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We establish a link between a connection symmetry, called conformal collineation, and almost Ricci soliton (in particular Ricci
soliton) in reducible Ricci symmetric semi-Riemannian manifolds. As a physical application, by investigating the kinematic and
dynamic properties of almost Ricci soliton manifolds, we present a physical model of imperfect fluid spacetimes. This model gives
a general relation between the physical quantities (𝑢, 𝜇, 𝑝, 𝛼, 𝜂, 𝜎𝑖𝑗) of the matter tensor of the field equations and does not provide
any exact solution. Therefore, we propose further study on finding exact solutions of our viscous fluid physical model for which it
is required that the fluid velocity vector 𝑢 be tilted. We also suggest two open problems.

1. Introduction

In general, there are two categories of geometric quantities
and their corresponding two kinds of flows: intrinsic quan-
tities, such as the metric of a manifold, and the extrinsic
quantities such as the embedding of a manifold in some
ambient space. The Ricci flow, the Calabi flow, and the
Yamabe flow belong to the first category and the mean
curvature flow (MCF) belongs to the second category. In
1982, Hamilton [1] introduced the concept of Ricci flow for
Riemannianmanifolds.The self-similar solutions to the Ricci
flow (evolved purely by homotheties and diffeomorphisms)
are called Ricci solitons. Since then his work has been used in
resolving many longstanding open problems in Riemannian
geometry and 3-dimensional topology. Basic details and
a collection of research papers on this area of research
are available in [2, 3], respectively. There are very limited
papers on Ricci solitons for semi-Riemannian (in particular,
Lorentzian) manifolds (e.g., see [4, 5]). On the other hand,
the study on MCF is primarily focused on the fixed points
of a submanifold of minimal volume embedded in some
fixed space. Active research is going on all the above stated
research areas on some aspects of geometry and physics,
althoughmost authors still prefer using Riemannian ambient
space. Recently, Pigola et al. [6] have introduced a modified
concept of the Ricci solitons equation (called “almost Ricci

solitons”) by allowing the soliton constant 𝜆 to be a variable
function Φ (see a brief account on this modification in
Section 3). In this paper, we present a mathematical model
of almost Ricci soliton (ARS) semi-Riemannian manifolds
which also admit a connection symmetry, called “conformal
collineations” (Definition 1) and a physical model of almost
Ricci soliton imperfect fluid (in particular, viscous fluid)
spacetimes of general relativity.

2. Conformal Collineations

The notion of symmetry is a very useful tool in geometry
and physics. A comprehensive account onmetric (i.e., Killing,
homothetic, and conformal Killing) and connection (i.e.,
affine and conformal collineations) symmetries in semi-
Riemannian (in particular, spacetime) manifolds can be
found in [7] and references therein. In this paper we use
the following conformal collineation symmetry introduced by
Tashiro [8].

Definition 1. An (𝑛+1)-dimensional semi-Riemannianman-
ifold (𝑀, 𝑔) admits a conformal collineation symmetry
defined by a vector field 𝑉 if

m𝑉Γ𝑘𝑖𝑗 = 𝛿𝑘𝑖 Ψ𝑗 + 𝛿𝑘𝑗Ψ𝑖 − 𝑔𝑖𝑗Ψ𝑘, (1)
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where Γ𝑘𝑖𝑗 denotes Christoffel’s symbols, Ψ is a function, and
Ψ𝑗 = 𝜕𝑗(Ψ). 𝑉 is then called an “Affine Conformal Vector”
(ACV) field of𝑀.

Proposition 2 ([9, Sharma-Duggal (1985)]). A vector field 𝑉
on a semi-Riemannian manifold (𝑀, 𝑔) is an ACV if and only
if

m𝑉𝑔 = 2Ψ𝑔 + 𝐾, (2)

where 𝐾 is a (0, 2) covariant constant (∇𝐾 = 0) symmetric
tensor field.

An ACV reduces to a conformal Killing vector, briefly
denoted by CKV, if 𝐾 is proportional to 𝑔. Thus, an ACV
deviates from a CKV field if there exists a second-order
covariant constant symmetric tensor𝐾 ̸= 𝑔. On the existence
of an ACV and specific restrictions on the ambient manifold
𝑀, we recall that, in 1923, Eisenhart [10] proved that “If a
Riemannian manifold𝑀 admits such a tensor 𝐾, independent
of 𝑔, then 𝑀 is reducible.” This means that 𝑀 is locally a
product manifold of the form (𝑀 = 𝑀1 × 𝑀2, 𝑔 = 𝑔1 ⊕ 𝑔2)
and there exists a local coordinate system in terms of which
the distance element of 𝑔 is given by

𝑑𝑠2 = 𝑔𝑎𝑏 (𝑥𝑐) 𝑑𝑥𝑎𝑑𝑥𝑏 + 𝑔𝐴𝐵 (𝑥𝐶) 𝑑𝑥𝐴𝑑𝑥𝐵;
𝑎, 𝑏, 𝑐 = 1, . . . , 𝑟 ≤ 𝑛; 𝐴, 𝐵, 𝐶 = 𝑟 + 1, . . . , 𝑛 + 1.

(3)

Thus, an irreducible 𝑀 admits no ACV field. In 1951,
Patterson [11] proved that “If a semi-Riemannian𝑀 admitting
such a tensor 𝐾, independent of 𝑔, is reducible then the matrix
(𝐾𝑖𝑗) has at least two distinct characteristic roots at any point
of 𝑀.” Therefore, for a semi-Riemannian (𝑀, 𝑔), a general
characterization of an ACV still remains open. In 1925, Levy
[12] proved that “A second order covariant constant non-
singular symmetric tensor in a space of constant curvature is
proportional to the metric tensor.” Thus, a semi-Riemannian
manifold of constant curvature admits no ACV other than
a CKV. Therefore, the study on ACV symmetry is restricted
to only manifolds with nonconstant curvature. Physically, for
example, Minkowski, de-Sitter or anti-de-Sitter spacetimes
do not admit an ACV.

In particular, an ACV is called an affine vector, briefly
denoted by AV, if Ψ = 0. Tashiro [8] has also proved that
“a globally defined ACV is necessarily an AV field.” Therefore,
for proper ACV our results in the paper will hold locally.
For basic details (with examples) on ACV, see Tashiro [8],
Patterson [11] Duggal [13], Mason-Maartens [14], and others
referred therein.

3. Almost Ricci Soliton
Semi-Riemannian Manifolds

Let (𝑀, 𝑔) be an (𝑛 + 1)-dimensional semi-Riemannian
manifold. Recall that the “Ricci flow” on 𝑀 is defined by the
following equation:

𝜕𝑔𝑖𝑗
𝜕𝑡 = −2𝑅𝑖𝑗 (𝑖, 𝑗 = 1, . . . , 𝑛 + 1) , (4)

where 𝑅𝑖𝑗 is the Ricci tensor of 𝑀. A solution 𝑔(𝑡) of the
Ricci flow equation (4) is called “Ricci soliton” if there exists
a positive function 𝜙(𝑡) and a 1-parameter family of diffeo-
morphisms 𝜓(𝑡) : 𝑀 → 𝑀 such that 𝑔(𝑡) = 𝜙(𝑡)𝜓(𝑡)∗𝑔(0),
where 𝜙󸀠(𝑡) = −2𝜆 for a constant 𝜆. Substituting this data in
the Ricci flow equation, we obtain

𝑔𝑖𝑘∇𝑗∇𝑘 + 𝑔𝑘𝑗∇𝑖∇𝑘 = m𝑉𝑔𝑖𝑗 = 2𝜆𝑔𝑖𝑗 − 2𝑅𝑖𝑗, (5)

where 𝑉 is a vector field on 𝑀. We say that the vector field
𝑉, satisfying the evolution equation (5), is called a “Ricci
soliton vector,” briefly denoted by RS vector, and (𝑀, 𝑔, 𝜆, 𝑉)
is called a Ricci soliton (RS) manifold which is said to
be shrinking, steady, or expanding if 𝜆 is positive, zero,
or negative, respectively. The Ricci soliton manifolds are
natural extension of Einstein manifolds and are self-similar
(homothetic) solutions to their Ricci flow equation. In year
2011, Pigola et al. [6] introduced a modified class of the Ricci
soliton equation (5) by replacing the soliton constant 𝜆with a
variable functionΦ and then (𝑀, 𝑔,Φ, 𝑉) is called an “almost
Ricci soliton” manifold, which we denote by ARS-manifold,
and𝑉 the “almost Ricci soliton vector,” briefly denoted by ARS
vector, such that the evolution equation (5) becomes

m𝑉𝑔𝑖𝑗 = 2Φ𝑔𝑖𝑗 − 2𝑅𝑖𝑗. (6)

Similarly, we say that the ARS is shrinking, steady, or
expanding if Φ is positive, zero, or negative, respectively.
For an example of an ARS-manifold we refer to [15]. If 𝑉
is the gradient of a smooth function 𝑓, up to the addition
of a Killing vector field, then we can replace 𝑉 by ∇𝑓 and
(𝑀, 𝑔,Φ, 𝑉) is called a gradient ARS-manifold for which the
evolution equation (6) assumes the form

∇𝑖∇𝑗𝑓 + 𝑅𝑖𝑗 = Φ𝑔𝑖𝑗. (7)

Also, for the ARS solution of Ricci Flow, we consider

𝑔 (𝑡) = 𝜙 (𝑡, 𝑥𝑎) 𝜓 (𝑡)∗ 𝑔 (0) , (8)

where𝜓(𝑡) are diffeomorphisms of𝑀 generated by a family of
vector fields𝑋(𝑡) and 𝜙(𝑡, 𝑥𝑎) are pointwise scaling functions
depending on all the coordinates (𝑡, 𝑥𝑎) of points with the
initial condition 𝑔𝑖𝑗(0) = 𝑔𝑖𝑗, 𝜓(0) = 𝐼 → 𝜙(𝑡, 𝑥𝑎) = 1.
Differentiating (8) with respect to 𝑡, using the Ricci flow
equation (4), we get

( 𝜕
𝜕𝑡𝜙 (𝑡, 𝑥𝑎))

|𝑡=0

𝑔𝑖𝑗 + m𝑋(0)𝑔𝑖𝑗 = −2𝑅𝑖𝑗. (9)

Labelling𝑋(0) = 𝑉 and ((𝜕/𝜕𝑡)𝜙(𝑡, 𝑥𝑎))|𝑡=0 = −2Φwe get the
almost Ricci soliton equation (6).

For an ARS-manifold (𝑀, 𝑔,Φ, 𝑉), with dimension ≥ 3
and homothetic 𝑉, 𝑔 is Einstein for which Φ = 𝜆 so ARS-
manifold is Ricci soliton. Also, for an ARS-manifold, the
vector 𝑉 is conformal if and only if 𝑔 is Einstein. So far we
have references [6, 15–18] on ARS manifolds.
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4. Ricci Symmetric Almost
Ricci Soliton Manifolds

Recall that a Riemannian or semi-Riemannian manifold
(𝑀, 𝑔) is called Ricci recurrent if its Ricci tensor satisfies
∇𝑋Ric(𝑌, 𝑍) = 𝛼(𝑋)Ric(𝑌, 𝑍), where 𝛼(𝑋) is a 1-form on
𝑀. In particular, 𝑀 is Ricci symmetric if ∇Ric = 0. For
details we refer to [19]. Nowwe present amathematicalmodel
of a class of Ricci symmetric semi-Riemannian manifolds
(𝑀, 𝑔) admitting an ACV vector field which also satisfies
the evolution equation (6) of an ARS vector field. For this
purpose, recall that in 1970 Katzin et al. [20] proved that
a nonflat conformally flat manifold (𝑀, 𝑔) admits an ACV
whose covariant constant tensor𝐾 is given by

𝐾 = ΩRic, Ω = nonzero function on 𝑀, (10)

which also holds for a semi-Riemannian manifold (see
Patterson [11]). This result restricts 𝑀 to Ricci recurrent
(∇𝑋Ric(𝑌, 𝑍) = −𝜕(logΩ)(𝑋)Ric(𝑌, 𝑍)) spaces due to ∇𝐾 =
0. Thus, if we set Ω constant = −2 (i.e., take 𝑀 Ricci
symmetric) and then substitute this value of 𝐾 from (8) in
(2) we obtain

m𝑉𝑔𝑖𝑗 = 2Φ𝑔𝑖𝑗 − 2𝑅𝑖𝑗, (11)

which is exactly the ARS evolution equation (6).We also refer
to Levine-Katzin [21] who have proved that “A second order
covariant constant symmetric tensor 𝐾 in a conformally flat
manifold is a linear combination of the metric tensor and the
Ricci tensor.” To relate this with the ARS evolution equation
(6) we let𝐾𝑖𝑗 = 𝑎𝑔𝑖𝑗 +𝑏𝑅𝑖𝑗 for some constants 𝑎 and 𝑏. Taking
𝑎 = 0 and 𝑏 = −2 we recover (6). Moreover, Grycak [22] has
proved that “Levine-Katzin’s result also holds for a conformally
Ricci recurrent manifold with a locally exact recurrent form.”
For basic information on conformally recurrent manifolds,
we refer to [23]. Thus, it is possible that a link of ACV
symmetry with ARS may also hold for a variety of Ricci
symmetric semi-Riemannian manifolds other than what we
know from above references. For this reason, we state the
following general result.

Theorem 3. Let (𝑀, 𝑔) be an (𝑛 + 1)-dimensional locally
reducible Ricci symmetric semi-Riemannian manifold of non-
constant curvature. Suppose𝑀 admits an ACV field𝑉 defined
by (2) such that its covariant constant tensor𝐾𝑖𝑗 = −2𝑅𝑖𝑗.Then,
𝑉 is also anARS vector field.Therefore, (𝑀, 𝑔,Φ, 𝑉) is anARS-
manifold.

In general, an ARS vector field 𝑉 admits following
curvature identities (proof is similar to curvature identities
on CKV [24]):

m𝑉𝑅𝑚𝑖𝑗𝑘 = 𝛿𝑚𝑖 Φ𝑘;𝑗 + 𝛿𝑚𝑗 Φ𝑖;𝑘 + Φ𝑚;𝑖 𝑔𝑗𝑘 + Φ𝑚;𝑗𝑔𝑖𝑘,
m𝑉𝑅𝑖𝑗 = div (gradΦ)𝑔𝑖𝑗 − (𝑛 − 1)Φ;𝑖𝑗,
m𝑉𝑟 = 2𝑛 div (gradΦ) − 2Φ𝑟 + 2𝑟.

(12)

An ARS vector 𝑉 is RS vector if Φ = 𝜆 a constant for which
(12) reduces to

m𝑉𝑅𝑚𝑖𝑗𝑘 = 0 = m𝑉𝑅𝑖𝑗,
m𝑉𝑟 = 2 (1 − 𝜆) 𝑟.

(13)

Corollary 4. Under the hypothesis ofTheorem 3, (a) if𝑉 is an
affine vector (AV) field, then 𝑀 is a steady RS-manifold. (b) If
a Ricci soliton manifold (𝑀, 𝑔, 𝜆) is Einstein (𝑛 ≥ 2) (𝑅𝑖𝑗 =
(𝑟/(𝑛 + 1))𝑔𝑖𝑗, 𝑟 ̸= 0), then V is Killing, 𝑟 = dim(𝑀), and
(𝑀, 𝑔, 𝜆) is a steady RS-manifold.

The case (a) holds since Φ = 0 if 𝑉 is an AV. For case (b),
using (13) and 𝑟 ̸= 0, we get

m𝑉𝑅𝑖𝑗 = 𝑟
𝑛 + 1m𝑉𝑔𝑖𝑗 = 0 󳨐⇒

m𝑉𝑔𝑖𝑗 = 0.
(14)

Therefore,𝑉 is Killing, 𝑟 = 𝑛+1 = dim(𝑀), and𝑀 is a steady
RS-manifold.

Remark 5. Theorem 3 will certainly hold for above referred
three classes of locally reducible Ricci symmetric semi-
Riemannian manifolds. The reason for our choice of making
general statement is to initiate research on finding more such
cases for whichTheorem 3 may hold.

5. Physical Interpretation

In support of Theorem 3, we now show the existence of
physically meaningful solutions of a class of fluid spacetimes
of general relativity. Let (𝑀, 𝑔,Φ, 𝑉) be a 4-dimensional
spacetime manifold. Results will also hold for higher dimen-
sions. The set of all integral curves given by a unit nonnull
or null vector field 𝑢 is called the congruence of nonnull or
null curves. Here we consider timelike curves, also called flow
lines. The acceleration of the flow lines along 𝑢 is given by
∇𝑢𝑢. The projective tensor ℎ𝑖𝑗 = 𝑔𝑖𝑗 + 𝑢𝑖𝑢𝑗 is used to project
a tangent vector at a point 𝑝 in 𝑀 into a spacelike vector
orthogonal to 𝑢 at 𝑝. The rate of change of the separation of
flow lines from a timelike curve tangent to 𝑢 is given by the
expansion tensor 𝜃𝑖𝑗 = ℎ𝑘𝑖 ℎ𝑚𝑗 𝑢(𝑘;𝑚).The expansion 𝜃, the shear
tensor 𝜎𝑖𝑗, the vorticity tensor 𝜔𝑖𝑗, and the vorticity vector 𝜔𝑖
are

𝜃 = div 𝑢 = 𝜃𝑖𝑗ℎ𝑖𝑗,
𝜎𝑖𝑗 = 𝜃𝑖𝑗 − 𝜃

3ℎ𝑖𝑗,
𝜔𝑖𝑗 = ℎ𝑘𝑖 ℎ𝑚𝑗 𝑢[𝑘;𝑚],
𝜔𝑖 = 1

2𝜂
𝑖𝑗𝑘𝑚𝑢𝑗𝜔𝑘𝑚,

(15)
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where 𝜂𝑖𝑗𝑘𝑚 is the Levi-Civita volume-form. The covariant
derivative of 𝑢 satisfies

𝑢𝑎;𝑏 = 𝜔𝑎𝑏 + 𝜎𝑎𝑏 + 𝜃
3ℎ𝑎𝑏 − 𝑢𝑏 (𝑢𝑐;𝑎𝑢𝑐) . (16)

The rate at which the expansion 𝜃 changes along 𝑢 is given by
Raychaudhuri equation as follows:

𝑢𝜃 = 𝑑𝜃
𝑑𝑠 = −𝑅𝑖𝑗𝑢𝑖𝑢𝑗 + 2𝜔2 − 2𝜎2 − 1

3𝜃
2 + div (∇𝑢𝑢) , (17)

where 𝜔2 = (1/2)𝜔𝑖𝑗𝜔𝑖𝑗 and 𝜎2 = (1/2)𝜎𝑖𝑗𝜎𝑖𝑗 are nonnegative
and 𝑠 is an arc-length parameter.

5.1. Kinematics of ARS-Spacetimes. To find the kinematic
properties of ARS-spacetimes satisfying (6) with unit fluid
velocity vector 𝑢, we set m𝑉𝑢𝑖 = 𝜙𝑢𝑖 + 𝑤𝑖, for some functions
𝜙 and 𝑤𝑖, where 𝑤𝑖𝑢𝑖 = 0. Contracting this with 𝑢𝑖 and using
m𝑉𝑢𝑖 = m𝑉(𝑔𝑖𝑗𝑢𝑖), m𝑉(𝑢𝑖𝑢𝑖) = 0, and the evolution equation
(6) we obtain 𝜙 = 𝑢𝑖(2Φ𝑢𝑖 − 2𝑅𝑖𝑗𝑢𝑗 + 𝑔𝑖𝑗m𝑉𝑢𝑗).Therefore,

𝜙𝑢𝑖 = −2 (Φ + 𝑅𝑖𝑗𝑢𝑖𝑢𝑗) − m𝑉𝑢𝑖. (18)

Substituting this value of 𝜙𝑢𝑖 in m𝑉𝑢𝑖 = 𝜙𝑢𝑖 + 𝑤𝑖 we get
m𝑉𝑢𝑖 = − (Φ + 𝑅𝑗𝑘𝑢𝑗𝑢𝑘) 𝑢𝑖 + 𝑤𝑖

2 ,
m𝑉𝑢𝑖 = (Φ − 𝑅𝑗𝑘𝑢𝑗𝑢𝑘) 𝑢𝑖 − 2𝑅𝑖𝑗𝑢𝑖 + 𝑤𝑖

2 .
(19)

Decompose𝑉𝑖 as𝑉𝑖 = 𝛼𝑢𝑖+𝛽𝑖, where𝛼 = −𝑢𝑖𝑉𝑖 and𝛽𝑖𝑢𝑖 = 0.
Then, using (16) (see details given in [25]), we obtain m𝑉𝑢𝑖 =𝛼̇𝑢𝑖 + 𝛼(𝑢̇𝑖 + (ln𝛼−1);𝑗ℎ𝑗𝑖 ) + 𝛽𝑗𝑢̇𝑗𝑢𝑖 + 2𝜔𝑖𝑗𝛽𝑗. Using this along
with the second equation of (19) and contracting with 𝑢𝑖 and
ℎ𝑖𝑘 = 𝑔𝑖𝑘 + 𝑢𝑖𝑢𝑘 we get

Φ = 𝛼̇ + 𝑢̇𝑖𝑉𝑖 − 𝑅𝑖𝑗𝑢𝑖𝑢𝑗,
𝑤𝑖 = 2𝜔𝑖𝑗𝑉𝑖 + 𝛼 (𝑢̇𝑖 + (ln𝛼−1)

;𝑗
ℎ𝑗𝑖 ) + 2𝑅𝑗𝑘𝑢𝑗ℎ𝑘𝑖 .

(20)

With respect to a nonnull ARS vector field 𝑉 we define the
projection tensor ℎ𝑖𝑗 = 𝑔𝑖𝑗 − 𝜖𝛼2𝑉𝑖𝑉𝑗 where ℎ𝑖𝑗𝑉𝑖 = 0 and
𝑉 ⋅ 𝑉 = 𝜖𝛼2 (𝜖 = ±1, 𝛼 > 0).
Proposition 6. Let (𝑀, 𝑔,Φ, 𝑉) be a locally reducible Ricci
symmetric ARS-spacetime which satisfies the evolution equa-
tion (6) with a nonnull ARS vector field 𝑉, where 𝑉 ⋅ 𝑉 =
𝜖𝛼2 (𝜖 = ±1, 𝛼 > 0). Then, the following kinematic relations
hold:

(1) 𝜎𝑖𝑗 = 𝛼−1((1/3)ℎ𝑘𝑚ℎ𝑖𝑗 − ℎ𝑘𝑖 ℎ𝑚𝑗 )𝑅𝑚𝑘;
(2) 𝜃 = 𝛼−1(3Φ − ℎ𝑖𝑗𝑅𝑖𝑗),

where 𝜎𝑖𝑗 and 𝜃 are the shear tensor and the expansion of 𝑉.
The proof follows by contracting (6) with ℎ𝑘𝑖 ℎ𝑚𝑗 −

(1/3)ℎ𝑘𝑚ℎ𝑖𝑗 and ℎ𝑖𝑗, respectively. Also, it follows from Corol-
lary 4(b) that, under the hypothesis of above proposition, an
Einstein RS-spacetime (𝑀, 𝑔) is expansion-free (𝜃 ≡ 0) and
shear-free (𝜎𝑖𝑗 ≡ 0).

Remark 7. We highlight that Proposition 6 will also hold for
an RS-spacetime for which (Φ = 𝜆). Therefore, it follows
that the physical use of our class of ARS or RS-spacetimes
(𝑀, 𝑔) in general relativity has a role in the study of fluidswith
nonzero expansion and shear unless𝑀 reduces to an Einstein
RS-spacetime which is expansion-free and shear-free. It
is important to mention that our choice of timelike ARS
symmetry vector field 𝑉 in this paper is due to the fact that
the integral curves of such a timelike connection symmetry
can provide a privileged class of observers or test particles in
a spacetime. However, for a spacelike ARS symmetry vector
𝑉 one can use the congruence of spacelike curves, introduced
by Greenberg [26], and discuss its kinematic properties and
work on its physical use similar to the results presented in
next section.

5.2. Dynamics of ARS-Spacetimes. On the issue of any possi-
ble existence of physically meaningful solutions of our class
of fluid ARS-spacetimes we must know how the Einstein
field equations are related with purely kinematic results of
previous subsection. For this purpose, consider the Einstein
field equations

𝐺𝑖𝑗 ≡ 𝑅𝑖𝑗 − 1
2𝑟 𝑔𝑖𝑗 = 𝑇𝑖𝑗, 𝑟 = −𝑇𝑖𝑖 , (21)

where 𝐺𝑖𝑗 is the Einstein tensor. Suppose (𝑀, 𝑔) is an ARS-
spacetime with an ARS vector field 𝑉 and satisfies the
hypothesis of Theorem 3. It is known that the invariance
(m𝑉𝐺 = 0) of 𝐺 is physically desirable since that amounts
to invariance of matter tensor 𝑇, useful in finding exact
solutions. For example, we know that if a spacetime admits
a Killing or homothetic symmetry vector 𝑉, then 𝑉 leaves
𝐺 (and therefore 𝑇) invariant, but this may not be true
if spacetime admits some higher symmetry vector such as
conformal Killing vector (CKV). However, we do know
that there are some physically important exact solutions
of spacetimes which admit CKV symmetry. For example,
Maartens-Maharaj [27] have proved that Robertson-Walker
spacetimes admit a 9-parameter group of CKVs. In the
following we show that our case of the ARS or RS symmetry
vector 𝑉 is similar to the proper CKV symmetry. Indeed,
assuming m𝑉𝐺 = 0 and using the curvature identities and the
evolution equation (6) implies that 𝑉 leaves 𝐺 invariant only
if there exists a spacetime which admits a covariant constant
Ricci tensor of the form

𝑅𝑖𝑗 = 𝑔𝑖𝑗 + (𝑛 − 1)
𝑟 [div (gradΦ)𝑔𝑖𝑗 + Φ;𝑖𝑗] , 𝑟 ̸= 0. (22)

Thus, in general, the ARS or RS symmetry vector 𝑉, with
𝑟 ̸= 0, does not leave 𝐺 invariant. We, therefore, propose the
following open question:

Does a spacetime with covariant constant Ricci
tensor of the form (22) exist?

In particular, ifΦ = 𝜆, then we know fromCorollary 4(b)
and (22) that 𝑀 is a steady Einstein manifold with Killing 𝑉
and 𝑟 = dim(𝑀) = 𝑛 + 1.

Nowwe look for physicallymeaningful solutions of a fluid
ARS-spacetime (𝑀, 𝑔). We first recall the following concept
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of material curves useful in the study of fluid spacetimes. A
material curve in a fluid is a curve which moves with the
fluid as the fluid evolves. Material curves play an important
role in relativistic fluid dynamics. In our case we assume that
the timelike ARS vector field 𝑉 = 𝛼𝑢 means that 𝑉 is a
material curve as it maps flow lines into flow lines.Therefore,
𝑤𝑖 = 0 in two equations of (19). This also means that 𝑢 is an
eigenvector of 𝑅𝑖𝑗 which does not hold in general. Now we
recall from a paper of Hall-da Costa [28] that the existence of
a covariant constant second-order tensor field, other than the
metric tensor, must exclude some spacetimes, in particular,
perfect fluids. Based on this result and our Remark 7, we
choose an imperfect fluid matter tensor in following physical
model.

Theorem 8. Let (𝑀, 𝑔,Φ, 𝑉) be a 4-dimensional locally
reducible Ricci symmetric ARS-spacetime of nonconstant cur-
vature with the evolution equation (6) for a timelike ARS vector
𝑉 parallel to the fluid velocity vector 𝑢. Assume 𝑀 admits the
following imperfect fluid Einstein field equations:

𝑅𝑖𝑗 − 1
2𝑟 𝑔𝑖𝑗 = 𝑇𝑖𝑗

= (𝜇 + 𝑝) 𝑢𝑖𝑢𝑗 + 𝑝𝑔 + 𝜋𝑖𝑗 + 𝑞𝑖𝑢𝑗 + 𝑞𝑗𝑢𝑖,
𝑞𝑖𝑢𝑖 = 0,

𝜋𝑖𝑗𝑢𝑗 = 0,

(23)

with 𝜇, 𝑝, 𝑞, 𝜋𝑖𝑗, the density, thermodynamic pressure, energy
vector, and the anisotropic pressure tensor, respectively. Then

(i) Φ = 𝛼̇ − (𝜇 + 3𝑝)/2, 𝑉 = 𝛼𝑢.
(ii) 𝜋𝑖𝑗 = −𝛼𝜎𝑖𝑗, 𝑞 ̸= 0.
(iii) If Φ = 𝜆 and 𝑟 is a nonzero constant, then 𝑀 is

shrinking (𝜆 = 1) RS-spacetime.

Proof. Using 𝑟 = −𝑇𝑖𝑖 = 𝜇 − 3𝑝 we get the following relations
from the field equations (23):

𝑅𝑖𝑗𝑢𝑖𝑢𝑗 = 𝜇 + 3𝑝
2 , (24a)

𝑅𝑖𝑗ℎ𝑖𝑘ℎ𝑗𝑚 = (𝜇 − 𝑝) ℎ𝑘𝑚 + 𝜋𝑚𝑘,
𝑅𝑖𝑗𝑢𝑖ℎ𝑗𝑘 = −𝑝𝑞𝑘.

(24b)

SinceARS vector𝑉 is timelike and parallel to 𝑢we let𝑉 = 𝛼𝑢.
This means that 𝑉 maps flow lines into flow lines so 𝑤𝑖 = 0.
Substituting 𝑤𝑖 = 0 in (19) and then using (24a) we get Φ =
𝛼̇ − ((𝜇 + 3𝑝)/2) so (i) holds. Now using (24b) in item (1)
of the Proposition 6 we get (ii). Finally, if Φ = 𝜆 and 𝑟 is
nonzero constant, it follows from the second relation of (12)
that 𝜆 = 1 so 𝑀 is a shrinking RS-spacetime so (iii) holds
which completes the proof.

Viscous Fluid. A particular case of imperfect fluid is the
viscous fluid with the viscosity coefficient 𝜂. It is known [29]
that viscous fluid is characterized by the imperfect matter

tensor (22) for which 𝜋𝑖𝑗 = −2𝜂𝜎𝑖𝑗 such that 𝛼 = 2𝜂 > 0.
This establishes the relativistic equivalence to the classical
Navier-Stokes theory of fluid mechanics [30].Thus,𝑉 = 2𝜂𝑢.
Consequently, by adjusting the magnitude of the ARS vector𝑉, one can measure the response of the viscous fluid subject
to the amount of viscosity fluctuations of the fluid.

6. Discussion

The motivation for this work comes from the use of
a connection symmetry (Definition 1) in the study of
semi-Riemannian almost Ricci soliton (ARS) manifolds
(𝑀, 𝑔,Φ, 𝑉), recently introduced by Pigola et al. [6].The idea
originated from close similarity of (2) of the affine conformal
vector (ACV) field of connection symmetry with the ARS
vector filed 𝑉 of the evolution equation (6) of the ARS
manifolds as stated in Theorem 3. We highlight that use of
some basic results on ACV symmetry from references [7, 13,
14] in Section 5, under the condition that𝑀 is reducible and
Ricci symmetric, plays a key role in finding some physically
meaningful solutions of imperfect Einstein field equations, in
particular viscous fluids. Also, it is clear from Proposition 6
that as the fluid revolves parallel to the velocity vector 𝑢
the presence of shear causes distortion in the fluid and this
change in the fluid pattern is governed by the deviation of
the Ricci tensor 𝑅𝑖𝑗 from the metric tensor 𝑔. A stage may
come when the ARS-spacetime 𝑀 is Einstein which it is
sheer-free and then it follows from (22) that 𝑅𝑖𝑗 = 𝑔𝑖𝑗. On
the other hand, for the case of ARS-spacetime (𝑅𝑖𝑗 ̸= 𝑔𝑖𝑗),
one can adjust the magnitude of the ARS vector filed 𝑉 in
response of viscous fluid subject to large viscosity fluctuations
in order to describe the leading finite-size correction in
scaling needed for a problem under investigation. However,
our physicalTheorem 8 only gives a general relation between
the quantities (𝑢, 𝜇, 𝑝, 𝛼, 𝜂, 𝜎𝑖𝑗) and does not provide any
exact solution. The reason is that the exact solutions of the
field equations for a viscous fluid require tilting velocity
vector and it cannot be determined by the field equations
alone. One needs to specify the type of physical model under
investigation. For example, Coley and Tupper [29] have used
tilted velocity vector in presenting radiation-like viscous fluid
exact solutions for a prescribed FRWmodel. In another paper
we will follow the method used in [29] and study some more
works on viscous fluids for completing our goal of finding
physically acceptable exact solutions based on the results of
this paper. Finally, we propose following problem.

Open Problem. It has been shown in [31] that locally con-
formally flat Lorentzian gradient Ricci solitons are locally
isomorphic to a Robertson-Walker warped product, if the
gradient of the potential function is nonnull, and a plane
wave, if the gradient of the potential function is null, but for
this later case gradient Ricci solitons are necessarily steady.
We leave it as an open problem to further study in reference
[31], satisfying the hypothesis of our Theorem 3.
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