Hindawi Publishing Corporation
Advances in Software Engineering

Volume 2016, Article ID 5126069, 25 pages
http://dx.doi.org/10.1155/2016/5126069

Review Article

Hindawi

Innovation Drivers and Qutputs for Software Firms:
Literature Review and Concept Development

Jeremy Rose' and Brent Furneaux’

IUniversity of Skovde, P.O. Box 408, 541 28 Skovde, Sweden
2School of Business and Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, Netherlands

Correspondence should be addressed to Jeremy Rose; jeremy.rose@his.se
Received 1 September 2015; Revised 21 December 2015; Accepted 13 January 2016
Academic Editor: Luigi Lavazza

Copyright © 2016 J. Rose and B. Furneaux. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Software innovation, the ability to produce novel and useful software systems, is an important capability for software development
organizations and information system developers alike. However, the software development literature has traditionally focused
on automation and efficiency while the innovation literature has given relatively little consideration to the software development
context. As a result, there is a gap in our understanding of how software product and process innovation can be managed.
Specifically, little attention has been directed toward synthesizing prior learning or providing an integrative perspective on the
key concepts and focus of software innovation research. We therefore identify 93 journal articles and conference papers within
the domain of software innovation and analyse repeating patterns in this literature using content analysis and causal mapping. We
identify drivers and outputs for software innovation and develop an integrated theory-oriented concept map. We then discuss the

implications of this map for future research.

1. Introduction

Innovation has become a mantra for organizations in almost
every industry and for individuals working in almost every
organizational function. Large organizations are appointing
innovation managers and leading universities are establishing
centres for innovation research. Within the software devel-
opment industry, the pace of technological change fosters a
particular sense of urgency surrounding the need to innovate.
This drives innovation toward the heart of the business
strategies of software development organizations [1]. Rose
[2] argues that the forces of globalisation, standardisation,
and industrialisation are pressing software development
firms in developed countries to become increasingly reliant
on their innovation skills. Globalisation can shift software
development activities to countries with lower labour costs
while standardisation and industrialisation ensure that the
functional scope of existing software can be readily extended
through relatively modest changes performed by less skilled
labour. The software industry is thus following the path of
other engineering industries that have been moving routine

tasks to developing countries, leaving developed countries to
compete through innovation. At the same time, Pikkarainen
et al. [1] argue that software innovation differs from other
forms of innovation. Software is intangible and highly mal-
leable, has a low market entry threshold, and often depends
on the input of users and experts. They also point out that
software development organizations are extremely diverse in
nature, having very different innovation needs and styles.
Whereas large organizations such as Apple and Google are
dependent on innovation to capture market share, small start-
ups depend on innovation to carve out profitable market
niches [3, 4]. As a result, understanding the unique nature
of software innovation and the factors that drive it is of
considerable importance to both research and practice.

The research community has been slow to articulate and
respond to the need for better understanding of software
innovation. Traditional software development research has
tended to focus on issues of automation and efficiency [2]
while the management and information system (IS) inno-
vation literature has a complementary but distinct focus on
organizational innovations that use information technology

(IT) as a driving force or catalyst. Finally, innovation research
in other disciplines has largely overlooked the software devel-
opment industry. Nevertheless, contributions from various
perspectives have begun to examine some elements of the
story. To give some examples, Avital and Teeni [5] have
developed the concept of generative capacity through their
examination of the role of creativity in IS design, Carlo et al.
[6] adopt a knowledge-oriented perspective that draws on
absorptive capacity literature, Hoegl and Gemuenden [7]
expose the role of teamwork, and Aaen [8] contributes a
framework for system design. However, these authors do not
reference each other such that an integrated view of how
absorptive capacity may be translated through effective team-
work (harnessed through a design framework) into improved
generative capacity is missing. Rather, these contributions
tend to remain isolated such that common themes are not
always evident and contributing strands of research have
emerged without reference to each other. In this paper we
therefore begin the work of synthesizing the literature that
examines software innovation.

Innovation describes the creative act and the process
of invention that is carried into wider use. It involves the
exploitation of new ideas to engender changes in the practices
of individuals or groups of individuals such as customers
and users [2, 9]. A basic distinction can be made between
product innovations as observed in the development of a
useful new software application and process innovations
such as the introduction of a new software development
methodology [10, 11]. A distinction has also been made
between radical innovations and incremental innovations
where radical innovations produce fundamental changes in
the structure of a scientific field or social system while
incremental innovations build on existing foundations to
clarify current understanding. An analogous distinction has
been made between revolutionary and evolutionary innova-
tions. Finally, innovations have been characterized as being
either sustaining or disruptive in nature [12]. Sustaining
innovations typically help organizations to compete within
existing markets and value configurations whereas disruptive
innovations lead to the creation of entirely new markets and
value networks. Disruptive innovations thus tend to displace
rather than complement existing technology. In aggregate,
the diversity of views present in the literature serves to
highlight the varied nature of innovation and the rather
distinct implications that different forms of innovation can
have for organizations and their wider environment.

Given the importance of software innovation to orga-
nizations and society, we undertake a literature study to
synthesize the many detailed observations and assumptions
about software innovation, the drivers of such innovation,
and the numerous associations between these elements that
have been presented in prior work. Research suggests a wide
range of influences on software innovation, so it is worth
examining two previous attempts at synthesis. Rose [2] draws
from the academic literature to organize prior work into the
categories of software trajectories and windows, community
and network, the innovative software product, development
process, personal creativity, teamwork, tools and techniques,
and evaluation. In contrast, Pikkarainen et al. [1] offer

Advances in Software Engineering

a more practice-oriented synthesis, proposing eight arts of
software innovation that include focusing, idea harvesting,
idea valuation, openness, optimizing the impact of critical
experts, crafting smart products, innovation stimulation,
and innovation incubation. We follow the practice of these
contributors and focus on the software team, the software
team leaders and managers, the artefacts or products that they
develop, and the processes they use to develop these artefacts
in an effort to address the following research questions:

(1) What software innovation outputs can be identified in
the literature?

(2) What are the salient drivers of innovation that can be
identified?

(3) How are salient innovation drivers and innovation
outputs related?

Our analysis spans individuals, teams, and the organizational
context to better understand what drives software innovation.
The ultimate objective of our work is to provide guidance to
practitioners seeking to improve software innovation in their
organizations and to provide clear direction to researchers
seeking further understanding in this important domain.
To these ends we offer a causal framework grounded in
prior research and a set of specific research hypotheses that
integrate and consolidate the previously disparate body of
research surrounding software innovation.

Our study is theoretically, rather than empirically, ori-
ented, aiming to identify and consolidate some of the existing
strands of work surrounding software innovation. We present
our findings as a concept map that incorporates the major
concepts of the field together with relevant associations.
The following section outlines our literature selection and
analysis strategy. We then introduce the major innovation
outcomes derived from this effort, salient contributors to
these outcomes (drivers), and the underlying theoretical
foundations. We conclude by summarizing the results of our
analysis in a model of software innovation and by discussing
the limitations and implications of our work for future
research.

2. Literature Selection and Analysis Strategy

Systematic literature reviews are an important part of the
development of a field, offering synthesis and reflection on
previous theoretical work and providing solid grounding
for the advancement of knowledge [13, 14]. Such reviews
generally include a structured approach to identifying source
material and the use of a concept matrix or other analytical
frameworks to yield “a coherent conceptual structuring of
the topic” [15, page 173]. Further to this, systematic literature
reviews rely on the use of clear, documented processes
to ensure that any insights offered are trustworthy. The
output is typically some form of evaluation, synthesis, or
forward-looking guidance for researchers in a field [14]. This
study shares some characteristics with a class of literature
reviews known as systematic mapping studies [16] since these
investigate a larger body of literature with the objective of
structuring a research area. Given the relatively unstructured

Advances in Software Engineering

TaBLE 1: Application of guidelines for systematic literature reviews [13] to the current study.

Guidelines for systematic literature reviews

Current study

A review protocol that specifies the research question being
addressed and the methods that will be used to perform the review

Research questions given in Section 1 and three-stage
method summarized in Figure 1

A defined and documented search strategy that aims to detect as
much of the relevant literature as possible

See Figure 1 and the discussion offered in relation to
this figure

Explicit inclusion and exclusion criteria

Articles should follow an accepted scientific research
method, be published in reputable outlets, and be
concerned with both innovation and building of
software

Specification of the information to be obtained from each primary
study

Innovation outputs, innovation drivers, and
relationships between drivers and outputs

nature of current understanding surrounding software inno-
vation, this paper offers a systematic literature review that
structures past research to provide a conceptual map of soft-
ware innovation and specific research propositions [17]. The
review adheres to overall guidelines for systematic literature
reviews in the software engineering field as established by
Kitchenham and Charters [13] and summarized in Table 1.

We deployed a three-stage analysis strategy to search
for relevant literature, code and refine major concepts, and
map key links among these concepts. In the first stage we
located relevant articles by searching the literature using
guidelines offered by Webster and Watson [14]. The second
stage involved content analysis of the abstracts of articles
identified during stage one [18-20]. The purpose of this anal-
ysis was to identify key contributions and address research
questions (1) and (2) by iteratively refining key concepts for
the study (software innovation outputs and drivers). The
final stage addressed research question (3) through causal
mapping of the identified set of key drivers that contribute to
software innovation outputs. Causal mapping is a widely used
technique for identifying conceptual links or relationships
that are either explicitly demonstrated or implicitly assumed
by a text [21, 22]. Our objective in pursuing causal mapping
was to offer preliminary insights into the causal structure that
surrounds software innovation. By constructing causal maps
we aim to provide a clearer understanding of the underlying
drivers that contribute to software innovation outputs and
offer valuable insights into the relationships between them.
Our literature study is thus a line of argument qualitative
synthesis [13] in that we are primarily concerned with what we
can infer about a larger topic through analysis of individual
contributions that study parts of the issue and subsequent
synthesis of the results of this analysis. Figure 1 provides
an overview of the search, selection, coding, and mapping
process.

The initial search of ISI Web of Knowledge was performed
using a series of search strings that had been constructed
through experimentation [13] to yield the most extensive
search results possible without unduly sacrificing the rel-
evance of these results. This led to the use of the follow-
ing search words and phrases: “software AND innovation,”
“software AND creativity,” “information AND systems AND
innovation,” and “information AND systems AND creativ-
ity” (5179 hits). The search was then refined by focusing

on relevant science, engineering, and business databases
(4510 hits) as well as a group of 21 journals iteratively
identified as being of importance to the topic (941hits).
These journals were identified using the AIS scholars’ basket
of eight top information system journals, the AIS ranking
list of information system journals, and a peer-reviewed
list of scientific journals from the Danish research council
(see Table 3). An initial vetting of article titles and abstracts
was performed to eliminate obvious mismatches and the
search was then expanded by forward and backward chain-
ing using Google Scholar. Two researchers independently
examined the relevance of the hits according to the inclusion
criteria to insure inclusion quality [16]. All article abstracts
for identified articles were retrieved and similarly vetted for
quality and relevance to the theme. The search ended when
Google Scholar searches yielded no new hits. This method
resulted in an EndNote® library consisting of 236 references
complete with their abstracts (available on request).

In the second stage of inquiry, content analysis was
undertaken on the abstracts of the 236 articles identified
during stage one. As a technique, content analysis yields
“a relatively systematic and comprehensive summary or
overview of the dataset as a whole” [23, page 170]. It operates
by observing repeating themes and categorizing them using
a coding system. Our use of content analysis is similar
to the thematic synthesis described by Cruzes and Dyba
[24] in that we also identify recurring themes or issues
from multiple studies and then interpret and explain these
themes or issues. Categories can be elicited in a grounded
manner or can originate from an external source such as a
theoretical model [23]. We used an integrated approach [24]
in which we deductively derived codes from a starting list
and inductively added new codes in a grounded manner. In
our case, initial codes and subcodes were created from the
major chapter and section headings used by an earlier study
[2] (see Table 4). This set of codes provided a good basis for
our coding given that this earlier study sought to provide its
readers with a thematic categorization of software innovation
research. Nonetheless, iterative revision and refinement of
our initial code set through open coding were an explicit
objective of the coding effort. Some codes that were poorly
represented amongst the texts were removed and others
redefined. The initial set of codes identified in Table 4 was
revised and refined to yield the final code set identified in

Advances in Software Engineering
Literature search
Initial search in ISI Web of
Knowledge
e ANID inravEten Search ref o Search refinement 2 Search refinement 3
_ | “software AND creativity,” carch renemen 21 journals iteratively identified Vetting of the articles, forward
& | “information AND systems Relevant science, engineering, as making a special contribution and backward chaining using
< .
= i ion” and business databases g
@ AND uTnovatlon, and 5179 4510 to the theme (see Table 3) 941 Google Scholar, and revetting
information AND systems | ... hits hits 236 abstracts
AND creativity”
236 selected references g
Content analysis
Creating factors and codes 5 COdlgg n lf):d(zose ld
«~ | Created from Rose, (2010). (ig Srégsn&reli tovaraical;)lresc)oarisi Coding in Dedoose 2 Coding in Dedoose 3
%J Codes applied for each initial [outcome codes (dependent A preversion of the model Relevance score assigned
% | factor, representing major variables). was developed using iterative between 1 and 10 for each
chapter and section headings COOCCUTTFHC? of clodes = modelling (see Figure 3) article
from Rose (see Table 4) causa%;}l;lselgsr)la (see
Causal mappingg
Casual analysis
Causal mapping of sample Synthesizing the literature
. . . L . Research findings
- Final selection Downloading full texts of Results synthesized in a composite)
2 193 key contributions identified sample and in-depth analysis | —f map and reconciled with L Results documer{ted ikl the
S . k4 using causal mapping to outcomes from coding process. model presented in Section 6.
@ |with a relevance score of six or| 5 | identify major concepts (codes) Resulting concepts and Discussion and conclusion
above (see Table 6) 5 | and their causal relationships relationships synthesized from the of results
o (see Figure 4) selected literature

FIGURE 1: Overall literature selection and analysis strategy.

Managerial drivers

Innovation leadership Innovation evaluation

Shape
Team process drivers

Knowledge drivers

User involvement Community and network

Knowledge leverage
I
Inform

Creativity tools and techniques Creative cognition

Development framework Teamwork

Software design
capability

Software product and

<

Involved in

Software process innovation

Infrastructural moderators

service innovation

Constrain, enable

Installed base

Path dependency

FIGURE 2: Integrative concept map for software innovation.

Figure 2. The authors and a Ph.D. student collaboratively
coded the article abstracts using the online tool Dedoose to
facilitate concept development. During the coding process a
distinction was made between software innovation outputs
and other concepts that might be associated with these
innovation outputs (drivers). This permitted us to examine
code cooccurrences as an early indication of associations

(Table 5) and these associations were then used to guide
the construction of initial causal models. Iterative modelling
was employed throughout the research effort with Figure 3
providing a causal model developed at this early stage of the
inquiry. This model shows elaborated codes and subcodes
and identifies provisional linkages among these codes based
on their cooccurrence in the text of the articles examined.

Advances in Software Engineering

Tools and techniques

(i) Creativity

techniques
(ii) Other techniques
Customers/users ((iii) Development
platform
) . (iv) Other support
(i) Input/involvement tools
N (ii) Requirements/needs/ (v) Project Mgmt
expectations tools
(iii) Schedule :
(iv) Budget D.eve ©op mentA tea.m Product innovation
b M C omml%nlcatlve (i) Functionality
' Team members . ;nter action E— (ii) Performance
(i) Creativity (i) Expertise (iii) Architecture
(ii) Innovation style integration
' Managers (iii) Motivation (iii) Diversity
(i) Work (iv) Openness to (iv) Tolerance
environment . .
B - sharing (accommodation
(ii) Innovation C . of divergent
leadership/ (v) Competencies . diverg
strategy) (knowledge/skills/ \ thml.ung? _ Ideation Service
(iii) Culture/climate| expertise/ (v) Spatial dispersion innovation
(iv) Bureaucracy experience) (vi) Turnover
(v) Evaluation/ (vi) Job satisfaction (vii) Integrative
monitoring (vii) Autonomy problem solving
(vi) Miarket . (viii) Emotions capacity
orientation (ix) Cognitive (viii) Absorptive
engagement capacity \ Process
(x) Development (ix) Innovation style innovation
style (x) Social networks
External environment (—/ (xi) Role allocation
(i) Technology (xii) Dysfunction
trajectories Process avoidance
(11) Tool innovation (i) Agility (xi.ii) Creatiyity
(iii) Complemen.tary (i) Timing/tempo/ (xiv) Experience
and competing pace (xv) Competence
) Cassets ition/ (iii) Requirements
1v) Lompetition analysis Y
markets/industry — (iv) Prototyping
dynamics (v) Process
(v) Standards frameworks
__convergence (vi) Development
(vi) Open source a.nd methodologies
other supporting (vii) Documentation
communities (viii) Communication
(vii) Infrastructure (ix) Metrics
(x) Code reuse
\ /

FIGURE 3: Early version of conceptual model.

While this approach suffers from some obvious limitations,
using the cooccurrence data reported in our coding dataset in
this way gave us valuable preliminary insights into the causal
structure that surrounds software innovation.

In order to facilitate the final third stage of the analysis
and refine our initial causal map, all articles were further
coded for their relevance to the development of a concept
map of software innovation using a scale from one to ten.
We scored the articles according to how well they iden-
tified patterns of causal relationships between drivers and
outputs. We used this score to identify a subset of 93 key
contributions that directly addressed our focal interest by
selecting those articles with a relevance score of six or above

(see Table 6). The full texts of these articles were downloaded
and analysed using causal mapping. Causal maps are pictorial
representations of “systems of cause-effect relations for the
purpose of capturing the structure of human cognition
from texts” which can be “examined for patterns, theory
building, or hypothesis testing” [21]. Causal associations
between drivers and outputs were mapped individually for
each article using the coding scheme refined in stage two. We
took the opportunity to further refine the concept definitions
represented by the coding scheme where examination of the
texts provided more information. Two researchers divided
the texts, consulting and cross-checking a sample of each
other’s maps to ensure consistency. For research studies that

Advances in Software Engineering

Technology trajectory understanding }H Knowledge leverage

|Supporting tools and techniques

N\

Process innovation

| Creativity techniques

Development framework

/

Creative requirements analysis |

Team composition

Product/service innovation

Teamwork

| Shared understanding

FIGURE 4: Example causal map based on Cooper [25].

Innovation
evaluation

—

Innovation

User involvement

leadership

Knowledge leverage (1)

Sup
techniques (1)

Development
framework (2)

Software design

capability

Product/service

innovation

FIGURE 5: Consolidated causal map, showing number of links mapped.

defined clear dependent and independent variables, causal
relationships could be directly extracted. In other cases these
were inferred based on the reasoning provided in the articles.
Our mapping effort ultimately yielded 93 distinct causal
maps that depict approximately four hundred causal linkages
(Figure 4 presents an example map for one article). Individual
casual maps were synthesized into an association matrix

(Table 7) that highlights the key causal relationships sug-
gested by the literature and notes the strength of the literature
support for each of these relationships. The consolidated
association matrix was then used to construct a high-level
composite causal map (Figure 5). The numbers on the causal
paths in this map indicate the number of research articles
that identified the relationships being depicted and, as such,

Advances in Software Engineering

provide an indication of the relative importance of the various
drivers that we have identified. The composite causal map is
thus based on a much deeper level of analysis than the model
presented in Figure 3. Since it can be confusing to absorb the
large number of causal relationships that are present, they
are structured and simplified, though not distorted, for the
final iteration of the model presented in Figure 2. This model
can be understood as the highest level of abstraction of a
synthesis of higher order themes [24]. Specific details of the
associations between innovation drivers and outputs as well
as the literature sources from which they were derived are
presented in Tables 8-10.

The following sections elaborate on the results of our
review, analysis, and synthesis efforts beginning with a
discussion of the key forms of innovation that have been
examined in the software development context.

3. Software Innovation Outputs

We identified two broad categories of innovation outputs
discussed in the literature.

3.1 Software Product/Service Innovation. The most common
form of software innovation results in novel and useful code
and, by inference, the creation of new software functionality.
Innovation of this form has led to the creation of an extensive
array of software systems including enterprise tools, end-user
applications, operating systems, communication protocols,
mobile applications, and embedded software [2]. In princi-
ple, this form of innovation encompasses all non-physical
computing artefacts though this distinction is not entirely
unambiguous in the case of embedded software. Further to
this, the hardware and software for devices such as mobile
phones are often developed in parallel, thereby making
the two components quite interdependent. Similarly, it is
often difficult to observe the traditional distinction between
product and service in the case of software innovation since
the term service is widely used to denote different forms of
software. For example, Carlo et al. [6] use service as a generic
term for all software products apart from base innovations
while many other authors use the term service to refer to
particular types of software such as web services [26] or
mobile services [27].

Beyond use of the term service to describe software
product offerings, the term can also be used to describe a
wide range of software-related activities such as installation,
end-user support, platform management, and consulting. In
addition, the term service is frequently used to describe
bundled offerings such as Internet hosting or application
service provision that represent combinations of software
and other services. A modern variant of such offerings is
software as a service (SaaS). SaaS providers such as Amazon
Web Services offer software tools on a cloud infrastructure,
priced based on usage levels, and complemented with related
nonsoftware services such as back-up and disaster recovery.
The notion of service can also be applied to software that
forms part of a wider offering such as a banking service
where it is the combined offering that might represent

the innovation [28, 29]. Finally, the term service is sometimes
used to distinguish between application-oriented software
innovations and underlying platform innovations. This can
be observed with Apples iOS developer interface which can
be seen as a service innovation that opens the way for their
apps market [30, 31]. As a result, we view innovations in
software product and service offerings as one key form of
software innovation while nonetheless acknowledging that
the specific nature of these offerings is subject to considerable
variation.

3.2. Software Process Innovation. Software processes encom-
pass the tasks, norms, and formal and informal procedures
that support software development efforts. These processes
are expressed in the methods, tools, and techniques that
organize the work of a developer and describe how software is
developed [2]. Carlo et al. [6] view software process innova-
tion as involving innovations in ways to envision, design, and
implement software. All significant improvements in design
techniques, team organization, and managerial processes
can thus be classified as process innovations. However, an
interesting case refers to process innovations that are focused
on facilitating the development of innovative products. An
example is Essence [8], a development framework that
has the development of innovative software products as its
explicit goal. Given the potential of such frameworks and
the complexity of software development efforts, software
process innovation can be of considerable importance to the
development of innovative software products and services.
In fact, our investigation indicates that software process
innovation is one of the top three drivers of software prod-
uct/service indication. We therefore identify software process
innovation as the second key form of innovation in the
software development context and as an important driver of
product/service innovation.

4. Drivers for Software Innovation

Our analysis also led to the identification of eleven innovation
drivers that we group into four categories: managerial drivers,
knowledge drivers, team process drivers, and infrastructure
factors.

4.1. Managerial Drivers. Although our basic unit of anal-
ysis is a software producing team, these teams operate in
organizational environments that are strongly influenced
by managers. Through monitoring, control, and direction
setting efforts, managers influence a wide range of important
parameters that can have significant implications for software
innovation. These parameters include resource allocations,
work environments, strategic goals, and specification of the
initiatives that are included in a project portfolio.

4.1.1. Innovation Leadership. Innovation leadership has been
identified as having a powerful influence on software inno-
vation. We found such leadership to be especially significant
in relation to process innovation with innovation leadership
being the second most prominent driver of software process

innovation. Nonetheless, innovation leadership was also an
important driver of software product and service innovation.
Leaders are responsible for fostering a work environment that
stimulates creativity, minimizes impediments to creativity,
provides needed resources in a timely manner, minimizes
bureaucracy and rigidity, and establishes appropriate eval-
uation and reward systems to foster experimentation [32-
35]. Florida and Goodnight [36] characterize such efforts as
minimizing hassles and stimulating minds. Leaders can thus
serve as important champions of innovation [37]. Leaders are
also responsible for path creation through transformational
leadership [38-42]. Transformational leaders guide their
organizations through changes that are beyond the consider-
ation of individual developers and development teams such
as fundamental changes in base technologies and product
markets. More routine managerial efforts are also of notable
importance to software innovation. These efforts can include
goal conflict resolution [43] and efforts to synchronize the
introduction of new support technologies and administra-
tive routines in process innovations [44]. Finally, leaders
are responsible for managing an organization’s portfolio of
products [39] to secure and maintain a product portfolio that
combines short term profitability with the experimentation
and learning needed for innovation and long term success.

4.1.2. Innovation Evaluation. The ability to evaluate creativity
and innovation in software engineering work is an impor-
tant precursor to improvement. Evaluation takes the form
of assessing the work environment, assessing the value of
competing ideas during ideation, assessing new software
product concepts [45, 46], determining the value of process
improvements and creativity support systems [47], and deter-
mining the value of the software services currently in use [48].
Although evaluation may be formal or informal, informal
evaluation of team innovation can be particularly important
for process organizers seeking to understand how to best
manage a project. Informal evaluations of this type can take
the form of simple observations of team performance [2]. In
contrast, formal evaluations are fundamentally dependent on
management efforts to develop and apply specific metrics and
targets [46, 49].

4.2. Knowledge Drivers. A second group of drivers are
knowledge-oriented factors that relate to the acquisition
and leveraging of knowledge from internal and external
stakeholders and the relationships that develop as part of
these efforts. Software development organizations can be
understood as knowledge-exploitation systems wherein the
many forms of technical knowledge necessary to write soft-
ware are combined with other essential knowledge that is
extracted from partners, customers, and users. Innovation
thus depends on an ability to leverage existing knowledge and
a capacity to acquire new knowledge.

4.2.1. Knowledge Leverage. Prior work suggests that knowl-
edge plays a central role in many aspects of software inno-
vation including creative requirements elicitation [25] and
understanding innovation opportunities [50]. We identified

Advances in Software Engineering

knowledge leverage as being the most salient driver of
software product and service innovation as well as being
a notable driver of software process innovation. Effectively
leveraging available knowledge depends upon the develop-
ment of unique competencies. This had led some researchers
to examine how absorptive capacity can support attempts to
successfully draw upon knowledge available in the external
environment. Absorptive capacity is defined by this work
as the ability of an organization to identify, assimilate, and
exploit external knowledge. The prevalence of this notion in
the literature means that it is one of the more thoroughly
developed theoretical concepts in the software innovation
literature. For example, Carlo et al. [6] isolate knowledge
depth, diversity and linkages, and routines of sensing and
experimenting in their efforts to highlight the importance
of absorptive capacity to leveraging knowledge in software
innovation.

Understanding the evolution and trajectory of customer
demand (market understanding) and the trajectory of tech-
nology development has also been identified as being of some
importance to new product development [30, 34, 39, 51, 52].
Knowledge of competitors and their innovations is also
considered to be important in fostering the development
of new generations of software systems [53] as is the abil-
ity to leverage user-domain understanding generated from
customers [28, 54-56]. Taken together, efforts to leverage
internal and external knowledge represent the well-known
complement of market pull and technology push that has
been posited to drive innovation in a wide range of contexts
[52].

4.2.2. Community and Network. Community and network
was found to be the second most important driver of software
product and service innovation. Since knowledge creation
and use are understood to be a social process [57], innovation
researchers have tended to emphasize the importance of
communities and networks to successful innovation [58].
National and regional development projects, science parks,
silicon valleys, and industry and university collaborations
are often created to encourage innovations and ensure that
these innovations spawn further innovations. However, the
software industry has witnessed the emergence of a specific
form of community-based innovation in the form of the open
source movement [59, 60]. The importance of this movement
is such that most major software firms now use open source
as an integral element of their innovation strategy [50]
with platform developers routinely using open strategies for
populating their platforms with applications [31].

According to [61], open source development is an exam-
ple of a private-collective model of innovation that represents
a form of innovation not previously seen in either private
industry or the collective knowledge creation efforts of
universities. Lee and Cole [54] point out that open source
brings specialist expertise together in a community that
can serve as the primary vehicle for knowledge generation.
Some types of open source development might even be
characterized as forms of user-driven software development,
involving open access to intellectual property such as source

Advances in Software Engineering

code in a model known as open innovation [50, 54, 60, 62-
67]. Supporting these models are developments in social
computing technologies that have significantly expanded the
nature and scope of the communities and networks that can
be drawn upon. The importance of new community forms is
evident in research examining the role of social networks in
innovation [68], the value of organizational web communities
[69], crowd sourced software innovation [66], and collective
invention [70].

4.2.3. User Involvement. Though some innovations are driven
by system developers and designers, research has increasingly
stressed the role of users in software innovation [65]. In
particular, customers can play an important role in the
commercialization of software inventions [71], assisting with
customization, requirements elicitation, and early invest-
ment. However, the notion of a user is such that users can
encompass a wide range of other stakeholders including
end users, developers that adapt an existing system, and
organizations that purchase software products and services.
For example, many open source developers are users of
the software they help to develop such that innovations in
this software are often inspired by the application of their
knowledge to unmet needs. As a consequence, integrating
user knowledge and expertise into the development process
is thought to be of central importance to the innovation
that takes place via agile methods [55], particularly given
that users often produce more creative ideas than developers
[27]. Moreover, users with special skills that enable them
to conceptualise [5] and prototype software systems are
important to user-driven innovation [28, 29, 39,72, 73]. These
lead users can be especially valuable when sticky knowledge
makes it difficult for software engineers to understand the use
context.

4.3. Team Process Drivers. The next class of drivers relate
directly to the software development team and its processes.
Software is usually produced in teams that synthesize the
creative ideas of team members and external knowledge
into code that yields the product/service offerings of soft-
ware development organizations. As such, team and process
characteristics are intimately linked to the nature of the
products/services that are ultimately delivered.

4.3.1. Creative Cognition. Creative cognition research aims
to understand the creative state of mind and the creative
acts of individuals [74, 75], categorize different innovation
styles [76], develop creative thinking [77], and foster creative
talent in engineers [78]. As a result, it tends to be founded
upon theories drawn from the field of psychology. The basic
premise is that the creativity of participants in a system
development initiative can contribute significantly to the level
of innovation generated by this initiative. Avital and Teeni [5]
describe this generative capacity as “the ability to rejuvenate,
to produce new configurations and possibilities, to reframe
the way we see and understand the world and to challenge
the normative status quo in a particular task-driven context.”
Generative capacity has been reported to contribute to idea

generation, evaluation, improvement, and realisation [52, 79,
80]. This process of ideation is understood to be an important
collaborative process [81] that is closely linked to preexisting
knowledge or expertise [82]. A general review of creativity in
information systems research that explores some of the issues
discussed here is offered by Miiller and Ulrich [83].

4.3.2. Software Design Capability. Design capability encapsu-
lates developer capacity to integrate customer understanding,
market understanding, and technological advances into novel
and useful product features [84]. The relationship between
design and creativity is perhaps most fully explored in the
field of human-computer interaction (HCI) [85] though the
IS literature also contains numerous references to the role
of design in innovation. Notably, Martin [56] and Sas and
Zhang [86] suggest that design is of central importance to
the innovation effort. Similarly, Leonardi [87] discusses the
impact of designer background on technology outcomes,
suggesting the importance of “an innovator’s vision of what
functionality the built technology (the technological artefact)
should have”. Avital and Teeni [5] go beyond the functionality
represented in a simple feature set to develop the idea of
generative fit as a design characteristic of certain innovative
systems. In aggregate, these observations serve to highlight
the broad based importance of a development team’s design
capability to innovation outcomes.

4.3.3. Teamwork. Effective teamwork is considered an essen-
tial feature of innovative projects [7, 88], contributing to team
efficiency and the personal satisfaction of team members.
The blend of experiences and competencies found in the
composition of a team are also of fundamental importance
to innovation [25]. As a result, numerous perspectives have
been adopted to explore the implications of teamwork for
software innovation. Cooper [25] focuses on how appro-
priate group norms, task clarity, and member diversity can
stimulate cross-fertilisation of ideas while van den Ende
and Wijnberg [40] consider the implications of internal and
external autonomy. Other elements of teamwork that have
been explored include dysfunction avoidance [89], suitable
role allocation [8], appropriate communicative interactions
[89, 90], the accommodation of divergent thinking, and team
learning [91]. Finally, Tiwana and McLean [92] highlight the
importance of expertise integration [3, 41, 87] which they
see as the capacity to exploit knowledge transfer between
team members who possess different skills. An important
facilitator of such integration as well as effective team work
in general is the development of shared understanding and
relational capital among team members [69, 93-96].

4.3.4. Innovation Tools and Techniques. Software innovation
is often assumed to benefit from access to a repertoire of
suitable creativity techniques and support tools as well as
situational knowledge of when to apply them [97]. Our
work suggests that these tools and techniques are especially
important drivers of software process innovation. In this vein,
Couger et al. [98] report on the use of analytical techniques

10

(progressive abstraction, interrogatories, and force field anal-
ysis) as well as intuitive techniques (associations/images,
wishful thinking, and analogy/metaphor) to support creativ-
ity in the systems development effort [83]. Related literature
explores creativity support systems [97, 99-101] which can
be defined as software systems designed to underpin creative
work. Given the relevance of such systems to any creative
endeavour, they are of potential importance to innovation in
the software development context. Other tools that have been
experimented with include decision support systems [9],
collaborative work systems [102], and programming toolkits
[103]. Finally, specialized forms of toolkits have also been
developed to assist end users in the innovation process [40,
50, 73].

4.3.5. Development Framework. Development frameworks
provide the foundation for an organizations approach to
software development by offering support for processes,
underlying assumptions, and work practice norms. One
stream of research associates agile methods with creativity
in development [8, 55, 104, 105]. Another related stream
of research focuses on experimentation in the design pro-
cess [6, 106]. In software development contexts this usually
involves the use of prototyping, particularly where low-cost,
low-technology strategies are favoured [56, 107]. Another
important aspect of the development framework is the
installed technological base employed by the development
team. Programming languages, application programming
interfaces, standards, and development environments can all
have significant implications for software innovation.

An often-overlooked element of the development frame-
work is the extent to which consideration for innovation is
integral to the development process. Although there are many
innovation-oriented processes in other fields, innovation
has not been a core focus of software development process
designers. One exception is Aaens [8] Essence framework
which offers four views (product, process, paradigm, and
project) and three roles (challenger, responder, and child)
as guiding principles for innovative software development.
Other process strategies include creative requirements anal-
ysis such as the RESCUE method [108-110]. The RESCUE
method integrates requirements elicitation techniques within
a creativity framework to facilitate workshops with users at an
early stage in the software development effort. Such methods
highlight an important question concerning the extent to
which software development processes can be designed for
innovation.

4.4. Infrastructure Moderators. Inaddition to the managerial,
knowledge, and team process drivers of software innovation
evident in the literature, we also identified elements of infras-
tructure as having important moderating influences on soft-
ware innovation. Infrastructure determines the fundamental,
unavoidable technological and social conditions in which
innovative efforts are situated. These can include broad-
band availability and speed, microprocessor power, customer
experience, and user computer literacy. Since infrastructure
develops slowly in relation to the production of software, it

Advances in Software Engineering

often has significant implications for the innovations that can
be successful within a given window of time. In particular,
two key aspects or elements of infrastructure have been
reported to both enable and constrain innovation.

4.4.1. Installed Base. The first salient element of infras-
tructure is the technological ecosystem in which software
development is undertaken. At a societal level the exist-
ing technological infrastructure represents the technological
ecosystem [51] into which an innovation must fit [111].
The influence of this ecosystem is such that it becomes
essential that innovators understand technology trajectories
(112, 113] and convergence [114]. Since the installed base
evolves independent of a developer group, the timing of
innovations can become crucial [2]. If an innovation is
too early, supporting infrastructure such as communication
bandwidth and processing power may not be widely available.
If it is too late then the innovation has likely become evident
to many competitors.

4.4.2. Path Dependency. The second salient element of infras-
tructure relates to the technological capabilities that are
available to developers [6]. Infrastructures such as computing
architectures, operating systems, telecommunication plat-
forms, middleware, and programming languages all enable
and constrain software innovation in specific ways. Innova-
tions typically grow out of existing software systems which
are, themselves, part of the knowledge infrastructure [34]. As
a result, technological capabilities engender a form of path
dependency [51] that can have significant implications for
the innovations that are achievable and may require major
leadership interventions to change. Complicating efforts to
identify and understand key path dependencies is the fact that
infrastructures and architectures can evolve in parallel. In this
vein, Boland et al. [51] describe waves of innovations while
[30] highlights interrelations between business, platform, and
application architectures.

5. An Integrative Concept Map for
Software Innovation

Building on the preceding discussion of software innovation
outcomes and drivers, we consolidate key innovation drivers
into an integrative model of software innovation (Figure 2).
Figure 2 provides a high-level map of software innovation
that highlights the principal associations among salient inno-
vation drivers as well as between these drivers and the two
key forms of software innovation. The model makes it clear
that software innovation can be influenced by a wide range
of factors that arise at multiple levels of analysis. Innovation
can, for example, be driven by customer or user demands,
by the actions of organizational managers, and by actions
and characteristics of members of the software development
team. However, given that it is the software development
team that directly creates software products, the impact of
many drivers can be characterized as being largely mediated
through elements of the development team. Please note that
there is weaker support in the causal mapping analysis for

Advances in Software Engineering

1

Innovation leadership

Community and

User involvement
network

Innovation evaluation

(H13)

(H12)

Supporting tools and
techniques

Development

framework (H7-11)

(H14) (H15)

Knowledge leverage

(H16)

(H17)

Process innovation

Teamwork

(H1-5)

Creative cognition

(H18)

Product/service

Software design
capability

innovation

(He)

Infrastructure

FIGURE 6: Sketch for high-level factor model of software innovation with hypotheses. (HI) Innovation tools and techniques are positively
associated with product/service innovation. (H2) Development framework is positively associated with product/service innovation. (H3)
Teamwork is positively associated with product/service innovation. (H4) Creative cognition is positively associated with product/service
innovation. (H5) Software design capability is positively associated with product/service innovation. (H6) Infrastructure moderates (H1-5).
(H7) Innovation tools and techniques are positively associated with process innovation. (H8) Development framework is positively associated
with process innovation. (H9) Teamwork is positively associated with process innovation. (H10) Creative cognition is positively associated
with process innovation. (H11) Software design capability is positively associated with process innovation. (H12) Innovation evaluation is
positively associated with process innovation. (H13) Innovation leadership positively associated with process innovation. (H14) Community
and network is positively associated with knowledge leverage. (H15) User involvement is positively associated with knowledge leverage. (H16)
Knowledge leverage is positively associated with process innovation. (H17) Knowledge leverage is positively associated with product/service
innovation. (H18) Process innovation is positively associated with product/service innovation.

the individual infrastructural moderating effects than for the
other relationships. They are included for completeness and
consistency.

At a broad level of abstraction, the model presented in
Figure 2 postulates that team process drivers lie at the heart
of software innovation. These processes are influenced by
managerial activities of leadership and evaluation that are
undertaken by people inside the team (project leaders or
opinion formers) as well as by outsiders. Team processes
are also influenced by knowledge leverage itself driven by
relationships with customers and outside communities. Team
process drivers, knowledge leverage, and process innova-
tion ultimately influence product/service innovation. Process
innovation and product/service innovation are both enabled
and constrained by infrastructure factors present in the wider
social context.

In order to facilitate future research, Table 2 provides
working definitions for the key outputs of software inno-
vation (labelled (O1) and (O2) in the table), the salient
drivers of such innovation (labelled (Dx.y)), and the key
moderating factors (labelled (Mx.y)) evident in the literature.
In addition to defining these concepts, Table 2 also provides
definitions for the various elements that are linked to them
and a synopsis of their salient casual links or associations.
A detailed presentation of the supporting literature for these
definitions and associations can be found in Tables 8-10.

Researchers and practitioners can use the integrated, con-
solidated insights provided in Table 2 and Figure 2 to direct
research efforts and to steer practical initiatives in directions
that offer the most promising opportunities to improve the
innovation capacity of software development organizations.
We elaborate on our findings and the opportunities that they
present in the discussion in the next section.

12

TABLE 2: Concept definitions and associations.

Advances in Software Engineering

Concept

Definition

Principal associations

(O1) Product/service innovation

Novel and useful software products and
services representing a significant
advance or change in direction for a
company

Understood as an output influenced by
various drivers

(O2) Process innovation

Step-changes or significant modifications
in the processes used to develop software
products and services

Understood as an output influenced by
various drivers and often contributes to
product/service innovation

(D1) Innovation leadership

(D1.1) Work environment

(D1.2) Path creation

(D1.3) Portfolio management

(D1.4) Conflict resolution

Managing development teams to create
innovation

Promoting a creative work environment
and minimizing creativity barriers
Creating an overall sense of direction in
response to market and technology
developments

Steering multiple projects in relation to
innovation challenges

Resolving conflicts between individuals
and groups in the pursuit of innovation

Drives both process innovation and,
through heavy influence on team process,
product/service innovation

Promotes creative cognition and
teamwork

Drives product/service innovation
through team process

Can be a form of innovation evaluation

Enables creative cognition and teamwork

(D2) Innovation evaluation

The ability to reflectively evaluate ideas,
techniques, and processes for their
contribution to innovation

Drives product/service innovation
moderated by team process and also
relates to evaluation of ideas

(D3) Knowledge leverage

(D3.1) Absorptive capacity

(D3.2) Market understanding

(D3.3) Technology trajectory understanding

(D3.4) User domain understanding

(D3.5) Competitor understanding

The use of internal or external knowledge
to drive software innovation

The ability of a development team to find,
adapt, and exploit external knowledge in
software innovation

The use of information about software
markets to promote product innovation
The use of understandings of the probable
direction of software and hardware
infrastructures, platforms, and
technologies to guide innovation

Using understandings of customers’
business domain or specialized internal
knowledge to drive innovation
Monitoring competitors’ processes,
products, and services to inform
innovation

Drives product/service innovation and, to
a lesser extent, process innovation

Basis for leverage of other knowledge
drivers

Drives product/service innovation

Drives product/service innovation

Drives product/service innovation,
related to user involvement

Drives product/service innovation

(D4) Community and network

(D4.1) Open innovation

(D4.2) Open source

(D4.3) Crowd sourcing

Exploiting external connections,
collaborations, and partnerships to
promote innovation

Using open business models that partially
or wholly share intellectual property (e.g.,
code) to promote innovation

Exploiting open source code or
cooperation to drive innovation

Inviting the widespread participation of
potential users and customers to enhance
innovation

Strong connection with the various forms
of knowledge leverage

Strong connection with the various forms
of knowledge leverage

Has implications for both
product/services and process

Often includes a process innovation in
the incorporation of knowledge or ideas
into the development framework

(D5) User involvement

(D5.1) Customization

Involving users to stimulate innovation

Involving users in customization of
standard products and services

Drives both product/service innovation
and to a lesser extent process innovation,
through knowledge leverage, particularly
user domain knowledge

Involves development framework
adjustments

Advances in Software Engineering

TaBLE 2: Continued.

13

Concept

Definition

Principal associations

(D5.2) User-driven/lead user

Facilitating expert users with specialist
competences in directing software
innovation

Related to user toolkits, often the vehicle
for user innovation

(D6) Creative cognition

(D6.1) Generative capacity

(D6.2) Ideation expertise

The exploitation of individual cognitive
creativity for innovation

The ability to generate creative ideas and
solutions promoting innovation

The ability to refine and exploit creative
ideas to promote innovation

Involves process innovations and drives
product/service innovation

Involves process innovations and drives
product/service innovation

Involves process innovations and drives
product/service innovation, related to
evaluation

(D7) Software design capability
(D71) Concept

(D7.2) Feature set

The ability to design innovative software
products and services

The ability to develop overall concepts for
new products and services

The ability to create distinct sets of novel
and useful software functionality

Often a form of knowledge leverage
moderated by teamwork

Often the product of absorptive capacity

As above

(D8) Teamwork

(D8.1) Team composition

(D8.2) Expertise integration

(D8.3) Shared understanding

Organizing teamwork to promote
innovation

Selection of team members to promote
innovation

Facilitating dialogue between experts
with different technical and nontechnical
specializations

Building and maintaining a team’s
common purpose in the face of many
challenges and direction changes

Drives process innovations and
contributes to product/service innovation

Affects teamwork and generative capacity

Relationship with knowledge leverage

Also an innovation leadership task

(D9) Innovation tools & techniques

(D9.1) Creativity techniques

(D9.2) Creativity support tools

(D9.3) User toolkits

Using tools and techniques designed to
promote creativity in the development
process

The use of conceptual tools (such as
mind-mapping) to support innovation

The use of computerised tools designed to
support creativity to support innovation

The deployment of tools (often

computerised) to facilitate user

innovation, often in respect to a
technology platform

Strongly associated with process
innovation

Strong relation to development
framework, which promotes creative
cognition

Strong relation to development
framework, which promotes creative
cognition

Relates to user-driven innovation

(D10) Development framework

(D10.1) Agility

(D10.2) Creative requirements analysis

(D10.3) Experimentation/prototyping

The concepts, methods, and techniques
used to underpin software team’s
development effort in respect to
innovation

Use of agile methods, or adaptations of
agile methods as an innovation driver
Stimulating requirements gathering by
use of techniques designed to increase
users’ and customers’ creativity
Stimulating creativity by iterative use of
experimentation and/or prototyping in
the development process

Associated with process improvement

Associated with process improvement

Associated with process improvement

As above, often concerned with
exploitation of external knowledge

(M1) Infrastructure

(M1.1) Installed base

Recognizing social and technical
infrastructural preconditions for
innovation

Exploiting the technical development
environment of a software firm to
generate innovation

Moderates both product/service
innovation and process innovation

Moderates (enables and constrains) the
development effort and can be upgraded
to drive process innovation

14

Advances in Software Engineering

TaBLE 2: Continued.

Concept Definition

Principal associations

Recognizing innovation directions

(ML1.2) Path dependency
infrastructures

partially determined by developments in

Relates to installed base

TABLE 3: Target journals.

Journal

European Journal of Information Systems
Harvard Business Review

IEEE Transactions on Engineering Management
Information and Software Technology
Information Management

Information Systems Journal

Information Systems Research

International Journal of Technology Management
Journal of Information Technology

Journal of Management Information Systems
Journal of Product Innovation Management
Journal of Strategic Information Systems
Journal of Systems and Software

Journal of the Association for Information Systems
Management Science

MIS Quarterly

MIT Sloan Management Review

Organization Science

Organization Studies

R&D Management

Research Policy

6. Discussion

In this paper we set out to provide definitional focus and con-
ceptual organization to an emerging but hitherto fragmented
research area. Given the importance of innovation in the
organizational, managerial, and economic literatures and the
many advances in the computing science literature, it is not
surprising that there has been considerable work undertaken
in relation to innovation and software organizations. What is
somewhat more surprising is that this research area has been
slow to emerge as a prominent endeavour for information
systems researchers. As a discipline, we have been slow to
escape the historical legacy of software development research
focused on the automating of work processes and efficiency.
However, these are arguably no longer the principal drivers
of the software industry. At any rate, a successful software
company must incorporate innovation into its armoury
of capabilities. In addressing the question of “what drives
software innovation?” we synthesized a fragmented body of
work displaying many internal inconsistencies. As a basis
for this effort, we identified a core literature for software
innovation and analysed it using content analysis and causal

mapping to highlight salient trends and patterns. We defined
basic concepts for the research area, established important
associations among these concepts, and formulated a concep-
tual map of software innovation based on these linkages.

We can envisage several uses of our conceptual map by
researchers. Firstly the map can be used by researchers to
locate their work in relation to this emerging field and it
can be used to search for related work among the many
references categorized. It can also be extended or amended
to give a more up-to-date picture of research concerns as
the field evolves. Further to this, the conceptual map that
we provide can serve as a basis for the development of
various types of descriptive and normative theory through
the derivation of further concepts and the articulation and
empirical testing of the relationships between them. In fact,
significant opportunities exist in relation to research aimed at
empirically testing our research hypotheses and research that
seeks to explore our casual map in more depth.

Although our concept map is not formulated as a variance
or path model that explicitly depicts research hypotheses,
it does synthesize many researchers’ working hypotheses
(couched in many forms) about what drives software innova-
tion. As such, it can be used as a basis for developing specific
hypotheses related to software innovation (see Figure 6 for
an initial sketch). These hypotheses can then be empirically
tested either alone or in combinations. In contrast, qualitative
researchers might wish to undertake empirical work aimed at
refining our causal map or using this map to elucidate causal
patterns that apply to particular circumstances. This latter
line of inquiry would serve to further unpack our current
understanding given the potential for the elements of our
causal map to exhibit varying degrees of salience depending
on circumstances. It might, for example, be the case that
some drivers are more important for software development
organizations than for other types of organizations and this
can be empirically tested. Finally, there are some notable
opportunities to empirically explore the role of infrastructure
as a moderator of innovation and to undertake efforts aimed
at identifying other salient moderators of the context that
surrounds software innovation.

As our observations suggest, the development of an inte-
grative model often provokes more questions than it readily
answers. Interested researchers must be prepared to return to
the original contributions that we have summarized where
many discrepancies in concept terminology and numerous
conflicting assumptions are evident. Of notable concern is the
lack of consistency displayed in articulating the nature and
scope of innovation being discussed. The product/service dis-
tinction is not clearly maintained in the literature and other
constructs such as installed base, infrastructure, and platform
have been characterized as both sources and consequences of

Advances in Software Engineering

15

TABLE 4: Initial codes derived from Rose [2].

Codes Subcodes

Environmental factors o
timing
Network and community factors

Product design factors

Process factors

Markets, infrastructure, technology trajectories, convergence, and innovation

Open innovation models and open source movement

Customer/user input, market orientation, new technology incorporation, and novel
and useful product features

Development style, agility, requirements analysis, process frameworks/methods,

prototyping, and user-driven innovation

Psychological factors

Creative state, innovation styles, developing creative thinking, and fostering
creative talent in engineers

Dysfunction avoidance, role allocation, communicative interactions,

Team performance factors

accommodation of divergent thinking, team learning, absorptive capacity, and

expertise integration

Managerial factors
Tools and techniques factors

Evaluation factors Evaluation

Work environment, creativity barriers, and innovation leadership

Creativity techniques and support tools

innovation depending on the context and level of granularity
of the study. Knowledge leverage factors such as absorptive
capacity are often defined at the level of the firm though it
would seem that for the purposes of software development
they might be better conceptualized at the team level. In this
vein, it is not clear whether the preponderance of knowledge-
oriented studies is as a result of the behavioural bias of the
information systems discipline or if it simply reflects a basic
characteristic of software innovation. In any case, the more
recent emergence of design science as a major contributor
to the discipline should focus researcher attention on more
process-oriented factors such as software design capability
and design frameworks. Understanding in this area could
certainly be improved. For example, there would be value
in exploring creativity techniques that are more software
focused rather than being exclusively directed at the ideation
stage, in efforts to better understand the relationship between
agility and innovation and in the exploration of the value
of user-driven design as a method or strategy for software
development. The management of software innovation is
also surprisingly neglected in the information systems liter-
ature and could be better developed. Moreover, the role of
communities and partnerships in the ecosystems of software
innovator organizations lacks comprehensive investigation.

6.1. Implications for Practice. As an integrative work, our
efforts have numerous implications for practice. In broad
terms we have consolidated current understanding surround-
ing software innovation into a conceptual map that can be
used by practicing managers to evaluate their development
environments. These evaluations could be used to understand
the extent to which organizations are providing environments
that foster innovation, to identify areas of focus and neglect
within organizations or specific development groups, and
to recommend particular innovation approaches from the
literature that we reference. Further to this latter point, we
highlight the most important drivers of innovation so that

organizations seeking to improve their innovative capacity
know where to focus their resources. For example, the
particular salience of knowledge leverage suggests that this is
an important starting point in efforts to improve innovation
capacity. In addition to steering managers in particular direc-
tions, our results enumerate specific actions that should be
pursued in order to foster key drivers of software innovation.
Our work highlights, for example, that developing a sound
understanding of the user domain, the product market, and
the trajectory of technological development are all important
to organizations that wish to foster innovation through
knowledge leverage.

Analytical inquiry could be undertaken to compare
an organization against innovative organizations using the
parameters suggested by our causal map or to benchmark
innovative organizations against larger groups of organiza-
tions. A useful working hypothesis may be that innova-
tive organizations use specific configurations of innovation
drivers rather than attempting to create environments that
encompass the entire landscape of the map.

From a process perspective, we have reaffirmed the
importance of sound software development processes to
software product innovation. Our work suggests that these
processes should not be considered incidental as they can,
in fact, become a significant source of competitive advantage
owing to their path dependency, their relatively tacit nature,
and the fact that they are far less transparent to outside
observers than software product feature sets. Organizations
seeking to take advantage of this opportunity to achieve com-
petitive advantage can draw on our work to identify specific
actions that should be focal points of their efforts to develop
software development processes that foster the development
of innovative software products. In particular, we highlight
the importance of nurturing an environment that contributes
to teamwork and the need to provide appropriate tools as well
as a development framework that encourages innovation.
Further to this, we identify specific action items to foster these

16

TaBLE 5: Concept and innovation code cooccurrence in article
abstracts.

Concepts Peruct/ s<.ervice . Proces.s
innovation innovation
Environmental 16 1
Markets 13 5
Infrastructure
Technology trajectories 3 2
Convergence
Network and community 11 7
Open innovation models 2
Open source movement 2
Product design 2
Customer/user input 16 5
Market orientation 4
New technology incorporation 4
Novel and useful product) 1
features
Process 6 6
Development style 1 1
Agility 2 8
Requirements analysis 1 8
Process frameworks/methods 1 6
Prototyping 1
Innovation timing 1 8
User-driven innovation 1
Psychological 4
Creative state 1
Innovation styles 1
Developing creative thinking 4 9
FosFering creative talent in 1 6
engineers
Team performance 10 8
Dysfunction avoidance
Ideation 4 3
Role allocation
Communicative interactions 2
Accommodation of divergent
thinking
Team learning
Absorptive capacity
Expertise integration
Managerial 16 21
Work environment 10
Creativity barriers 1
Innovation leadership 1 3
Tool and technique 1
Creativity techniques 4 7
Support tools 16 13
Evaluation 8 3
Totals 272 203

Advances in Software Engineering

drivers of software process innovation. Organizations that,
for instance, find their teamwork in need of improvement
can draw on our work to recognize that managing team
composition, integrating suitable expertise, and fostering a
shared understanding are the most important contributors to
the type of teamwork that drives innovation.

6.2. Limitations. As with any work, the work that we have
reported upon is not without some limitations. Among these
is the potential for bias introduced as a consequence of our
reliance on ISI Web of Knowledge and Google Scholar to
identify research articles. While the inclusion of additional
data sources in our search efforts might have identified
additional work, comparisons of Web of Knowledge, Scopus,
and Google have failed to report consistent bias or gaps in
these sources [115]. Furthermore, the results of our study are
not based on individual contributions but on patterns that
can be observed across many contributions. We therefore
believe that it is unlikely that excluding consideration for
Scopus or other such sources had a significant impact on the
insights that we offer.

A second limitation relates to potential threats to the
validity of our work that arise as a consequence of the
process that we used to code our data. Coding efforts are
always somewhat vulnerable to various forms of researcher
bias. The salience of particular remarks might, for example,
be overlooked during the coding process or data might be
misunderstood and, as a result, coded incorrectly. However,
the results that we present are based on independent coding
and cross-checking by both authors and by an independent
researcher. Thus, while we acknowledge that coding is not an
exact science and is, therefore, vulnerable to coding errors,
we are confident that our results do not exhibit undue bias,
particularly in relation to our most salient observations.
These observations are based on recurring evidence that was
coded and cross-checked by multiple researchers. This makes
it quite unlikely that significant bias is present in our results.

7. Conclusion

Software producing organizations and ecosystems are now
commonplace and a majority of technology start-ups incor-
porate some form of software into their product offerings.
As such, innovation in the software development arena is
of fundamental and growing importance to the success of
many organizations as well as to our economic and social
wellbeing. Organizations are continuously pressed to find
new and better solutions to old problems and to respond in a
timely manner to new opportunities and challenges as they
arise. These efforts routinely draw on the potential of soft-
ware to deliver innovative solutions that provide powerful,
economical capabilities that would not otherwise be possible.
The information systems discipline is well placed to study
such organizations and how they innovate with the goal of
providing the guidance necessary to ensure the continued
vitality of software innovation. In particular, organizations
would benefit immensely from research efforts aimed at
exploring the drivers that we discuss and how these might

17

Advances in Software Engineering

0t ¥ ; z z TeI0L,

[e¥1] I I STOOL

[oor] I I IHDOL

k441 I I OSITY

[191] I I T4

[v6] ! I TANOId

[0¥1] I I T8 OM dIdI

[6€T “801] 4 4 ASDI
[8€T-9€T ‘L ‘9% ‘S “L¢] L 4 SSOIH
forr] I I sIa

[seT ‘o8] 4 4 TAISHA

[£o1 “S01] 4 4 Vi IHD

€L 6¢ €C 1T 1 e1o1,

[Fer “cet 2 “ev] id 4 (4 uoneAOUYDIY,
{soor# [cetl} 1 JuswaSeuey o18aens X sisdfeuy A8ojouyoday,
[1e1] I 1 Surrsaurduy syuswarmbay

[0€T ‘621 88 ‘€L ‘L9 ‘€9 “6S F€ ‘67] 01 i [4 € £ot[og yoreasay
[09 “0s] 4 I I Juswadeury (194

[821 L8 T8 S “€S ‘16 “L] L € [4 [4 20UdIg uoneZIULSIO
[£21 0T 86 “89 “¢¥ ‘8 ‘sT] 8 I I I I Aporrend) ST
{88s1# [9z1]} [STI “TL] € I 25Ua1g Juswaeury
[¥ea] I I 2oua10g 19IndWon) UI $310N] 21N

[ezt zen] 14 1 1 SW)SAS UOTBULIOJU] JOJ UOTIRIDOSSY 9} JO [BUINO[

[121 ‘1 ‘69 ‘8¢ ‘s¢ ‘€] 9 [1 JUdWAFeURIA] UOTIEAOUU] 1ONPOI JO [eUINOf
[26 ‘08 ‘6L “99] ¥ 4 4 SWA)SAS UOTRULIOJU] JUSWSFLURIA] JO [EUINO[
[9] 1 I JuswaSeue A Jo [ewnof

[ozt ‘11 4 I ASojoutpay, uorjeWLIOU] JO [RUINO[

[611 96 ‘€6 ¥9 “sS] S ¢ 4 juswaFeueA A3o[ouyda], Jo [EUINO[[PUOT)RUIIU]
[66] 1 1 Sa1pM3g 19ndWIo))-UBWNE] JO [EUINO[[BUOTIBUINU]

[s11°¢] 4 4 [PUINO[SWa)sAS uOnRWLIOJU]

{zest# [211]} I £8ojouyoa], a1em)j0§ puE UOHRWIOJU]

[og] 1 I JuswaSeuer 23 UOIRULIOJU]

[o¥] I I yuowadeuey SuneourSuyg uQ suonoesuel] TAI

[orr] ! ! 1eMYOS AT

[901 ‘18 ‘95 “9¢] i4 (4 I I MOIIAY SSAUISNY PIBAIRE]
(s8] I I suoneoriddy ym swais4g 3radxy

[¥¥ ‘6¢ ‘8] € 4 sua)sAg uonjeurroyuy jo rewmnof ueadomyg

(£2] I I juawoaSeury UORAOUU] PUR AJATIEID)

[s6] I 1 Surreourduy rernsnpuy xg sxondwo)

[¥o1] 1 1 1mduron

(e8] I SIV Y} JO SUOLIBIIUNWIWIO))

[£6] I I DV 243 JO SUOLRIIUNWIWO.)
S9oULIAY [B30L, SI0C-CI0C TI0C—-800T L00T-¥00CT €00C-000C 6661-9661 1661-8861 L861-F861 €861—0861 s[euImof

uorjesriqnd jo reax

‘uonyestjqnd jo 1eak pue jopIno uonestjqnd Aq pazLIBWIWNS SITIL JO 19S [BUL] :9 ATAV],

Advances in Software Engineering

18

€I

61

81

(44

€C

1T

61

aInjoniseryuy
SIomaurery
juawdopaasg
sanbruyps) pue
sjo0} Sunzoddng
Sromureay,
Aymiqedes
uSisop aremyos
uontugod
aAnjeaI)
JUSWIAA[OAUT J3S()
oMU

pue Arunururo)y
a8e1aAd]
a8pamouy
uonen[eAd
uorjeAouu[
dryszopeay
uorjeAOUU|
uoneAOUUT
$89201d
uoreAouur
9D1AI28/)2NPOIJ

Injdnaseryuy

Sromauresy
justudofaasg

sanbruye) pue

sjo0) Sunroddng PHOMUIERL,

Apqedes
udisap
2IEM)JOS

uontugod
aAT}RAID) 1980)

JUSWIAA[OAUT IOM)AU pue

Ayrunurwo))

a8erand]
aSpamoy

Ppaduanypjuy

UOTJENeAd
uoTjeAOUU]

dryszopeay
uorjeAOuU]

uoreAOuUL
§520014

uoneAouur
90TATIS/)oNPOIJ

Surouanyyuy

‘xiewr dews [esned pajeprjosuoy) i/ 414V],

Advances in Software Engineering

19

TABLE 8: Associations between drivers and product/service innovation.

Software innovation drivers Software innovation output Sources
Innovation leadership — [28, 34, 35, 39, 40, 51, 55, 56]
(i) Work environment — [33-35]

(ii) Path creation — [39-42, 51, 129]

(iii) Portfolio management — [39]

(iv) Conflict resolution

Innovation evaluation —
Knowledge leverage —

(i) Absorptive capacity —

(ii) Market understanding —

(iii) Technology trajectory understanding —
(iv) User domain understanding —
(v) Competitor understanding —
Community and network —

(i) Open innovation —

(ii) Open source —

(iii) Crowd sourcing —

User involvement —

(i) Customization —

(ii) User-driven/lead user —
Creative cognition —

(i) Generative capacity —

(ii) Ideation expertise —

Software design capability —

(i) Concept —

(ii) Feature set —

Teamwork —

(i) Team composition —

(ii) Expertise integration —

(iii) Shared understanding
Innovation tools & techniques

(i) Creativity techniques —

(ii) Creativity support tools —

(iii) User toolkits

Development framework

(i) Agility

(ii) Creative requirements analysis —
(iii) Experimentation/prototyping —
Infrastructure/installed base —

(i) Path dependency —

Product/service innovation

(82, 101, 122]

(3, 25, 35, 40-42, 54, 55, 72, 129, 130, 144]
(6, 28, 35, 39, 50, 65, 82, 121]
(35, 39, 40, 42, 52, 53, 121, 130]
(30, 34, 35, 39, 42, 51, 52, 130, 144]
(42, 56, 119, 120, 129, 144]
[35, 53]

(3, 34, 40, 50, 51, 54, 66, 67, 72, 81, 82, 130]
(50, 54, 65-67]

(65, 67,120]

[66]

(27, 29, 56, 66, 71, 73, 119, 122]
(71]

(27-29, 39, 72, 73]

(5, 25, 33, 79, 98, 101]
(5,27, 34, 66, 79, 81, 82, 100, 101]
(35, 52, 79, 100]

(105, 133]

(87,105, 133]

(87,133]

(25, 40, 88, 98]

(25]

(3, 41, 87]

(25]

(133]

(25, 33, 46, 79, 98, 133]

(5, 33,97, 100, 101]

[50, 73]

(105]

[105]

[25,71,105]

(6, 56, 106]

(30, 51]

[51]

— is a driver for/is associated with.

20 Advances in Software Engineering

TABLE 9: Associations between drivers and process innovation.

Software innovation drivers Software innovation output Sources
Innovation leadership — [36, 37, 39, 43, 44, 51, 55, 56, 83, 95, 137]
(i) Work environment — [36, 37, 83, 93, 95, 135, 138]
(ii) Path creation — [39, 51, 95]

(iii) Portfolio management — [39, 94]

(iv) Conflict resolution — [43]
Innovation evaluation — [60, 80, 82, 83, 95, 101, 136]
(i) Knowledge leverage — [25, 43, 64, 68, 69, 92, 95, 96, 107, 135]
(ii) Absorptive capacity — [6, 37, 82,127]

(iii) Market understanding — [36, 39, 52]

(iv) Technology trajectory understanding — [25, 37, 39, 51, 52, 83, 135]
(v) User domain understanding — [56, 68, 95, 131]

(vi) Competitor understanding

Community and network — [51, 63, 68, 69, 82,107, 123]
(i) Open innovation — [60, 63, 64]

(i) Open source — [59, 60]

(iii) Crowd sourcing — [63]

User involvement — [55, 56, 73, 105, 110, 116]
(i) Customization

(ii) User-driven/lead user — Process innovation [73]

Creative cognition — (80, 83, 86, 101, 125, 136, 138]
(i) Generative capacity — [37, 82, 92, 95, 101, 125]
(ii) Ideation expertise — [52, 80, 86]
Software design capability — [11, 86]

(i) Concept — [11]

(ii) Feature set — [11]

Teamwork — [69, 83, 88, 92, 95]

(i) Team composition — (8,92, 94, 95]

(ii) Expertise integration [59, 92]

(iii) Shared understanding — [69, 92-96]
Innovation tools & techniques — [25]

(i) Creativity techniques — (8, 25, 83,110, 131, 138]
(ii) Creativity support tools — (83, 93, 94, 99, 101, 125]
(iii) User toolkits — [11, 73, 83]
Development framework — [8, 11, 25, 104, 110, 116]
(i) Agility — [8, 55, 104]

(ii) Creative requirements analysis — [25, 93, 94, 110, 131]
(iii) Experimentation/prototyping — [6, 56,107]
Infrastructure/installed base

(i) Path dependency — [51]

TABLE 10: Associations between process innovation and product/service innovation.

Literature sources
Process innovation — Product/service innovation [8, 11, 25, 30, 55, 56, 60, 64, 69, 73, 80, 97, 99, 104, 105, 107, 110, 116]
Product/service innovation — Process innovation [42, 55, 56, 73]

Advances in Software Engineering

be leveraged in various ways to yield innovative, effective
software solutions while practicing managers can benefit
immediately through application of the insights we provide.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This research work is supported by the Danish Research
Council, Grant no. 12-133180, and the Judge School of Busi-
ness, Cambridge University.

References

[1] M. Pikkarainen, W. Codenie, N. Boucart, and J. A. Heredia
Alvaro, The Art of Software Innovation: Eight Practice Areas to
Inspire Your Business, Springer, Berlin, Germany, 2011.

[2] J. Rose, Software Innovation—Eight Work-Style Heuristics for
Creative System Developers, Software Innovation, Aalborg Uni-
versity, Aalborg, Denmark, 2010.

[3] A. Heirman and B. Clarysse, “Which tangible and intangible
assets matter for innovation speed in start-Ups?” Journal of
Product Innovation Management, vol. 24, no. 4, pp. 303-315,
2007.

[4] A. Onetti, A. Zucchella, M. V. Jones, and P. P. McDougall-
Covin, “Internationalization, innovation and entrepreneurship:
business models for new technology-based firms,” Journal of
Management & Governance, vol. 16, no. 3, pp. 337-368, 2012.

[5] M. Avital and D. Teeni, “From generative fit to generative
capacity: exploring an emerging dimension of information
systems design and task performance,” Information Systems
Journal, vol. 19, no. 4, pp. 345-367, 2009.

[6] J. Carlo, K. Lyytinen, and G. Rose, “A knowledge-based model
of radical innovation in small software firms,” MIS Quarterly,
vol. 36, no. 3, pp. 865-895, 2011.

[7] M. Hoegl and H. G. Gemuenden, “Teamwork quality and
the success of innovative projects: a theoretical concept and
empirical evidence,” Organization Science, vol. 12, no. 4, pp. 435-
449, 2001.

[8] I. Aaen, “Essence: facilitating software innovation,” European
Journal of Information Systems, vol. 17, no. 5, pp. 543-553, 2008.

[9] J.J.Elam and M. Mead, “Designing for creativity: considerations
for DSS development,” Information ¢ Management, vol. 13, no.
5, pp. 215-222, 1987,

[10] J. Fagerberg, “Innovation: a guide to the literature,” in The
Oxford Handbook of Innovation,]. Fagerberg, C. Mowery, and
R. Nelson, Eds., pp. 1-27, Oxford University Press, Oxford, UK,
2005.

[11] P. Quintas, “A product-process model of innovation in software
development,” Journal of Information Technology, vol. 9, no. 1,
pp. 3-17,1994.

[12] C. Christensen and M. Overdorf, “Meeting the challenge of
disruptive change,” Harvard Business Review, vol. 78, no. 2, pp.
66-76, 2000.

[13] B. Kitchenham and S. Charters, “Guidelines for performing
Systematic Literature reviews in Software Engineering Version
2.3 2007, https://www.cs.auckland.ac.nz/~norsaremah/2007%
20Guidelines%20for%20performing%20SLR%20in%20SE%
20v2.3.pdf.

21

[14] J. Webster and R. T. Watson, “Analyzing the past to prepare for
the future: writing a literature review;” MIS Quarterly, vol. 26,
no. 2, pp. 13-23, 2002.

(15] D.J. Bem, “Writing a review article for psychological bulletin,”
Psychological Bulletin, vol. 118, no. 2, pp. 172-177, 1995.

[16] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for
conducting systematic mapping studies in software engineer-
ing: an update,” Information and Software Technology, vol. 64,
pp. 1-18, 2015.

[17] J. D. Novak, Learning, Creating, and Using Knowledge: Concept
Maps as Facilitative Tools in Schools and Corporations, Lawrence
Erlbaum Associates, Mahwah, NJ, USA, 1988.

[18] D. Silverman, Interpreting Qualitative Data, SAGE, London,
UK, 2001.

[19] B. Berelson, Content Analysis in Communicative Research, Free
Press, New York, NY, USA, 1952.

[20] K. H. Krippendorft, Content Analysis: An Introduction to Its
Methodology, Sage, Thousand Oaks, Calif, USA, 2004.

[21] V. K. Narayanan and D. J. Armstrong, Causal Mapping for
Research in Information Technology, IGI Global, 2005.

[22] M. Laukkanen, “Comparative causal mapping and CMAP3
software in qualitative studies,” Forum Qualitative Sozialfor-
schung, vol. 13, no. 2, article 13, 2012, http://www.qualitative-
research.net/index.php/fqs/article/view/1846/3371.

[23] S. Wilkinson, “Focus group research,” in Qualitative Research:
Theory, Method and Practice, D. Silverman, Ed., SAGE Publica-
tions, London, UK, 1997.

[24] D. S. Cruzes and T. Dyba, “Recommended steps for thematic
synthesis in software engineering,” in Proceedings of the Inter-
national Symposium on Empirical Software Engineering and
Measurement (ESEM ’11), vol. 7491, pp. 275-284, IEEE, Banft,
Canada, September 2011.

[25] R. B. Cooper, “Information technology development creativity:
a case study of attempted radical change,” MIS Quarterly, vol.
24, no. 2, pp. 245-276, 2000.

[26] H.Xu, S. K. Sharma, and R. Hackney, “Web services innovation
research: towards a dual-core model,” International Journal of
Information Management, vol. 25, no. 4, pp. 321-334, 2005.

[27] P. Kristensson, P. R. Magnusson, and J. Matthing, “Users as a
hidden resource for creativity: findings from an experimental
study on user involvement,” Creativity and Innovation Manage-
ment, vol. 11, no. 1, pp. 55-61, 2002.

[28] S. Nambisan, R. Agarwal, and M. Tanniru, “Organizational
mechanisms for enhancing user innovation in information
technology,” MIS Quarterly, vol. 23, no. 3, pp. 365-395, 1999.

[29] P. Oliveira and E. Von Hippel, “Users as service innovators: the
case of banking services,” Research Policy, vol. 40, no. 6, pp. 806-
818, 2011.

[30] A. T. M. Aerts, J. B. M. Goossenaerts, D. K. Hammer, and J.
C. Wortmann, “Architectures in context: on the evolution of
business, application software, and ICT platform architectures,”
Information & Management, vol. 41, no. 6, pp. 781-794, 2004.

[31] K. Boudreau, “Open platform strategies and innovation: grant-
ing access vs. devolving control;” Management Science, vol. 56,
no. 10, pp. 1849-1872, 2010.

[32] J. D. Couger, “Press: measurement of the climate for creativity in
IS organizations,” Creativity and Innovation Management, vol. 5,
no. 4, pp. 273279, 1996.

[33] K. R. Maccrimmon and C. Wagner, “Stimulating ideas through
creativity software,” Management Science, vol. 40, no. 11, pp.
1514-1532, 1994.

22

[34] H. Romijn and M. Albaladejo, “Determinants of innovation
capability in small electronics and software firms in southeast
England,” Research Policy, vol. 31, no. 7, pp. 1053-1067, 2002.

[35] R. G. Cooper, “Perspective: the innovation dilemma: how
to innovate when the market is mature,” Journal of Product
Innovation Management, vol. 28, no. 1, pp. 2-27, 2011.

[36] R.Floridaand J. Goodnight, “Managing for creativity,” Harvard
Business Review, vol. 83, no. 7-8, pp. 124-193, 2005.

[37] E. R. Mclean and S. J. Smits, “The I/S leader as ‘innovator,’
in Proceedings of the 26th Hawaii International Conference on
System Sciences, vol. 4, pp. 352-358, IEEE, Wailea, Hawaii, USA,
January 1993.

[38] L. Gumusluoglu and A. Ilsev, “Transformational leadership and
organizational innovation: the roles of internal and external
support for innovation,” Journal of Product Innovation Manage-
ment, vol. 26, no. 3, pp. 264-277, 2009.

[39] N.P. Napier, L. Mathiassen, and D. Robey, “Building contextual
ambidexterity in a software company to improve firm-level
coordination,” European Journal of Information Systems, vol. 20,
no. 6, pp. 674-690, 2011.

J. van den Ende and N. Wijnberg, “The organization of inno-
vation and market dynamics: managing increasing returns in
software firms,” IEEE Transactions on Engineering Management,
vol. 50, no. 3, pp. 374-382, 2003.

[41] A. Weterings and S. Koster, “Inheriting knowledge and sustain-
ing relationships: what stimulates the innovative performance
of small software firms in the Netherlands?” Research Policy, vol.
36, no. 3, pp. 320-335, 2007.

[42] H.-L. Yang and S.-L. Hsiao, “Mechanisms of developing inno-
vative IT-enabled services: a case study of Taiwanese healthcare
service,” Technovation, vol. 29, no. 5, pp. 327-337, 2009.

[43] K. Sherif, R. W. Zmud, and G. J. Browne, “Managing peer-
to-peer conflicts in disruptive information technology innova-
tions: the case of software reuse;” MIS Quarterly, vol. 30, no. 2,
pp. 339-356, 2006.

[44] T. Ravichandran, “Software reusability as synchronous inno-
vation: a test of four theoretical models,” European Journal of
Information Systems, vol. 8, no. 3, pp. 183-199, 1999.

[45] B. M. Lobert and D. G. Dologite, “Measuring creativity of
information system ideas: an exploratory investigation,” in
Proceedings of the 27th Hawaii International Conference on
System Sciences, pp. 392-402, Wailea, Hawaii, USA, January
1994.

[46] D. L. Amoroso and J. D. Couger, “Developing information
systems with creativity techniques: an exploratory study,” in
Proceedings of the 28th Annual Hawaii International Conference
on System Sciences, vol. 4, pp. 720-728, Wailea, Hawaii, USA,
January 1995.

[40

[47] Z. Chen, “Toward a better understanding of idea processors,”
Information and Software Technology, vol. 40, no. 10, pp. 541-
553, 1998.

[48] A. Katsirikou and E. Sefertzi, “Innovation in the every day life
of libraries,” Technovation, vol. 20, no. 12, pp. 705-709, 2000.

[49] J.J. Shah, S. M. Smith, and N. Vargas-Hernandez, “Metrics for
measuring ideation effectiveness,” Design Studies, vol. 24, no. 2,
pp. 111-134, 2003.

[50] J. West and S. Gallagher, “Challenges of open innovation: the
paradox of firm investment in open-source software,” R ¢ D
Management, vol. 36, no. 3, pp. 319-331, 2006.

[51] R.]J. Boland Jr., K. Lyytinen, and Y. Yoo, “Wakes of innovation
in project networks: the case of digital 3-D representations

(54]

(56]
(57]
(58]

(59]

(60]

[61]

[62]

(63]

(64

(65]

(6]

Advances in Software Engineering

in architecture, engineering, and construction,” Organization
Science, vol. 18, no. 4, pp. 631-647, 2007.

A. Brem and K.-I Voigt, “Integration of market pull and
technology push in the corporate front end and innovation
management—insights from the German software industry;
Technovation, vol. 29, no. 5, pp. 351-367, 2009.

S. E Turner, W. Mitchell, and R. A. Bettis, “Responding to rivals
and complements: how market concentration shapes genera-
tional product innovation strategy;,” Organization Science, vol.
21, no. 4, pp. 854-872, 2010.

G. K. Lee and R. E. Cole, “From a firm-based to a community-
based model of knowledge creation: the case of the Linux kernel
development,” Organization Science, vol. 14, no. 6, pp. 633-649,
2003.

O. Gassmann, P. Sandmeier, and C. H. Wecht, “Extreme
customer innovation in the front-end: learning from a new
software paradigm,” International Journal of Technology Man-
agement, vol. 33, no. 1, pp. 46-66, 2006.

R. L. Martin, “The innovation catalysts,” Harvard Business
Review, vol. 89, no. 6, pp. 82-87, 2011.

I. Nonaka, “The knowledge-creating company,” Harvard Busi-
ness Review, vol. 69, pp. 96-104, 1991.

I. Tuomi, Networks of Innovation: Change and Meaning in the
Age of the Internet, Oxford University Press, Oxford, UK, 2003.

G. Von Krogh, S. Spaeth, and K. R. Lakhani, “Community,
joining, and specialization in open source software innovation:
a case study;” Research Policy, vol. 32, no. 7, pp. 1217-1241, 2003.
C. R. Lamastra, “Software innovativeness. A comparison
between proprietary and Free/Open Source solutions offered by
Italian SMEs,” R & D Management, vol. 39, no. 2, pp. 153-169,
2009.

E. Von Hippel and G. Von Krogh, “Open source software and
the ‘private-collective’ innovation model: issues for organiza-
tion science,” Organization Science, vol. 14, no. 2, pp. 209-225,
2003.

H. W. Chesbrough, Open Innovation: The New Imperative
for Creating and Profiting from Technology, Harvard Business
School Publishing, Boston, Mass, USA, 2003.

J. P. J. de Jong and E. von Hippel, “Transfers of user process
innovations to process equipment producers: a study of Dutch
high-tech firms,” Research Policy, vol. 38, no. 7, pp. 1181-1191,
2009.

S. Spaeth, M. Stuermer, and G. von Krogh, “Enabling knowledge
creation through outsiders: towards a push model of open
innovation,” International Journal of Technology Management,
vol. 52, no. 3-4, pp. 411-431, 2010.

M. Bogers, A. Afuah, and B. Bastian, “Users as innovators:
a review, critique, and future research directions,” Journal of
Management, vol. 36, no. 4, pp. 857-875, 2010.

J. M. Leimeister, M. Huber, U. Bretschneider, and H. Krc-
mar, “Leveraging crowdsourcing: activation-supporting com-
ponents for IT-based ideas competition,” Journal of Manage-
ment Information Systems, vol. 26, no. 1, pp. 197-224, 2009.

J. Henkel, “Selective revealing in open innovation processes: the
case of embedded Linux,” Research Policy, vol. 35, no. 7, pp. 953-
969, 2006.

P. H. Gray, P. Salvatore, and B. Iyer, “Innovation impacts of using
social bookmarking systems,” MIS Quarterly, vol. 35, no. 3, pp.
629-643, 2011.

C. C. Snow, Q. D. Fjeldstad, C. Lettl, and R. E. Miles, “Organiz-
ing continuous product development and commercialization:

Advances in Software Engineering

(70]

(71]

(72]

(73]

(74]

(75]

(76]

(80]

(87]

the collaborative community of firms model,” Journal of Product
Innovation Management, vol. 28, no. 1, pp. 3-16, 2011.

M. Osterloh and S. Rota, “Open source software development-
Just another case of collective invention?” Research Policy, vol.
36, no. 2, pp. 157-171, 2007.

G. A. Athaide, P. W. Meyers, and D. L. Wilemon, “Seller-buyer
interactions during the commercialization of technological pro-
cess innovations,” Journal of Product Innovation Management,
vol. 13, no. 5, pp- 406-421,1996.

P. D. Morrison, J. H. Roberts, and E. von Hippel, “Determinants
of user innovation and innovation sharing in a local market,”
Management Science, vol. 46, no. 12, pp- 1513-1527, 2000.

N. Franke and E. Von Hippel, “Satisfying heterogeneous user
needs via innovation toolkits: the case of Apache security
software,” Research Policy, vol. 32, no. 7, pp. 1199-1215, 2003.

G. Wallas, The Art of Thought, Jonathan Cape, London, UK,
1926.

M. Csikszentmihalyi, Creativity: Flow and the Psychology of
Discovery and Invention, Harper Perennial, New York, NY, USA,
1997.

W. Miller, J. Couger, and L. E Higgins, “Comparing innova-
tion styles profile of IS personnel to other occupations,” in
Proceedings of the 26th Hawaii International Conference on
System Sciences, vol. 4, pp. 378-386, IEEE, Wailea, Hawaii, USA,
January 1993.

E. De Bono, The Use of Lateral Thinking: A Textbook of
Creativity, Penguin, 1971.

J. D. Couger, “Creativity/innovation in information systems
organizations,” in Proceedings of the 30th Hawaii International
Conference on System Sciences, vol. 3, pp. 349-350, IEEE, Wailea,
Hawaii, USA, January 1997.

E. L. Santanen, R. O. Briggs, and G.-J. De Vreede, “Causal rela-
tionships in creative problem solving: comparing facilitation
interventions for ideation,” Journal of Management Information
Systems, vol. 20, no. 4, pp. 167-197, 2004.

R. O. Briggs and B. A. Reinig, “Bounded ideation theory,
Journal of Management Information Systems, vol. 27, no. 1, pp.
123-144, 2010.

G. P. Pisano and R. Verganti, “Which kind of collaboration is
right for you?” Harvard Business Review, vol. 86, no. 12, p. 76,
2008.

M. E. Sosa, “Where do creative interactions come from? The role
of tie content and social networks,” Organization Science, vol. 22,
no. 1, pp. 1-21, 2011.

S. D. Miiller and F. Ulrich, “Creativity and information systems
in a hypercompetitive environment: a literature review;” Com-
munications of the Association for Information Systems, vol. 32,
pp. 175-200, 2013.

E. B. Roberts, “Managing invention and innovation,” Research
Technology Management, vol. 50, no. 1, pp. 35-54, 2007.

X. Liu, Y. Li, P. Pan, and W. Li, “Research on computer-aided
creative design platform based on creativity model,” Expert
Systems with Applications, vol. 38, no. 8, pp. 9973-9990, 2011.

C. Sas and C. Zhang, “Investigating emotions in creative
design,” in Proceedings of the 1st DESIRE Network Conference on
Creativity and Innovation in Design (DESIRE ’10), pp. 138-149,
Aarhus, Denmark, August 2010.

P. M. Leonardi, “Innovation blindness: culture, frames, and
cross-boundary problem construction in the development of
new technology concepts,” Organization Science, vol. 22, no. 2,
pp. 347-369, 2011.

(88]

(89]

[95]

[96]

(97]

(98]

[101]

(102]

[103]

[104]

(105]

23

M. Hoegl and L. Proserpio, “Team member proximity and
teamwork in innovative projects,” Research Policy, vol. 33, no.
8, pp. 11531165, 2004.

E. W. Duggan and C. S. Thachenkary, “Integrating nomi-
nal group technique and joint application development for
improved systems requirements determination,” Information ¢
Management, vol. 41, no. 4, pp- 399-411, 2004.

E. W. Duggan, “Generating systems requirements with facili-
tated group techniques,” Human-Computer Interaction, vol. 18,
no. 4, pp. 373-394, 2003.

K. Lyytinen and G. M. Rose, “Information system development
agility as organizational learning,” European Journal of Informa-
tion Systems, vol. 15, no. 2, pp. 183-199, 2006.

A. Tiwana and E. R. McLean, “Expertise integration and
creativity in information systems development,” Journal of
Management Information Systems, vol. 22, no. 1, pp. 13-43, 2005.

A. Hesmer, K. A. Hribernik, J. M. Baalsrud Hauge, and K.-D.
Thoben, “Supporting the ideation processes by a collaborative
online based toolset,” International Journal of Technology Man-
agement, vol. 55, no. 3-4, pp. 218-225, 2011.

P. Hocova, J. E E Cunha, and Z. Stani¢ek, “Design and
management of an innovative software enterprise: a case study
of a spin-off from university;’ in Proceedings of the Portland
International Conference on Management of Engineering &
Technology (PICMET °09), D. E. Kocaoglu, T. R. Anderson, and
T. U. Daim, Eds., pp. 2788-2797, IEEE, Portland, Ore, USA,
August 2009.

T. Koc, “Organizational determinants of innovation capacity in
software companies;,” Computers & Industrial Engineering, vol.
53, no. 3, pp. 373-385, 2007.

L.-Y. Lu and C.-H. Wang, “Technology innovation and knowl-
edge management in the high-tech industry,” International
Journal of Technology Management, vol. 39, no. 1-2, pp. 3-19,
2007.

B. Shneiderman, “Creativity support tools: accelerating discov-
ery and innovation,” Communications of the ACM, vol. 50, no.
12, pp. 20-32, 2007.

J. Couger, L. Higgins, and S. C. McIntyre, “(Un)structured
creativity in information systems organizations,” MIS Quarterly,
vol. 17, no. 4, pp. 375-397, 1993.

T. T. Hewett, “Informing the design of computer-based envi-
ronments to support creativity;,” International Journal of Human
Computer Studies, vol. 63, no. 4-5, pp. 383-409, 2005.

B. E. N. Shneiderman, “Creating creativity: user interfaces

for supporting innovation,” ACM Transactions on Computer-
Human Interaction, vol. 7, no. 1, pp. 114-138, 2000.

B. Massetti, “An empirical examination of the value of creativity
support systems on idea generation,” MIS Quarterly, vol. 20, no.
1, pp. 83-97,1996.

J. W. Fellers and R. P. Bostrom, “Application of group sup-
port systems to promote creativity in information systems
organizations,” in Proceedings of the 26th Hawaii International
Conference on System Sciences, vol. 4, pp. 332-341, IEEE, Wailea,
Hawaii, USA, January 1993.

S. Greenberg, “Toolkits and interface creativity, Multimedia
Tools and Applications, vol. 32, no. 2, pp. 139-159, 2007.

J. Highsmith and A. Cockburn, “Agile software development:
the business of innovation,” Computer, vol. 34, no. 9, pp. 120-
127, 2001.

D. K. Busse, “Fast-tracking product innovation,” in Proceedings
of the 25th Extended Abstracts on Human Factors in Computing

24

Systems (CHI *07), pp. 1703-1708, ACM, San Jose, Calif, USA,
May 2007,

[106] S.Thomke, “Enlightened experimentation. The new imperative
for innovation,” Harvard Business Review, vol. 79, no. 2, pp. 66—
75, 2001.

[107] L. E. Holmquist, “User-driven innovation in the future applica-
tions lab,” in Proceedings of the Extended Abstracts on Human
Factors in Computing Systems (CHI EA °04), pp. 1091-1092,
ACM, Vienna, Austria, April 2004.

[108] N. Maiden, C. Ncube, and S. Robertson, “Can requirements be
creative? Experiences with an enhanced air space management
system,” in Proceedings of the 29th International Conference on
Software Engineering (ICSE "07), pp. 632-641, IEEE, Minneapo-
lis, Minn, USA, May 2007.

[109] A. Dearden and S. Howard, “Capturing user requirements and
priorities for innovative interactive systems,” in Proceedings

of the Australasian Computer Human Interaction Conference

(OzCHI ’98), pp. 160-167, IEEE, Adelaide, Australia, December

1998.

[110] N. Maiden, S. Manning, S. Robertson, and J. Greenwood,
“Integrating creativity workshops into structured requirements
processes,” in Proceedings of the 5th Conference on Designing
Interactive Systems: Processes, Practices, Methods, and Tech-
niques (DIS °04), pp. 113-122, ACM, Cambridge, Mass, USA,
August 2004.

[111] H. A. Koski, “The installed base effect: some empirical evidence
from the microcomputer market,” Economics of Innovation and
New Technology, vol. 8, no. 4, pp. 273-310, 1999.

[112] G. H. Walker, N. A. Stanton, and M. S. Young, “Where is
computing driving cars? A technology trajectory of vehicle
design,” International Journal of Human Computer Interaction,
vol. 13, no. 2, pp- 203-229, 2001.

[113] P. T. Helo, “Technology trajectories in mobile telecommu-
nications: analysis of structure and speed of development,’
International Journal of Mobile Communications, vol. 1, no. 3,
pp. 233-246, 2003.

[114] F Hacklin, V. Raurich, and C. Marxt, “How incremental innova-
tion becomes disruptive: the case of technology convergence,” in
Proceedings of the IEEE International Engineering Management
Conference: Innovation and Entrepreneurship for Sustainable
Development (IEMC '04), vol. 1, pp. 32-36, Singapore, October
2004.

[115] N. Bakkalbasi, K. Bauer, J. Glover, and L. Wang, “Three options
for citation tracking: Google Scholar, Scopus and Web of
Science,” Biomedical Digital Libraries, vol. 3, article 7, 2006.

[116] N. Maiden, A. Gizikis, and S. Robertson, “Provoking creativity:
imagine what your requirements could be like;” IEEE Software,
vol. 21, no. 5, pp. 68-75, 2004.

[117] M. Khurum, S. Fricker, and T. Gorschek, “The contextual nature
of innovation—an empirical investigation of three software
intensive products,” Information and Software Technology, vol.
57, no. 1, pp. 595-613, 2015.

J. L. Carlo, K. Lyytinen, and G. M. Rose, “Internet computing
as a disruptive information technology innovation: the role of
strong order effects,” Information Systems Journal, vol. 21, no. 1,
pp. 91-122, 2011.

[119] C. Raasch, “The sticks and carrots of integrating users into
product development,” International Journal of Technology
Management, vol. 56, no. 1, pp. 21-39, 2011.

(s

[120] E T. Igira, “The situatedness of work practices and organiza-
tional culture: implications for information systems innovation

Advances in Software Engineering

uptake,” Journal of Information Technology, vol. 23, no. 2, pp. 79-
88, 2008.

(121] M. E. Adams, G. S. Day, and D. Dougherty, “Enhancing new
product development performance: an organizational learning
perspective,” Journal of Product Innovation Management, vol. 15,
no. 5, pp. 403-422,1998.

[122] D. R. Compeau, D. R. Meister, and C. A. Higgins, “From
prediction to explanation: reconceptualizing and extending
the perceived characteristics of innovating,” Journal of the
Association of Information Systems, vol. 8, no. 8, pp. 409-439,
2007.

[123] M. Sojer and J. Henkel, “Code reuse in open source software
development: quantitative evidence, drivers, and impediments,’
Journal of the Association of Information Systems, vol. 11, no. 12,
pp. 868-901, 2010.

[124] C. L. de la Barra and B. Crawford, “Fostering creativity
thinking in agile software development,” in HCI and Usability
for Medicine and Health Care, vol. 4799 of Lecture Notes in
Computer Science, pp. 415-426, Springer, Berlin, Germany, 2007.

[125] G. M. Marakas and J. J. Elam, “Creativity enhancement in
problem solving: through software or process?” Management
Science, vol. 43, no. 8, pp. 1136-1146, 1997.

[126] Y. Huang, P. V. Singh, and K. Srinivasan, “Crowdsourcing new
product ideas under consumer learning,” Management Science,
vol. 60, no. 9, pp. 2138-2159, 2014.

[127] R. Zmud, “The effectiveness of external information channels
in facilitating innovation within software development groups,”
MIS Quarterly, vol. 7, no. 2, pp. 43-59, 1983.

[128] K. J. Boudreau, “Let a thousand flowers bloom? An early look
at large numbers of software app developers and patterns of
innovation,” Organization Science, vol. 23, no. 5, pp. 1409-1427,
2012.

[129] A. Weterings and R. Boschma, “Does spatial proximity to
customers matter for innovative performance? Evidence from
the Dutch software sector;” Research Policy, vol. 38, no. 5, pp.
746-755, 2009.

[130] S.-C.Hungand R. Whittington, “Agency in national innovation
systems: institutional entrepreneurship and the professionaliza-
tion of Taiwanese I'T;” Research Policy, vol. 40, no. 4, pp. 526538,
2011.

(131] L. Mich, D. M. Berry, and C. Anesi, “Applying a pragmatics-
based creativity-fostering technique to requirements elicita-
tion,” Requirements Engineering, vol. 10, no. 4, pp. 262-275,
2005.

[132] M. Sarma and T. Matheus, “Hybrid’ open source software
virtual communities of practice—a conceptual framework,”
Technology Analysis & Strategic Management, vol. 27, no. 5, pp.
569-585, 2015.

[133] E.CarayannisandJ. Coleman, “Creative system design method-
ologies: the case of complex technical systems,” Technovation,
vol. 25, no. 8, pp. 831-840, 2005.

[134] C.Koch, “Innovation networking between stability and political
dynamics,” Technovation, vol. 24, no. 9, pp. 729-739, 2004.

[135] M. Qin, “Determinants of information system innovation
behavior in enterprises: an empirical investigation,” in Pro-
ceedings of the International Conference on Management of
e-Commerce and e-Government (ICMECG ’09), pp. 223-227,
IEEE, Nanchang, China, September 2009.

[136] L. E. Higgins, “A comparison of scales for assessing personal
creativity in IS;” in Proceedings of 29th Hawaii International
Conference on System Sciences, vol. 4, pp. 13-19, IEEE, Wailea,
Hawaii, USA, January 1996.

Advances in Software Engineering

[137]

(138]

(139]

(140

[141]

(142

[143]

[144]

J. L. Sampler and D. F. Galletta, “Individual and organizational
changes necessary for the application of creativity techniques
in the development of information systems,” in Proceedings of
the 24th Annual Hawaii International Conference on System
Sciences, vol. 4, pp. 404-411, IEEE, Kauai, Hawaii, USA, January
1991.

T. A. Snow and J. D. Couger, “Creativity improvement inter-
vention in a system development work unit, in Proceedings
of the 24th Annual Hawaii International Conference on System
Sciences, vol. 4, pp. 412-418, IEEE, Kauai, Hawaii, USA, January

1991.

N. Maiden, S. Robertson, and J. Robertson, “Creative require-
ments: invention and its role in requirements engineering,” in
Proceedings of the 28th International Conference on Software
Engineering (ICSE "06), pp. 1073-1074, ACM, Shanghai, China,
May 2006.

K. Conboy, X. Wang, and B. Fitzgerald, “Creativity in agile sys-
tems development: a literature review;’ in Information Systems—
Creativity and Innovation in Small and Medium-Sized Enter-
prises: IFIP WG 8.2 International Conference, CreativeSME
2009, Guimardes, Portugal, June 21-24, 2009. Proceedings, G.
Dhillon, B. C. Stahl, and R. Baskerville, Eds., vol. 301 of IFIP
Advances in Information and Communication Technology, pp.
122-134, Springer, Berlin, Germany, 2009.

N. Maiden and S. Robertson, “Integrating creativity into
requirements processes: experiences with an air traffic man-
agement system,” in Proceedings of the 13th IEEE International
Conference on Requirements Engineering (RE '05), pp. 105-114,
IEEE, September 2005.

L. Mich, C. Anesi, and D. M. Berry, “Requirements engineering
and creativity: an innovative approach based on a model of
the pragmatics of communication,” in Proceedings of the 10th
Anniversary International Workshop on Requirements Engineer-
ing: Foundation for Software Quality (REFSQ °04), pp. 1-15, Riga,
Latvia, June 2004.

P. McBreen, “Creativity in software development,” in Proceed-
ings of the Tools 39: Technology of Object-Oriented Languages
and Systems, Software Technology for the Age of the Internet, Q. Y.
Li, R. Riehle, G. Pour, and B. Meyer, Eds., p. 390, Santa Barbara,
Calif, USA, August 2001.

S. Hanninen, “The ‘perfect technology syndrome’: sources, con-
sequences and solutions,” International Journal of Technology
Management, vol. 39, no. 1-2, pp. 20-32, 2007.

25

= _'A'. ' N - -
Advances in b ,“ . e industal Engineering
iR, ARINE - -
L& s S . Applied
. - o Computational

Intelligence and Soft
Ep/mputing—'

The Scientific ISR —
World Journal Sensor Networks

Advances in

Fuzzy

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications P eEsl

Artificial
Intelligence

Advances in
iomedical Imaging. M Artificial
‘ol Neural Systems

s

International Journal of
Computer Games 5 in
Technology oy re Engineering

Reconfigurable
Computing

Computational o
Journal of ¢ Hu;jja[)TCOrjj|3L|tey‘ \ntengence and 2 Electrical and Computer
Robotics Interaction Neuroscience Engineering

SN

