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Concrete workability, quantified by concrete slump, is an important property of a concrete mixture. Concrete slump is generally
known to affect the consistency, flowability, pumpability, compactibility, and harshness of a concrete mix. Hence, an accurate
prediction of this property is a practical need of construction engineers. This research proposes a machine learning model for
predicting concrete slump based on the Least Squares Support Vector Regression (LS-SVR). LS-SVR is employed to model the
nonlinear mapping between the mix components and slump values. Since the learning process of the LS-SVR necessitates two
hyperparameters, the regularization and the kernel parameters, the grid search method is employed search for the most desirable
set of hyperparameters. Furthermore, to construct the hybrid model, this research collected a dataset including actual concrete
slump tests from a hydroelectric dam construction project in Vietnam. Experimental results show that the proposed model is
capable of predicting concrete slump accurately.

1. Introduction

Concrete workability is defined as the effort required to
manipulate a freshly mixed quantity of concrete with min-
imum loss of homogeneity [1]. This property of concrete
is generally known to affect the consistency, flowability,
pumpability, compactibility, and harshness of a concrete mix.
Thus, concrete workability is a very crucial factor thatmust be
considered in order to produce high quality concrete [2–4].

The slump test is the most commonmethod for assessing
the flow properties of fresh concrete; the slump provides
a measure of workability [5]. Using this test, the slump
can be derived by measuring the drop from the top of the
slumped fresh concrete. In the task of concrete mixture
design, the prediction of concrete flowability is critical
for on-site construction. As the complexity of concrete
construction escalates, there is an increasing pressure on
material engineers to achieve high workability as well as to

maintain the necessary mechanical properties to meet design
specifications.

Concrete has been increasingly utilized in high-rise
building and infrastructure development projects and special
ingredients are often employed to make the material satisfy
a specific set of performance requirements [6]. Superplasti-
cizers are often included to enhance the concrete workability
[7–9]. This situation makes the concrete mixes to be highly
complex materials and modeling their properties becomes
a very challenging task. There are complex and nonlinear
relationships between the characteristics and the components
that constitute the concrete mixes [8, 10, 11].

Due to the importance of the research topic, various
studies have been dedicated to concrete slump prediction.
Traditional statistical models and machine learning are pre-
vailing approaches to tackle the problem at hand. Öztaş et
al. [2], Yeh [1, 3], Chine et al. [12], and Bilgil [13] employed
the regression analysis and Artificial Neural Network (ANN)
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Figure 1: Concrete slump test (image source: http://xaydungth-
anhvinh.vn/).

models to estimate concrete slump; the common finding is
that ANN is an effective nonlinear modeling method and
its results are more accurate than the models based on the
traditional regression analysis approach.

Baykasoğlu et al. [14] utilized the gene expression pro-
gramming (GEP) to model high-strength concrete slump.
Chen et al. [15] constructed a parallel hypercubic GEP
to forecast the slump of high-performance concrete; this
research showed that the improved method is better than the
GEP and similar to the performance of ANN. Chandwani
et al. [16] proposed a Genetic Algorithm assisted ANN; the
study showed that the integrated approach can enhance the
convergence speed of ANN and its prediction accuracy.

Due to the popularity of concrete in the construction
industry, better alternatives for concrete slump prediction are
of practical need for construction engineers in concrete mix
design. This research contributes to the body of knowledge
by proposing a new approach for improving the accuracy
of concrete slump prediction which is based on the Least
Squares Support Vector Regression (LS-SVR). LS-SVR is an
advanced machine learning method which is designed for
nonlinear modeling [17]; the superiority of the approach has
been illustrated in recent applications [18–22].

Furthermore, a dataset that contains slump test records,
collected from a hydroelectric dam construction project in
central Vietnam, is used to establish and verify the proposed
approach. The rest of the article is organized as follows: the
second section presents the research method. The proposed
slump prediction model is described in the third section.The
next section reports the experimental results. The conclusion
of this study is stated in the final section.

2. Research Method

2.1. The Concrete Slump Test Dataset. This research recorded
testing results of 95 concrete mixes during the construction
progress of the Song Bung 2 hydroelectric dam construction
project in central Vietnam (http://www.sb2.vn/). The test is
in conformity with the Vietnamese standard (TCVN-3106)
for slump test which is equivalent to the ASTM-C-143. The
equipment for the slump test includes a hollow frustum of
a cone and a ruler as the measuring device (see Figure 1).

Table 1: Statistical description.

Factors Notation Min Mean Std. dev. Max
Cement (kg/m3) 𝑥1 201.0 338.6 62.3 446.3
Natural sand (kg/m3) 𝑥2 384.0 690.1 154.2 827.0
Crushed sand (kg/m3) 𝑥3 0.0 81.6 159.0 399.0
Coarse aggregate (kg/m3) 𝑥4 1107.0 1155.7 33.0 1218.0
Water (liter/m3) 𝑥5 164.0 174.2 6.4 186.0
Superplasticizer (liter/m3) 𝑥6 1.0 3.1 0.9 4.5
Concrete slump (cm) 𝑦 8.0 10.2 2.9 19.0

Table 2: The dataset of concrete slump test.

Mix 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑦
1 261.0 397.0 397.0 1200.0 176.0 1.3 8.0
2 248.0 399.0 399.0 1208.0 176.0 1.2 8.0
3 320.0 388.0 388.0 1154.0 179.0 3.2 9.0
4 304.0 391.0 391.0 1162.0 179.0 3.0 9.0
5 336.0 385.0 385.0 1148.0 178.0 3.4 9.5
6 356.0 769.0 0.0 1154.0 170.0 3.2 10.0... ... ... ... ... ... ... ...
90 339.0 765.0 0.0 1154.0 177.0 3.4 8.5
91 375.0 770.0 0.0 1144.0 167.0 3.4 10.0
92 393.0 757.0 0.0 1144.0 166.0 3.5 11.0
93 404.0 767.0 0.0 1124.0 166.0 4.0 9.0
94 378.0 751.0 0.0 1108.0 186.0 3.8 18.0
95 359.1 765.0 0.0 1111.0 186.0 3.6 19.0

The height of the cone is 30 cm. The diameter of the top and
bottom of the cone is 10 cm and 20 cm, respectively.The cone
is filled with fresh concrete and then lifted vertically. The
height difference between the concrete and the cone is the
slump value.

In this study, the concrete slump conditioning factors are
selected based on reviewing previous works [1, 12, 16, 23]
on slump flow modeling and the availability of measuring
equipment. The amounts of cement (kg/m3), natural sand
(kg/m3), crushed sand (kg/m3), coarse aggregate (kg/m3),
water (liter/m3), and superplasticizer (liter/m3) are mix
ingredients. For each mix design, the slump value obtained
from the actual slump test experiment is recorded. Statistical
descriptions of all specimens are shown in Table 1. The whole
dataset is partially described in Table 2. It is noted that the
amounts of cement (𝑥1), natural sand (𝑥2), crushed sand (𝑥3),
coarse aggregate (𝑥4), water (𝑥5), and superplasticizer (𝑥6)
are used as input factors to predict the outputs which are the
concrete slump (𝑦).
2.2. Least Squares Support Vector Regression (LS-SVR). LS-
SVR, proposed by Suykens et al. [17], is an advancedmachine
learning algorithm which is constructed on the principal
of structural risk minimization. This approach has been
proved to be very efficient in nonlinear modeling. Notably,



Journal of Construction Engineering 3

x (concrete mix components)

y

(Concrete slump)
y

(Concrete slump)
Kernel mapping

Input space

Feature space

y(x) =
N

∑
k=1

𝛼kK(xk, xl) + b
𝜙(x)

𝜙(x�)

𝜙(xu)

Figure 2: LS-SVR for concrete slump modeling.

the learning process of the LS-SVR is very fast since it only
requires solving a set of linear equations.

To construct the predictionmodel, it is needed to prepare
a dataset of slump test record in the form: 𝐷 = {𝑥𝑘, 𝑦𝑘},𝑘 = 1, 2, . . . , 𝑁. Herein, 𝑘 denotes the 𝑘th data sample and𝑁 is the total number of data samples. It is noted that 𝑥𝑘
is a vector with six elements; 𝑥𝑘1, 𝑥𝑘2, 𝑥𝑘3, 𝑥𝑘4, 𝑥𝑘5, and 𝑥𝑘6
denote the amount of cement, natural sand, crushed sand,
coarse aggregate, water, and superplasticizer, respectively.
Meanwhile, 𝑦𝑘 is the output of concrete slump of the 𝑘th data
sample.

We aim to establish a mapping function 𝑦(𝑥) that derives
the output of concrete slump based on the input vector
x that describes the concrete mix components. Since the
functional mapping between concrete mix components (𝑥)
and slump value (𝑦) is possibly nonlinear, LS-SVR first maps
the data from the original input space to a high-dimensional
feature space via a mapping function 𝜙(𝑥). Accordingly,
linear regression analysis can be possibly performed in such
high-dimensional feature space. The operation of LS-SVR in
concrete slump modeling is illustrated in Figure 2.

In the training phase of LS-SVR, the learning objective
can be formulated as the following optimization problem [17,
24]:

Minimize 𝐽𝑝 (𝑤, 𝑒) = 12𝑤𝑇𝑤 + 𝛾12
𝑁∑
𝑘=1

𝑒2𝑘
Subjected to 𝑦𝑘 = 𝑤𝑇𝜙 (𝑥𝑘) + 𝑏 + 𝑒𝑘, 𝑘 = 1, . . . , 𝑁,

(1)

where 𝑒𝑘 ∈ 𝑅 are error variables; 𝛾 > 0 denotes a regulariza-
tion constant.

In order to solve the above optimization problem, the
Lagrangian function is formulated as [17]

𝐿 (𝑤, 𝑏, 𝑒; 𝛼) = 𝐽𝑝 (𝑤, 𝑒)
− 𝑁∑
𝑘=1

𝛼𝑘 {𝑤𝑇𝜙 (𝑥𝑘) + 𝑏 + 𝑒𝑘 − 𝑦𝑘} , (2)

where 𝛼𝑘 are Lagrange multipliers.

The Karush–Kuhn–Tucker conditions for optimality are
used by differentiating the Lagrangian function 𝐿(𝑤, 𝑏, 𝑒, 𝛼)
with the variables as follows [17]:

𝜕𝐿𝜕𝑤 = 0 󳨀→
𝑤 = 𝑁∑
𝑘=1

𝛼𝑘𝜙 (𝑥𝑘) ,
𝜕𝐿𝜕𝑏 = 0 󳨀→
𝑁∑
𝑘=1

𝛼𝑘 = 0,
𝜕𝐿𝜕𝑒𝑘 = 0 󳨀→
𝛼𝑘 = 𝛾𝑒𝑘, 𝑘 = 1, . . . , 𝑁,
𝜕𝐿𝜕𝛼𝑘 = 0 󳨀→

𝑤𝑇𝜙 (𝑥𝑘) + 𝑏 + 𝑒𝑘 − 𝑦𝑘 = 0, 𝑘 = 1, . . . , 𝑁.

(3)

By solving linear system (3), the resulting LS-SVR model
is expressed as follows [17, 18]:

𝑦 (𝑥) = 𝑁∑
𝑘=1

𝛼𝑘𝐾(𝑥𝑘, 𝑥𝑙) + 𝑏, (4)

where 𝛼𝑘 and 𝑏 are the solution to the linear system. 𝑘 and𝑁 are the index and the total number of data points in the
training set. 𝑥𝑘 and 𝑥𝑙 denote an input pattern in the training
and testing set. It is worth reminding that 𝑥𝑘 and 𝑥𝑙 are both
input vectors of concrete mix components with six elements.𝐾(⋅) is the kernel function which maps the input data from
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Figure 3: Concrete slump prediction using LS-SVR (CSP-LSSVR).

the feature space into the high-dimensional space. The radial
basis kernel function is often employed [17, 19]:

𝐾(𝑥𝑘, 𝑥𝑙) = exp(−󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥𝑙󵄩󵄩󵄩󵄩22𝜎2 ) , (5)

where𝜎 represents the radial basis kernel function parameter.

3. The Proposed Model for
Concrete Slump Prediction

This section of the article describes the concrete slump pre-
diction using LS-SVR (CSP-LSSVR). The prediction model
relies on LS-SVR to discover the nonlinear mapping relation-
ship between the concrete components and the slump. The
flowchart of the CSP-LSSVR is demonstrated in Figure 3.

Given the input data of concrete mix ingredients (the
amounts of cement, natural sand, crushed sand, coarse aggre-
gate, water, and superplasticizer), the first step of themodel is
to carry out the data normalization process within which the
whole data is normalized into a (0, 1) range. This process can
help prevent the circumstance in which inputs with greater
magnitudes dominate those with smaller magnitudes. The
function used for normalizing data is provided as follows:

𝑋𝑛 = 𝑋𝑜 − 𝑋min𝑋max − 𝑋min
, (6)

where𝑋𝑛 is the normalized data.𝑋𝑜 is the original data.𝑋max
and 𝑋min denote the maximum and minimum values of the
data, respectively.

The dataset, featuring six input factors and the output
variable of concrete slump, is then randomly divided into a
training set and a testing set.The training dataset is employed
to establish the LS-SVR model. Since the LS-SVR with
radial basis kernel function is employed, the learning process
requires hyperparameters, the regularization parameter 𝛾
and the kernel parameter 𝜎, and the grid search method
[17, 25] is employed search for the most desirable set of
hyperparameters.

In the grid search for tuning parameters, various pairs of
(𝛾 and 𝛿) are tried and the one with the best fivefold cross-
validation accuracy is chosen. Using exponential growing
sequences of 𝛾 (2−5, 2−4, . . . , 215) and 𝜎 (2−15, 2−4, . . . , 23) is
a common way to identify good parameters. The grid search
approach is straightforward and easy to implement. After the
hyperparameters have been determined appropriately and
the training process is finished, the proposed CSP-LSSVR can
be used to predict the slump flow values of new concrete
samples.

4. Experimental Results

When the training process finishes, the slump of concretemix
in the testing cases can be predicted by providing mixture
components for the trained model. In the experiments,
besides the proposed CSP-LSSVR, the Artificial Neural Net-
work (ANN) and the multiple linear regression (MLR) are
utilized as benchmark methods. In order to measure model
performance, this research employs Root Mean Squared
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Figure 4: The CSP-LSSVR training results.

Error (RMSE), Mean Absolute Percentage Error (MAPE),
and Coefficient of Determination (𝑅2).

The motivation for using these benchmark approaches is
that the ANN is an effective tool for nonlinear modeling and
has been successfully employed for predicting concrete slump
[3, 12, 23]. The MLR model is a basic statistical predictive
method and comparing its result with othermachine learning
models may reveal useful insights [26].

To construct an ANN, the user needs to specify the net-
work structure and the learning rate. Such parameters of the
ANNmodel are usually selected via a trial-and-error process
[26]. Based on experiments, the network configuration is set
as follows: the number of hidden layers is set to be 1; the
learning rate is 0.001; the number of neurons in the hidden
layer is set to be 6. The Levenberg-Marquardt algorithm [27]
is employed to train the ANNmodel.

In the first experiment, the dataset is randomly divided
into 2 sets: the training set that occupies 80% of the dataset
and the testing set that includes 20% of the dataset. In detail,
the training and testing sets consist of 76 and 19 mixes,
respectively. The training and testing results of the CSP-
LSSVR are illustrated in Figures 4 and 5, respectively.

The MLR model for predicting concrete slump based
on the collected dataset is established via the Least Squares
Estimation method [28] and shown as follows:

𝑦 = 36.22 − 12.47𝑥1 − 27.03𝑥2 − 24.56𝑥3 − 7.39𝑥4
− 3.00𝑥5 − 1.18𝑥6, (7)

where the symbols of 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, and 𝑥6 represent
the amount of cement, natural sand, crushed sand, coarse
aggregate, water, and superplasticizer within the concrete
mix, respectively.

The ANN model structure, which contains the input,
hidden, and output layers, is illustrated in Figure 6. It is
noted that 𝑊1 and 𝑊2 are the weight matrices of the hidden
layer and the output layer, respectively; Θ = 6 denotes the
number of neurons in the hidden layer; 𝑏1 = [𝑏11, 𝑏12, . . . , 𝑏1Θ]
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Figure 5: The CSP-LSSVR testing results.

represents the bias vector of the hidden layer; 𝑏2 denotes the
bias vector of the output layer; 𝑛𝑖 is the output of the 𝑖th
neuron in the hidden layer; 𝐹 is the tan-sigmoid activation
functionwhich is commonly used in the hidden layer [29, 30]:

𝑓𝐴 (V) = 11 + exp (−V) , (8)

where V denotes an input for the function.
It is noted that the weight matrices (𝑊1 and𝑊2) and the

bias vectors (𝑏1 and 𝑏2) of the ANNmodel for concrete slump
estimation are learnt via a training process with the error
backpropagation algorithm [31]. After the training phase,
results of the ANN parameters are shown as follows:

𝑊1

=
[[[[[[[[[[[
[

−1.4769 0.7164 −1.2991 −2.4781 −0.1608 −1.7888
−2.4336 −0.5163 0.0260 3.3005 −2.5351 −0.3737
−2.6319 0.2066 2.9821 −2.0341 −4.2239 0.1737
1.0796 0.1646 −0.6626 −1.8433 −0.0726 −5.0730
2.7421 −1.1328 0.0858 −3.7346 3.4695 1.7114
−0.8771 0.3779 0.5195 −2.5811 −0.7168 −3.2345

]]]]]]]]]]]
]

,

𝑊2 = [1.9870 0.5667 1.3222 2.4838 0.5420 −3.5485] ,
𝑏1 = [−2.6084 1.4889 −0.3951 0.2309 −1.1501 0.3311] ,
𝑏2 = 0.7132.

(9)

Table 3 provides the result comparison between the
proposed method and other benchmark models. The result
of the MLR in the testing process is very poor (RMSE =
0.28, MAPE = 12.08%, 𝑅2 = 0.28); this indicates that the
linearmodel is insufficient to explain the behavior of concrete
slump.

The ANN and CSP-LSSVR models achieve much better
performances; both models have the 𝑅2 values which are
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Table 3: Result comparison.

MLR ANN CSP-LSSVR
Training
RMSE 1.23 0.94 0.46
MAPE (%) 9.62 3.63 3.07𝑅2 0.82 0.91 0.97
Testing
RMSE 1.54 1.05 0.54
MAPE (%) 12.08 5.96 3.68𝑅2 0.28 0.83 0.96

greater than 0.8. According to Smith [32], such high values
of 𝑅2 imply strong correlations between the predicted and
measured concrete slumps. Furthermore, theCSP-LSSVRhas
achieved the lowest prediction error (MAPE = 3.68% and
RMSE = 0.54). Thus, benchmarked with the ANN, the new
method has attained 38% and 49% reductions in terms of
MAPE and RMSE.

Moreover, to avoid the randomness in selecting testing
samples, the second experiment carries out a 10-fold cross-
validation process. Using the cross-validation process, the
whole dataset is randomly divided into 10 data folds in
which each fold in turn serves as a testing set; and the
performance of the model can be assessed by averaging
results of the 10 folds. Because all of the subsamples are
mutually exclusive, this experiment can evaluate the CSP-
LSSVR more accurately.

Table 4 summarizes the result of the cross-validation
process. Observably, the proposed approach has attained the
lowest prediction error in both training and testing processes.
The average RMSE and MAPE for testing data of the CSP-
LSSVR are 0.50 and 2.81%, respectively. These prediction
errors are significantly lower than the ANN (RMSE = 0.62

and 4.44%) and the MLR (RMSE = 1.36 and 10.64%). The
proposed approach also yields the highest 𝑅2 (0.90) when
predicting the slump of testing concrete mixes. Hence, the
experimental results have strongly demonstrated the superior
predictive capability of the CSP-LSSVR model.

5. Conclusion

This study has established a new method for predicting
concrete workability quantified by the slump values. The
research extends the body of knowledge by investigating
the capability of LS-SVR for concrete slump prediction. To
establish the proposed CSP-LSSVR, a dataset consisting of
actual concrete slump tests has been collected. From the
experiments, the proposed model has achieved the most
accurate prediction results.

The average MAPE of the method obtained from the
cross-validation process is less than 3% which is very
desirable because modeling concrete slump is known to be
very complex and highly nonlinear. Since the tenfold cross-
validation process is a very reliable way for model perfor-
mance evaluation [33], it is expected that the proposed CSP-
LSSVR can predict the flow of concrete based on the similar
conditioning factors with the same accuracy. Accordingly, the
newly established method can be a very useful tool to assist
the engineers in the task of concrete mix design.

Nevertheless, in addition to the currently used six con-
ditioning factors of concrete slump, other factors (e.g., the
type, size, absorption, and the water amount of the fine and
coarse aggregates) can be relevant and should be considered
by the model. Furthermore, another limitation of the current
study is that the employed dataset only consists of 95 data
points.Thus, this dataset should be expanded in a future study
to further enhance the generalization of the current model
and better ensure the predictive accuracy of the model when
dealing with new concrete mixes.
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Table 4: The result of the 10-fold cross-validation process.

Data fold 1 2 3 4 5 6 7 8 9 10 Avg.

CSP-LSSVR

Training
RMSE 0.46 0.32 0.24 0.30 0.25 0.29 0.29 0.26 0.69 0.29 0.34
MAPE 3.15 1.37 0.65 1.13 0.68 0.90 0.88 0.96 5.21 0.92 1.59𝑅2 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.99 0.98
Testing
RMSE 0.68 0.33 0.64 0.46 0.58 0.39 0.38 0.67 0.49 0.37 0.50
MAPE 4.50 2.29 2.22 2.60 2.69 1.70 2.16 3.51 3.92 2.52 2.81𝑅2 0.99 0.83 1.00 0.58 0.98 0.99 0.99 0.97 0.97 0.72 0.90

ANN

Training
RMSE 0.56 0.47 0.48 0.74 0.57 0.61 0.36 0.50 0.44 0.46 0.52
MAPE 4.27 3.13 3.45 3.00 3.78 4.25 1.56 3.43 2.56 2.36 3.18𝑅2 0.96 0.97 0.96 0.94 0.96 0.96 0.98 0.97 0.98 0.97 0.97
Testing
RMSE 0.62 0.53 0.71 1.10 0.51 0.58 0.40 0.83 0.31 0.63 0.62
MAPE 4.97 5.21 4.33 6.30 3.58 4.11 2.38 6.68 1.65 5.17 4.44𝑅2 0.98 0.60 0.99 0.09 0.97 0.98 0.98 0.91 0.99 0.29 0.78

MLR

Training
RMSE 1.23 1.25 1.19 1.20 1.27 1.21 1.25 1.27 1.29 1.23 1.24
MAPE 9.26 9.56 9.07 9.29 9.73 9.16 9.80 9.85 10.12 9.62 9.55𝑅2 0.79 0.81 0.75 0.83 0.80 0.79 0.79 0.79 0.79 0.82 0.80
Testing
RMSE 1.56 1.28 1.78 1.67 1.09 1.58 1.28 1.04 0.78 1.54 1.36
MAPE 11.56 11.10 11.59 11.93 9.44 14.40 10.53 8.10 5.67 12.08 10.64𝑅2 0.90 0.01 0.91 0.01 0.80 0.82 0.79 0.85 0.90 0.28 0.63

Note: Avg. denotes the average result.
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