 𝐼.

(4) The number 𝑛ind of linearly independent rows or
columns of matrix K𝑒 is equal to 𝜌.

If matrix K𝑒 does not have one of the above equivalent
properties then the solution does not exist and we say that
the stability of our tensegrity structure is doubtful.

4. Numerical Examples

4.1. The X-Shape 2D Tensegrity Structure. One of the fun-
damental tensegrity configurations, used by Fuller [4] and
Snelson [6] to create more complicated stable structures,
is the X-shape 2D tensegrity truss with 𝑁 = 4 nodes
(Figure 2(a)). Skelton [12] studied analytically this truss
which has four steel cables (elements 1, 2, 5, and 6) and two
rods made of an aluminum alloy (members 3 and 4). The
technical characteristics of the cables and rods are presented
in Table 1. The weight of each joint is 𝐺 = 0.01 kN. No other
external loads are applied. Cable 1 in our example is shorter
than the required length. During construction one end of
the cable is connected to joint 1 and the other is extended
by 𝛿2,𝜒 = 0.3mm to meet joint 2, as it is explained in the
exaggerated detail “𝐴” (Figure 2(b)), which is not to scale.

The complete set of linear equilibrium equations (8), for
this problem, consists of 2𝑁 = 8 equations. It has𝑁𝑏 +𝑁ur −2𝑁 = 1 parametric solutions. We say that the structure has
a redundancy equal to 1. Rod 1 is chosen as the redundant
member of the structure (Figure 2(a)). Using expression (19)
with 𝛿(𝑠)1 = 0.3mm and considering that 𝑄(1) = 𝐿1,2𝑞1,2 we
obtain the additional linear equation −0.0346 + 7.3246𝑞1,2 =3.16512 which gives 𝑞1,2 = 0.4368 kN/m. Thus, the value
of the force on this element is 𝐹1,2 = 0.4368 kN. Also, this
equation is added to equations (12) to give a complete system
of linear equations. Expanded matrix K𝑒 of the final system
of equations has a nonzero determinant. The results for all
forces on the members and the reactions on the supports are
tabulated in Table 2 together with those obtained with the
DRM. The CEEMFD and the DRM give results which are
comparable. However, the CEEMFD is proved to be faster
than the DRM (Table 2) because it is a direct method (no
iterations are necessary). Also, Table 3 presents the value of
the vertical displacement 𝛿top,𝑦 of joint 3, obtained by the
method, the DRM and the analytic approach proposed by
Skelton [12] for the same problem. The results for 𝛿top,𝑦,
with all three methods, are the same. By comparing the
results obtained in [2], for an analogous problem of the same
geometry, with those obtained in the present work (Tables
2 and 3), one may observe that the numerical results in the
current work have values which are almost equal to 10% of
the corresponding values obtained in solving the analogous
problem proposed in [2]. This difference was expected due
to the linearity existing in both problems and due to the fact
that the values of 𝛿(𝑠)1 , in the two cases, differ by 90%. The
materials used, in both cases, had slightly different properties.
It is also verified that the structure passes axial yield and Euler
buckling criteria.

4.2. A Weightless 2D Tensegrity Structure. Zhang and Ohsaki
[9] use the Adaptive Force Density Method (AFDM) to solve
a weightless two-dimensional tensegrity structure which is
without any support and out of any gravitational field (Fig-
ure 3). This structure has four cables (elements 1, 2, 3, and
4) and four struts (members 5, 6, 7, and 8). The steel cables
and the aluminum rods have the same stiffness which in the
current work is chosen to be (𝐸𝐴)𝑟 = (𝐸𝐴)𝑐 = 12694 kN,
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Figure 2: (a) The X-shape 2D tensegrity truss. (b) Detail “𝐴” of joint 2.

Table 1: Technical characteristics of the members of the X-shape 2D tensegrity.

Type of member Outer diameter
𝑑𝑜 (mm)

Inner diameter
𝑑𝑖 (mm)

Cross-sectional
area 𝐴 (mm2)

Moment of
inertia 𝐼0 (m4)

Specific weight 𝛾
(kN/m3)

Young’s
modulus 𝐸
(GPa)

Yield stress
𝜎𝑦 (MPa)

Tension
members (steel
cables)

8 — 50.24 — 78 210 360

Compression
members
(aluminum
rods)

40 37 181.34 3.36 × 10−8 26.50 70 260

without changing the generality of the problem. Also, the
aluminum rods have a hollow cross section with a moment
of inertia, about any diameter, equal to 𝐼𝑟 = 3.36 × 10−8m4.
The only load on the structure is the pretension on cable
1 which is equal to 1 kN (Figure 3). In order to use the
CEEMFD we introduce, temporarily, two auxiliary supports
at joints 2 and 5 on which there are no reactions (it is
as if they do not exist). These supports will only help to
define the degree of redundancy. The complete set of linear
equilibrium equations (12), for this problem, consists of 2𝑁 =
10 equations. It has𝑁𝑏 +𝑁ur − 2𝑁 = 1 parametric solutions.
Thus, the structure has a redundancy equal to 1. Cable 1 is
chosen as the redundant member. In using the CEEMFD
the additional linear equation, which is required in order to
find the unknowns, is −6.8284 + 6.8284𝑞1,2 = 0, from which
one obtains 𝑞1,2 = 1 kN/m. From the form of matrix K𝑒
it is verified that the structure is stable (i.e., |K𝑒| ̸= 0).
The same problem is also solved with the DRM and the
AFDM [9]. The results are presented in Table 4. One can see
that the CEEMFD and the AFDM [9] give results which are
comparable and more accurate than those obtained with the
DRM. Exactly the same results were obtained and the same
observation was made in [2] for an analogous problem of the
same geometry but with different material properties. Thus,
for this specific problem the results are independent of the

2 1

5

3

4

1

4
7

2

3

8

5 6

Figure 3: A weightless two-dimensional tensegrity truss.

material properties. It is also verified that the structure passes
axial yield and Euler buckling criteria.

4.3. A Cantilever 2D Tensegrity Beam. In this subsection, a
problem of a cantilever planar tensegrity beam is investigated
(Figure 4). This structure is supported at the two leftmost
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Table 2: Values of the forces on the members and of the reaction forces on the supports for the X-shape 2D tensegrity structure.

Force
density 𝑞𝑖,𝑗

Value of
𝑞𝑖,𝑗 with
CEEMFD
(kN/m)

Value of
𝑞𝑖,𝑗 with
DRM
(kN/m)

Length 𝐿 𝑖,𝑗
of a

member
(m)

Value of
force 𝐹𝑖,𝑗
with

CEEMFD
(kN)

Value of
force 𝐹𝑖,𝑗
with DRM

(kN)

Reaction
force on a
support

Value of
reaction
with

CEEMFD
(kN)

Value of
reaction
with DRM

(kN)

CPU time
with

CEEMFD
(sec)

CPU time
with DRM

(sec)

𝑞1,2 0.4368 0.4367 1.0000 0.4368 0.4367 𝑅1,𝑥 0 0 0.02 2.03
𝑞1,3 0.4195 0.4196 1.0000 0.4195 0.4196 𝑅2,𝑥 0 0
𝑞1,4 −0.4369 −0.4368 1.4142 −0.6178 −0.6177 𝑅1,𝑦 0.0346 0.0345
𝑞2,3 −0.4369 −0.4368 1.4142 −0.6178 −0.6177 𝑅2,𝑦 0.0346 0.0345
𝑞2,4 0.4195 0.4196 1.0000 0.4195 0.4196
𝑞3,4 0.4368 0.4367 1.0000 0.4368 0.4367

Table 3: Comparison between the results of the CEEMFD and those
of the DRM and Skelton’s analytic approach.

CEEMFD DRM Skelton’s analytic
approach [12]

Vertical
displace-
ment of
joint 3 (in
mm)

0.04 0.04 0.04

nodes 1 and 3 and loaded with a unit vertical force acting at
the top-right node 10 (Figure 4). This type of structure was
well investigated by Masic et al. [13] who used a nonlinear
large displacement model to find its static response and to
make a design with optimal mass-to-stiffness ratio. In the
present work, no optimization was made. The CEEMFD was
simply implemented on this problem, by considering the
same geometry proposed byMasic et al. [13] and by arbitrarily
choosing the material properties for the rods and the cables.
So, this structure has thirteen steel cables (elements 1, 2,
3, 4, 5, 8, 9, 12, 13, 16, 17, 20, and 21) and eight aluminum
struts (members 6, 7, 10, 11, 14, 15, 18, and 19). The technical
characteristics of the cables and rods are given in Table 5.
According to the method, along each one of cables 1, 2, 3,
and 4 a pair of opposite axial forces, of value 1 kN, is acting
each time. Each one of these forces is pushing an end node.
Also, a gap exists between the right-end on each one of these
members and its nearest joint. This gap is the same for all the
fourmembers and is equal to 54.2640/(𝐸𝐴)𝑐 or 10mm (0.4 in.
approx.).The truss is a statically indeterminate structure with
a degree of redundancy𝑁𝑟 = 𝑁𝑏 + 𝑁ur − 2𝑁 = 4.

Tensions in cables 1, 2, 3, and 4 are chosen as redun-
dancies. Matrix K𝑒 is well-conditioned. The results with
CEEMFD are presented in Table 6 together with those of
the DRM which was also implemented to this problem. The
twomethods give results which are comparable. Also, Table 7
gives the values of the vertical displacement 𝛿(𝑘)𝑦 at joints 4,
6, 8, and 10 obtained by the method and the DRM. The two
sets of results are again comparable. One may visualize the
deformed shape of this structure by observing the graph in
Figure 5, which presents the displacements along its upper

side. It is also verified that the structure passes axial yield and
Euler buckling criteria.

4.4. A One-Stage 3D Tensegrity Structure. One of the classical
tensegrity structures is the one-stage 3D tensegrity structure
(Figure 6) which contains a very basic 2D configuration: the
X-shape 2D tensegrity truss. This 3D structure can be made
much more complicated by adding more bars and cables and
more stages.

In the present work, the X-shape planar truss is formed
by bars 5 and 6 and cables 3, 8, and 12, as shown in Figure 6.
This stable planar structure is connected with bar 4 with the
aid of cables 1, 2, 7, 9, 10, and 11, to create a stable three-
dimensional structure. All elements aremade of the samepre-
cious aluminum alloy. Linear elastic behavior is considered
for loads below the yield stress. The technical characteristics
of all members are shown in Table 8. Also, the weight of
each joint is 𝐺 = 0.01 kN. Cables 1, 2, 3, 10, 11, and 12
have a constant pretension equal to 0.01 kN/m along their
length. The coordinates of all the 6 nodes of the structure
are shown on Table 9. In applying the method, the set of
equilibrium equations (8) is obtained which has 3𝑁 = 18
independent linear equations. There are 𝑁𝑏 + 𝑁ur = 12 +
3 × 3 = 21 unknowns indicating a degree of redundancy eq-
ual to 3. However, since tensions in cables 1, 2, and 3 have no
effect on the values of force densities of the other members,
one has 𝑞1,2 = 𝑞1,3 = 𝑞2,3 = 0.01 kN/m. Then, the number of
the unknowns is reduced to 18. Thus, the system of 18
linear equations is sufficient to give the solution to our pro-
blem. Matrix K𝑒 of the linear system of equations has all the
properties given by statements (1) to (4) of Section 3, veri-
fying that our tensegrity structure is stable as expected.

The values of the reaction forces on the supports and of
all the forces and the corresponding force densities on the
members of the structure are presented in Table 10. Also, it
is verified that for this 3D problem the structure passes axial
yield and Euler buckling criteria.

4.5. A Two-Stage Self-Stressed 3D Tensegrity Structure. Zhang
and Ohsaki [9] have also solved the problem of a two-stage
self-stressed 3D tensegrity structure (Figure 7) by using the
AFDM. In this example, the structure is considered to be
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Table 4: Values of the forces on the members for the weightless 2D tensegrity structure.

Force density
𝑞𝑖,𝑗

Value of 𝑞𝑖,𝑗 with
CEEMFD
(kN/m)

Value of 𝑞𝑖,𝑗 with
AFDM [9]
(kN/m)

Value of 𝑞𝑖,𝑗 with
DRM (kN/m)

Length 𝐿 𝑖,𝑗 of a
member (m)

Value of 𝐹𝑖,𝑗
with method
CEEMFD (kN)

Value of 𝐹𝑖,𝑗
with method

AFDM [9] (kN)

Value of force
𝐹𝑖,𝑗 with

DRM (kN)
𝑞1,2 1.00000000 1.00000000 1.00000072 1.00000000 1.00000000 1.00000000 1.00000072
𝑞1,3 1.00000000 1.00000000 1.00000072 1.00000000 1.00000000 1.00000000 1.00000072
𝑞1,4 1.00000000 1.00000000 1.00000072 1.00000000 1.00000000 1.00000000 1.00000072
𝑞1,5 1.00000000 1.00000000 1.00000072 1.00000000 1.00000000 1.00000000 1.00000072
𝑞2,4 −0.50000000 −0.50000000 −0.50000036 1.41421356 −0.70710678 −0.70710678 −0.70710729
𝑞2,5 −0.50000000 −0.50000000 −0.50000036 1.41421356 −0.70710678 −0.70710678 −0.70710729
𝑞3,4 −0.50000000 −0.50000000 −0.50000036 1.41421356 −0.70710678 −0.70710678 −0.70710729
𝑞3,5 −0.50000000 −0.50000000 −0.50000036 1.41421356 −0.70710678 −0.70710678 −0.70710729

Table 5: Technical characteristics of the members of the cantilever 2D tensegrity beam.

Type of member Outer diameter
𝑑𝑜 (mm)

Inner diameter
𝑑𝑖 (mm)

Cross sec. area
𝐴 (mm2)

Moment of
inertia 𝐼0 (m4)

Specific weight 𝛾
(kN/m3)

Young’s
modulus 𝐸
(GPa)

Yield stress
𝜎𝑦 (MPa)

Tension
members (steel
cables)

5.74 — 25.84 — 78 210 480

Compression
members (alum.
rods)

77 75 238.76 1.72 × 10−7 26.50 70 260
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Figure 4: A cantilever planar tensegrity beam [13].
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Figure 5: Vertical displacements along the upper side of the tensegrity beam.
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Table 6: Values of the forces on the members for the cantilever 2D tensegrity beam.

Value of 𝑞𝑖,𝑗 with
CEEMFD
(kN/m)

CPU time =
0.07 sec

Value of 𝑞𝑖,𝑗 with
DRM (kN/m)
CPU time =
8.25 sec

Length 𝐿 𝑖,𝑗 of a
member (m)

Value of force
𝐹𝑖,𝑗 with

CEEMFD (kN)

Value of force
𝐹𝑖,𝑗 with DRM

(kN)

Value of stress
𝜎𝑖,𝑗 with
CEEMFD
(MPa)

Force density
𝑞𝑖,𝑗

𝑞1,2 0.240633 0.240613 2.5000 0.601583 0.601533 23.2811
𝑞2,5 0.651541 0.651521 2.5000 1.628852 1.628802 63.0361
𝑞5,7 1.196278 1.196278 2.5000 2.990696 2.990696 115.7390
𝑞7,9 1.966444 1.966444 2.5000 4.916110 4.916110 190.2519
𝑞1,3 2.461283 2.461415 2.0000 4.922566 4.922830 190.5018
𝑞2,3 −1.861511 −1.861511 3.2016 −5.959814 −5.959814 −24.9615
𝑞1,4 −2.454204 −2.454336 3.2016 −7.857380 −7.857803 −32.9091
𝑞2,4 4.147074 4.147074 2.0000 8.294147 8.294147 320.9809
𝑞3,4 4.075133 4.075096 2.5000 10.187833 10.187740 394.2660
𝑞4,5 −1.705920 −1.705788 3.2016 −5.461675 −5.461252 −22.8752
𝑞2,6 −2.272414 −2.272414 3.2016 −7.275360 −7.275360 −30.4714
𝑞5,6 3.969719 3.969475 2.0000 7.939438 7.938949 307.2538
𝑞4,6 3.326840 3.326539 2.5000 8.317101 8.316348 321.8692
𝑞6,7 −1.710358 −1.710114 3.2016 −5.475883 −5.475101 −22.9347
𝑞5,8 −2.250652 −2.250539 3.2016 −7.205687 −7.205327 −30.1796
𝑞7,8 4.204022 4.203534 2.0000 8.408044 8.407068 325.3887
𝑞6,8 2.764778 2.764233 2.5000 6.911946 6.910582 267.4902
𝑞8,9 −1.966421 −1.966045 3.2016 −6.295692 −6.294490 −26.3683
𝑞7,10 −2.480514 −2.480270 3.2016 −7.941615 −7.940834 −33.2619
𝑞9,10 1.973494 1.973118 2.0000 3.946987 3.946236 152.7472
𝑞8,10 2.480544 2.479735 2.5000 6.201359 6.199338 239.9907

Reaction (kN)
𝑅(1)𝐻 5.534000 5.534380
𝑅(3)𝐻 −5.534000 −5.533907
𝑅(3)V 1.213600 1.213864

Table 7: Displacements with the CEEMFD and the DRM along the tensegrity beam.

Joint 𝑖 1 4 6 8 10
Vertical displacement of joint 𝑖 with
CEEMFD 0.0000 1.0091 cm or 0.40 in. 4.1011 cm or 1.61 in. 9.0438 cm or 3.56 in. 15.7700 cm or 6.21 in.

Vertical displacement of joint 𝑖 with
DRM 0.0000 1.0091 cm or 0.40 in. 4.1012 cm or 1.61 in. 9.0467 cm or 3.56 in. 15.7779 cm or 6.21 in.

Table 8: Technical characteristics of the one-stage 3D tensegrity structure.

Type of member Outer diameter
𝑑𝑜 (mm)

Inner diameter
𝑑𝑖 (mm)

Cross-sectional
area 𝐴 (mm2)

Moment of
inertia 𝐼0 (m4)

Specific weight 𝛾
(kN/m3)

Young’s
modulus 𝐸
(GPa)

Yield stress
𝜎𝑦 (MPa)

Tension members
(aluminium cables) 20 — 314.16 — 31.85 89.17 260

Compression
elements 4 & 6
(aluminum rods)

63.9 61.7 214.87 1.07 × 10−7 31.85 89.17 260

Compression
element 5
(aluminum rod)

58.4 54.9 311.45 1.25 × 10−7 31.85 89.17 260
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Figure 7: A two-stage 3D tensegrity structure (perspective view).

Table 9: Values of the coordinates of the joints of the one-stage 3D
tensegrity structure.

Node 𝑖 𝑥𝑖 (m) 𝑦𝑖 (m) 𝑧𝑖 (m)
1 3.0 −1.73205 0.0
2 0.0 3.46410 0.0
3 −3.0 −1.73205 0.0
4 −4.618802 0.0 4.32049
5 −0.479058 −0.82975 4.32049
6 2.309401 4.0 4.32049

weightless and is composed of 12 nodes and 30members; that
is,𝑁 = 12 and𝑁𝑏 = 30.

The structure contains 24 steel cables and 6 aluminum
rods. The 24 cables are divided into four groups: (i) cables

of the top and bottom bases, (ii) saddle cables, (iii) ver-
tical cables, and (iv) diagonal cables, as indicated clearly
in Figure 7. Its six rods are divided in two groups: (1)
rods of the upper stage; (2) rods of the lower stage. Thus,
in total, we have six groups of elements. Since the initial
force densities and independent nodal coordinates can be
arbitrarily specified, one can have some control over the geo-
metrical and mechanical properties of the structure. Thus,
the steel cables and the aluminum rods have equal stiffness
(𝐸𝐴)𝑟 = (𝐸𝐴)𝑐 = 5426 kN. Also, the aluminum rods have a
hollow cross section with a moment of inertia, about any dia-
meter, equal to 𝐼𝑟 = 2.894 × 10−9m4. The only loading on
the structure is the initial set of force densities 𝑞(𝑜) applied in
cables of all the six groups; that is, for the two groups of rods it
is 𝑞(𝑜)𝑟 = −1.5 kN/m, for the saddle cables is 𝑞(𝑜)𝑠 = 2.0 kN/m,
and for all the other cables is 𝑞(𝑜)𝑐 = 1.0 kN/m.

By specifying the coordinates of nodes 𝑎, 𝑏, and 𝑐, which
are shown in Figure 7, to make the bottom base located on
the 𝑥𝑦-plane, and node 𝑑 in the lower stage, we can have the
configuration of the tensegrity structure as shown in Figure 7.
The coordinates of these nodes are shown in Table 11. Then,
the CEEMFDgives the set of final values of force densities, for
the six groups of elements, which is listed in Table 12. These
values are compared with those obtained with the AFDM,
after 158 iterations [9]. The two sets of solutions compare
favorably but in CEEMFD the solution is obtained directly.
It is verified that the structure passes axial yield and Euler
buckling criteria.

5. Conclusions

We have presented the CEEMFD to analyze 2D and 3D ten-
segrity structures.The resulting final linear system of equilib-
rium equations can be directly solved to give a unique solu-
tion for the force densities on the elements of the structure.
For stable statically determinate structures, the global matrix
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Table 10: Values of the forces on the members of the one-stage 3D structure.

Force density
on a member

Value of 𝑞𝑖,𝑗
with

CEEMFD
(kN/m)

Value of 𝑞𝑖,𝑗
with DRM
(kN/m)

Length 𝐿 𝑖,𝑗 of
a member

(m)

Value of 𝐹𝑖,𝑗
with

CEEMFD
(kN)

Value of 𝐹𝑖,𝑗
with DRM

(kN)

Reaction
force on a
support

Value of
reaction force

with
CEEMFD

(kN)

Value of
reaction force
with DRM

(kN)

𝑞1,2 0.010000 0.010000 6.000000 0.060000 0.060000 𝑅1,𝑥 0.321956 0.322034
𝑞1,3 0.010000 0.010000 6.000000 0.060000 0.060000 𝑅2,𝑥 −0.207729 −0.207787
𝑞1,4 −0.093977 −0.093998 8.928200 −0.839048 −0.839231 𝑅3,𝑥 0.529678 0.529822
𝑞1,5 0.077393 0.077414 5.620020 0.434951 0.435068 𝑅1,𝑦 −0.031957 −0.031974
𝑞2,3 0.010000 0.010000 6.000000 0.060000 0.060000 𝑅2,𝑦 0.423712 0.423814
𝑞2,5 −0.114623 −0.114644 6.110100 −0.700357 −0.700484 𝑅3,𝑦 0.391755 0.391837
𝑞2,6 0.056172 0.056193 4.928199 0.276828 0.276931 𝑅1,𝑧 0.157097 0.157097
𝑞3,4 0.054744 0.054765 4.928199 0.269789 0.269892 𝑅2,𝑧 0.334522 0.334524
𝑞3,6 −0.096973 −0.096994 8.928200 −0.865798 −0.865984 𝑅3,𝑧 0.264438 0.264437
𝑞4,5 0.125318 0.125340 4.222079 0.529100 0.529194
𝑞4,6 0.013337 0.013342 8.000000 0.106699 0.106736
𝑞5,6 0.096702 0.096720 5.576919 0.539297 0.539401

Table 11: Specified nodal coordinates in the two-stage 3D tensegrity structure.

Node 𝑖 𝑥𝑖 (m) 𝑦𝑖 (m) 𝑧𝑖 (m)
𝑎 −2.6667 0.0000 0.0000
𝑏 1.3333 −2.3094 0.0000
𝑐 1.3334 2.3094 0.0000
𝑑 −1.8867 1.6666 3.3333

Table 12: Force densities in the members of the two-stage 3D tensegrity structure.

Group→ Rods of the upper
stage (1)

Rods of the lower
stage (2)

Cables (top &
bottom) (i) Saddle cables (ii) Vertical cables (iii) Diagonal cables

(iv)
Initial value
(kN/m) −1.5000 −1.5000 1.0000 2.0000 1.0000 1.0000

Final value
(CEEMFD) −1.8376 −1.8376 0.9282 1.9920 1.1735 0.9957

Final value
(AFDM) [9] −1.8376 −1.8376 0.9281 1.9918 1.1737 0.9958

K𝑒 of the final system of equilibrium equations is square
and has a nonzero determinant. For statically indeterminate
structures, this matrix is not square. It is expanded to
a square matrix after the implementation of Castigliano’s
theorem which gives the additional equations required for
the solution. The partial derivatives, which appear in the
additional equations, are replaced by statically acceptable
internal forces which are applied on the structure. For stable
structures, the complete system of equations is then solved to
give the values of the force densities on the members of the
structure. Five problems of both planar and spatial tensegrity
structures were solved. The results compare favorably with
those obtained with the DRM and the AFDM [9] but the
CEEMFD is faster as a direct method. As for future work we
consider the extension of themethod for geodesic domes and
tensegrity bridges for pedestrians.
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