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The aim of this paper is to construct a fractal with the help of a finite family of generalized 𝐹-contraction mappings, a class of
mappings more general than contraction mappings, defined in the setup of 𝑏-metric space. Consequently, we obtain a variety of
results for iterated function system satisfying a different set of contractive conditions. Our results unify, generalize, and extend
various results in the existing literature.

1. Introduction and Preliminaries

Iterated function systems are method of constructing fractals
and are based on the mathematical foundations laid by
Hutchinson [1]. He showed that Hutchinson operator con-
structed with the help of a finite system of contraction map-
pings defined on Euclidean spaceR𝑛 has closed and bounded
subset of R𝑛 as its fixed point, called attractor of iterated
function system (see also [2]). In this context, fixed point
theory plays significant and vital role to help in construction
of fractals.

Fixed point theory is studied in environment created with
appropriate mappings satisfying certain conditions. Recently,
many researchers have obtained fixed point results for single
andmultivaluedmappings defined onmetrics spaces. Banach
contraction principle [3] is of paramount importance in
metrical fixed point theory with a wide range of applications,
including iterative methods for solving linear, nonlinear,
differential, integral, and difference equations. This initiated
several researchers to extend and enhance the scope ofmetric
fixed point theory. As a result, Banach contraction principles
have been extended either by generalizing the domain of the
mapping [4–10] or by extending the contractive condition on
the mappings [11–15]. There are certain cases when the range
𝑋 of a mapping is replaced with a family of sets possessing
some topological structure and consequently a single-valued

mapping is replaced with a multivalued mapping. Nadler
[16] was the first who combined the ideas of multivalued
mappings and contractions and hence initiated the study of
metric fixed point theory of multivalued operators; see also
[17–19]. The fixed point theory of multivalued operators pro-
vides important tools and techniques to solve the problems
of pure, applied, and computational mathematics which can
be restructured as an inclusion equation for an appropriate
multivalued operator.

The concept of metric has been generalized further in one
to many ways. The concept of 𝑏-metric space was introduced
by Czerwik in [20]. Since then, several papers have been
published on the fixed point theory of various classes of
single-valued and multivalued operators in 𝑏-metric space
[20–30].

In this paper, we construct a fractal set of iterated function
system, a certain finite collection of mappings defined on 𝑏-
metric space which induce compact valuedmappings defined
on a family of compact subsets of 𝑏-metric space. We prove
that Hutchinson operator defined with the help of a finite
family of generalized 𝐹-contraction mappings on a complete
𝑏-metric space is itself generalized 𝐹-contraction mapping
on a family of compact subsets of 𝑋. We then obtain a final
fractal obtained by successive application of a generalized 𝐹-
Hutchinson operator in 𝑏-metric space.
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Definition 1. Let𝑋 be a nonempty set and let 𝑏 ≥ 1 be a given
real number. A function 𝑑 : 𝑋 × 𝑋 → R+ is said to be a 𝑏-
metric if, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following conditions hold:

(b
1
) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,

(b
2
) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),

(b
3
) 𝑑(𝑥, 𝑦) ≤ 𝑏(𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)).

The pair (𝑋, 𝑑) is called 𝑏-metric space with parameter 𝑏 ≥ 1.
If 𝑏 = 1, then 𝑏-metric space is metric spaces. But the

converse does not hold in general [20, 21, 25].

Example 2 (see [31]). Let (𝑋, 𝑑) be a metric space, and
𝜌(𝑥, 𝑦) = (𝑑(𝑥, 𝑦))

𝑝, where 𝑝 > 1 is a real number. Then 𝜌
is 𝑏-metric with 𝑏 = 2𝑝−1.

Obviously conditions (b
1
) and (b

2
) of above definition are

satisfied. If 1 < 𝑝 < ∞, then the convexity of the function
𝑓(𝑥) = 𝑥

𝑝

(𝑥 > 0) implies

(
𝑎 + 𝑏

2
)

𝑝

≤
1

2
(𝑎
𝑝

+ 𝑏
𝑝

) , (1)

and hence (𝑎 + 𝑏)𝑝 ≤ 2𝑝−1(𝑎𝑝 + 𝑏𝑝) holds. Thus, for each
𝑥, 𝑦, 𝑧 ∈ 𝑋 we obtain

𝜌 (𝑥, 𝑦) = (𝑑 (𝑥, 𝑦))
𝑝

≤ (𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦))
𝑝

≤ 2
𝑝−1

((𝑑 (𝑥, 𝑧))
𝑝

+ (𝑑 (𝑧, 𝑦))
𝑝

)

= 2
𝑝−1

(𝜌 (𝑥, 𝑧) + 𝜌 (𝑧, 𝑦)) .

(2)

So condition (b
3
) of the above definition is satisfied and 𝜌 is

𝑏-metric.
If𝑋 = R (set of real numbers) and 𝑑(𝑥, 𝑦) = |𝑥−𝑦| is the

usual metric, then 𝜌(𝑥, 𝑦) = (𝑥 − 𝑦)2 is 𝑏-metric on R with
𝑏 = 2 but is not a metric on R.

Definition 3 (see [24]). Let (𝑋, 𝑑) be 𝑏-metric space. Then a
subset 𝐶 ⊆ 𝑋 is called

(i) closed if and only if, for each sequence {𝑥
𝑛
} in𝐶which

converges to an element𝑥, we have𝑥 ∈ 𝐶 (i.e.,𝐶 = 𝐶),
(ii) compact if and only if for every sequence of elements

of 𝐶 there exists a subsequence that converges to an
element of 𝐶,

(iii) bounded if and only if 𝛿(𝐶) fl sup{𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈
𝐶} < ∞.

LetH(𝑋) denote the set of all nonempty compact subsets
of𝑋. For 𝐴, 𝐵 ∈H(𝑋), let

𝐻(𝐴, 𝐵) = max{sup
𝑏∈𝐵

𝑑 (𝑏, 𝐴) , sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵)} , (3)

where 𝑑(𝑥, 𝐵) = inf{𝑑(𝑥, 𝑦) : 𝑦 ∈ 𝐵} is the distance of a point
𝑥 from the set 𝐵. The mapping 𝐻 is said to be the Pompeiu-
Hausdorff metric induced by 𝑑. If (𝑋, 𝑑) is a complete 𝑏-
metric space, then (H(𝑋),𝐻) is also a complete 𝑏-metric
space.

For the sake of completeness, we state that the following
lemma holds in 𝑏-metric space [32].

Lemma 4. Let (𝑋, 𝑑) be 𝑏-metric space. For all 𝐴, 𝐵, 𝐶,𝐷 ∈

H(𝑋), the following hold:

(i) If 𝐵 ⊆ 𝐶, then sup
𝑎∈𝐴
𝑑(𝑎, 𝐶) ≤ sup

𝑎∈𝐴
𝑑(𝑎, 𝐵).

(ii) sup
𝑥∈𝐴∪𝐵

𝑑(𝑥, 𝐶) = max{sup
𝑎∈𝐴
𝑑(𝑎, 𝐶), sup

𝑏∈𝐵
𝑑(𝑏,

𝐶)}.

(iii) One has𝐻(𝐴 ∪ 𝐵, 𝐶 ∪ 𝐷) ≤ max{𝐻(𝐴, 𝐶),𝐻(𝐵,𝐷)}.

The following lemmas from [20, 27, 28] will be needed in the
sequel to prove the main result of the paper.

Lemma 5. Let (𝑋, 𝑑) be 𝑏-metric space and𝐶𝐵(𝑋) denotes the
set of all nonempty closed and bounded subsets of𝑋. For 𝑥, 𝑦 ∈
𝑋 and 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋), the following statements hold:

(1) (𝐶𝐵(𝑋),𝐻) is 𝑏-metric space.
(2) 𝑑(𝑥, 𝐵) ≤ 𝐻(𝐴, 𝐵) for all 𝑥 ∈ 𝐴.
(3) One has 𝑑(𝑥, 𝐴) ≤ 𝑏(𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝐴)).

(4) For ℎ > 1 and 𝑎́ ∈ 𝐴, there is 𝑏́ ∈ 𝐵 such that 𝑑(𝑎́, 𝑏́) ≤
ℎ𝐻(𝐴, 𝐵).

(5) For every ℎ > 0 and 𝑎́ ∈ 𝐴, there is 𝑏́ ∈ 𝐵 such that
𝑑(𝑎́, 𝑏́) ≤ 𝐻(𝐴, 𝐵) + ℎ.

(6) For every 𝜆 > 0 and 𝑎̃ ∈ 𝐴, there is 𝑏̃ ∈ 𝐵 such that
𝑑(𝑎̃, 𝑏̃) ≤ 𝜆.

(7) For every 𝜆 > 0 and 𝑎̃ ∈ 𝐴, there is 𝑏̃ ∈ 𝐵 such that
𝑑(𝑎̃, 𝑏̃) ≤ 𝜆 implies𝐻(𝐴, 𝐵) ≤ 𝜆.

(8) 𝑑(𝑥, 𝐴) = 0 if and only if 𝑥 ∈ 𝐴 = 𝐴.
(9) For {𝑥

𝑛
} ⊆ 𝑋,

𝑑 (𝑥
0
, 𝑥
𝑛
) ≤ 𝑏𝑑 (𝑥

0
, 𝑥
1
) + ⋅ ⋅ ⋅ + 𝑏

𝑛−1

𝑑 (𝑥
𝑛−2
, 𝑥
𝑛−1
)

+ 𝑏
𝑛−1

𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) .

(4)

Definition 6. Let (𝑋, 𝑑) be 𝑏-metric space. A sequence {𝑥
𝑛
} in

𝑋 is called

(i) Cauchy if and only if, for 𝜀 > 0, there exists 𝑛(𝜀) ∈ N

such that for each 𝑛,𝑚 ≥ 𝑛(𝜀) one has 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜀,

(ii) convergent if and only if there exists 𝑥 ∈ 𝑋 such that
for all 𝜀 > 0 there exists 𝑛(𝜀) ∈ N such that for all
𝑛 ≥ 𝑛(𝜀) one has 𝑑(𝑥

𝑛
, 𝑥) < 𝜀. In this case one writes

lim
𝑛→∞

𝑥
𝑛
= 𝑥.

It is known that a sequence {𝑥
𝑛
} in 𝑏-metric space 𝑋 is

Cauchy if and only if lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
𝑛+𝑝
) = 0 for all 𝑝 ∈

N. A sequence {𝑥
𝑛
} is convergent to 𝑥 ∈ 𝑋 if and only if

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) = 0, and 𝑏-metric space (𝑋, 𝑑) is said to be

complete if every Cauchy sequence in𝑋 is convergent in𝑋.
An et al. [21] studied the topological properties of 𝑏-

metric spaces and stated the following assertions:

(c
1
) In 𝑏-metric space (𝑋, 𝑑), 𝑑 is not necessarily continu-
ous in each variable.
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(c
2
) In 𝑏-metric space (𝑋, 𝑑), if 𝑑 is continuous in one
variable then 𝑑 is continuous in other variables.

(c
3
) An open ball in 𝑏-metric space (𝑋, 𝑑) is not necessar-
ily an open set. An open ball is open if 𝑑 is continuous
in one variable.

Wardowski [33] introduced another generalized contrac-
tion called 𝐹-contraction and proved a fixed point result as
interesting generalization of the Banach contraction principle
in complete metric space (see also [34]).

Let ϝ be the collection of all continuous mappings 𝐹 :

R+ → R that satisfy the following conditions:

(𝐹
1
) 𝐹 is strictly increasing, that is, for all 𝛼, 𝛽 ∈ R+ such
that 𝛼 < 𝛽 implies that 𝐹(𝛼) < 𝐹(𝛽).

(𝐹
2
) For every sequence {𝛼

𝑛
} of positive real numbers,

lim
𝑛→∞

𝛼
𝑛
= 0 and lim

𝑛→∞
𝐹(𝛼
𝑛
) = −∞ are equiv-

alent.
(𝐹
3
) There exists ℎ ∈ (0, 1) such that lim

𝛼→0
+𝛼
ℎ

𝐹(𝛼) = 0.

Definition 7 (see [33]). Let (𝑋, 𝑑) be a metric space. A self-
mapping 𝑓 on 𝑋 is called 𝐹-contraction if, for any 𝑥, 𝑦 ∈ 𝑋,
there exist 𝐹 ∈ ϝ and 𝜏 > 0 such that

𝜏 + 𝐹 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝐹 (𝑑 (𝑥, 𝑦)) , (5)

whenever 𝑑(𝑓𝑥, 𝑓𝑦) > 0.
From (𝐹

1
) and (5), we conclude that

𝑑 (𝑓𝑥, 𝑓𝑦) < 𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋, 𝑓𝑥 ̸= 𝑓𝑦; (6)

that is, every 𝐹-contraction mapping is contractive, and in
particular, every 𝐹-contraction mapping is continuous.

Wardowski [33] proved that, in complete metric space
(𝑋, 𝑑), every 𝐹-contractive self-map has a unique fixed
point in 𝑋 and for every 𝑥

0
in 𝑋 a sequence of iterates

{𝑥
0
, 𝑓𝑥
0
, 𝑓
2

𝑥
0
, . . .} converges to the fixed point of 𝑓.

Let Υ be the set of all mapping 𝜏 : R
+
→ R

+
that is

satisfying lim inf
𝑡→0
𝜏(𝑡) > 0 for all 𝑡 ≥ 0.

Definition 8. Let (𝑋, 𝑑) be 𝑏-metric space. A self-mapping 𝑓
on𝑋 is called a generalized𝐹-contraction if, for any 𝑥, 𝑦 ∈ 𝑋,
there exist 𝐹 ∈ ϝ and 𝜏 ∈ Υ such that

𝜏 (𝑑 (𝑥, 𝑦)) + 𝐹 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝐹 (𝑑 (𝑥, 𝑦)) , (7)

whenever 𝑑(𝑓𝑥, 𝑓𝑦) > 0.

Theorem 9. Let (𝑋, 𝑑) be 𝑏-metric space and let 𝑓 : 𝑋 → 𝑋

be generalized 𝐹-contraction. Then one has the following:

(1) 𝑓maps elements inH(𝑋) to elements inH(𝑋).

(2) If, for any 𝐴 ∈H(𝑋),

𝑓 (𝐴) = {𝑓 (𝑥) : 𝑥 ∈ 𝐴} , (8)

then 𝑓 : H(𝑋) → H(𝑋) is a generalized 𝐹-
contraction mapping on (H(𝑋),𝐻).

Proof. As generalized 𝐹-contractive mapping is continuous
and the image of a compact subset under 𝑓 : 𝑋 → 𝑋 is
compact, we obtain

𝐴 ∈H (𝑋) implies 𝑓 (𝐴) ∈H (𝑋) . (9)

To prove (2), let 𝐴, 𝐵 ∈H(𝑋) with𝐻(𝑓(𝐴), 𝑓(𝐵)) ̸= 0. Since
𝑓 : 𝑋 → 𝑋 is a generalized 𝐹-contraction, we obtain

0 < 𝑑 (𝑓𝑥, 𝑓𝑦) < 𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦. (10)

Thus we have

𝑑 (𝑓𝑥, 𝑓 (𝐵)) = inf
𝑦∈𝐵

𝑑 (𝑓𝑥, 𝑓𝑦) < inf
𝑦∈𝐵

𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝐵) . (11)

Also

𝑑 (𝑓𝑦, 𝑓 (𝐴)) = inf
𝑥∈𝐴

𝑑 (𝑓𝑦, 𝑓𝑥) < inf
𝑥∈𝐴

𝑑 (𝑦, 𝑥) = 𝑑 (𝑦, 𝐴) . (12)

Now

𝐻(𝑓 (𝐴) , 𝑓 (𝐵)) = max{sup
𝑥∈𝐴

𝑑 (𝑓𝑥, 𝑓 (𝐵)) , sup
𝑦∈𝐵

𝑑 (𝑓𝑦, 𝑓 (𝐴))} < max{sup
𝑥∈𝐴

𝑑 (𝑥, 𝐵) , sup
𝑦∈𝐵

𝑑 (𝑦, 𝐴)} = 𝐻 (𝐴, 𝐵) . (13)

Strictly increasing 𝐹 implies

𝐹 (𝐻 (𝑓 (𝐴) , 𝑓 (𝐵))) < 𝐹 (𝐻 (𝐴, 𝐵)) . (14)

Consequently, there exists a function 𝜏 : R
+
→ R

+
with

lim inf
𝑡→0
𝜏(𝑡) > 0 for all 𝑡 ≥ 0 such that

𝜏 (𝐻 (𝐴, 𝐵)) + 𝐹 (𝐻 (𝑓 (𝐴) , 𝑓 (𝐵))) ≤ 𝐹 (𝐻 (𝐴, 𝐵)) . (15)

Hence 𝑓 : H(𝑋) → H(𝑋) is a generalized 𝐹-contraction.

Theorem 10. Let (𝑋, 𝑑) be 𝑏-metric space and let {𝑓
𝑛
: 𝑛 =

1, 2, . . . , 𝑁} be a finite family of generalized 𝐹-contraction self-
mappings on 𝑋. Define 𝑇 :H(𝑋) →H(𝑋) by

𝑇 (𝐴) = 𝑓
1
(𝐴) ∪ 𝑓

2
(𝐴) ∪ ⋅ ⋅ ⋅ ∪ 𝑓

𝑁
(𝐴) =

𝑁

⋃

𝑛=1

𝑓
𝑛
(𝐴) ,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝐴 ∈H (𝑋) .

(16)

Then 𝑇 is a generalized 𝐹-contraction onH(𝑋).
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Proof. We demonstrate the claim for 𝑁 = 2. Let 𝑓
1
, 𝑓
2
:

𝑋 → 𝑋 be two 𝐹-contractions. Take 𝐴, 𝐵 ∈ H(𝑋) with
𝐻(𝑇(𝐴), 𝑇(𝐵)) ̸= 0. From Lemma 4 (iii), it follows that

𝜏 (𝐻 (𝐴, 𝐵)) + 𝐹 (𝐻 (𝑇 (𝐴) , 𝑇 (𝐵))) = 𝜏 (𝐻 (𝐴, 𝐵))

+ 𝐹 (𝐻 (𝑓
1
(𝐴) ∪ 𝑓

2
(𝐴) , 𝑓

1
(𝐵) ∪ 𝑓

2
(𝐵)))

≤ 𝜏 (𝐻 (𝐴, 𝐵))

+ 𝐹 (max {𝐻 (𝑓
1
(𝐴) , 𝑓

1
(𝐵)) ,𝐻 (𝑓

2
(𝐴) , 𝑓

2
(𝐵))})

≤ 𝐹 (𝐻 (𝐴, 𝐵)) .

(17)

Definition 11. Let (𝑋, 𝑑) be a metric space. A mapping 𝑇 :

H(𝑋) → H(𝑋) is said to be a Ciric type generalized 𝐹-
contraction if, for 𝐹 ∈ ϝ and 𝜏 ∈ Υ such that, for any 𝐴,
𝐵 ∈H(𝑋) with𝐻(𝑇(𝐴), 𝑇(𝐵)) ̸= 0, the following holds:

𝜏 (𝑀
𝑇
(𝐴, 𝐵)) + 𝐹 (𝐻 (𝑇 (𝐴) , 𝑇 (𝐵)))

≤ 𝐹 (𝑀
𝑇
(𝐴, 𝐵)) ,

(18)

where

𝑀
𝑇
(𝐴, 𝐵) = max {𝐻 (𝐴, 𝐵) ,𝐻 (𝐴, 𝑇 (𝐴)) ,

𝐻 (𝐵, 𝑇 (𝐵)) ,
𝐻 (𝐴, 𝑇 (𝐵)) + 𝐻 (𝐵, 𝑇 (𝐴))

2𝑏
,

𝐻 (𝑇
2

(𝐴) , 𝑇 (𝐴)) ,𝐻 (𝑇
2

(𝐴) , 𝐵) ,

𝐻 (𝑇
2

(𝐴) , 𝑇 (𝐵))} .

(19)

Theorem 12. Let (𝑋, 𝑑) be 𝑏-metric space and let {𝑓
𝑛
: 𝑛 =

1, 2, . . . , 𝑁} be a finite sequence of generalized 𝐹-contraction
mappings on𝑋. If 𝑇 :H(𝑋) →H(𝑋) is defined by

𝑇 (𝐴) = 𝑓
1
(A) ∪ 𝑓

2
(𝐴) ∪ ⋅ ⋅ ⋅ ∪ 𝑓

𝑁
(𝐴) =

𝑁

⋃

𝑛=1

𝑓
𝑛
(𝐴) ,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝐴 ∈H (𝑋) ,

(20)

then 𝑇 is a Ciric type generalized 𝐹-contraction mapping on
H(𝑋).

Proof. Using Theorem 10 with property (𝐹
1
), the result

follows.

An operator 𝑇 in above theorem is called Ciric type
generalized 𝐹-Hutchinson operator.

Definition 13. Let𝑋 be a complete 𝑏-metric space. If𝑓
𝑛
: 𝑋 →

𝑋, 𝑛 = 1, 2, . . . , 𝑁, are generalized 𝐹-contraction mappings,
then (𝑋; 𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑁
) is called generalized 𝐹-contractive

iterated function system (IFS).
Thus generalized 𝐹-contractive iterated function system

consists of a complete 𝑏-metric space and finite family of
generalized 𝐹-contraction mappings on𝑋.

Definition 14. A nonempty compact set 𝐴 ⊂ 𝑋 is said to be
an attractor of the generalized 𝐹-contractive IFS if

(a) 𝑇(𝐴) = 𝐴,

(b) there is an open set 𝑈 ⊆ 𝑋 such that 𝐴 ⊆ 𝑈 and
lim
𝑛→∞

𝑇
𝑛

(𝐵) = 𝐴 for any compact set 𝐵 ⊆ 𝑈, where
the limit is takenwith respect to theHausdorffmetric.

2. Main Results

We start with the following result.

Theorem 15. Let (𝑋, 𝑑) be a complete 𝑏-metric space and let
{𝑋; 𝑓
𝑛
, 𝑛 = 1, 2, . . . , 𝑘} be a generalized 𝐹-contractive iterated

function system. Then the following hold:

(a) A mapping 𝑇 :H(𝑋) →H(𝑋) defined by

𝑇 (𝐴) =

𝑘

⋃

𝑛=1

𝑓
𝑛
(𝐴) , ∀𝐴 ∈H (𝑋) , (21)

is Ciric type generalized 𝐹-Hutchinson operator.

(b) Operator 𝑇 has a unique fixed point 𝑈 ∈ H(𝑋); that
is,

𝑈 = 𝑇 (𝑈) =

𝑘

⋃

𝑛=1

𝑓
𝑛
(𝑈) . (22)

(c) For any initial set𝐴
0
∈H(𝑋), the sequence of compact

sets {𝐴
0
, 𝑇(𝐴
0
), 𝑇
2

(𝐴
0
), . . .} converges to a fixed point

of 𝑇.

Proof. Part (a) follows from Theorem 12. For parts (b) and
(c), we proceed as follows. Let 𝐴

0
be an arbitrary element

in H(𝑋). If 𝐴
0
= 𝑇(𝐴

0
), then the proof is finished. So we

assume that 𝐴
0
̸= 𝑇(𝐴
0
). Define

𝐴
1
= 𝑇 (𝐴

0
) , 𝐴
2
= 𝑇 (𝐴

1
) , . . . , 𝐴

𝑚+1
= 𝑇 (𝐴

𝑚
) (23)

for𝑚 ∈ N.
We may assume that 𝐴

𝑚
̸= 𝐴
𝑚+1

for all 𝑚 ∈ N. If not,
then 𝐴

𝑘
= 𝐴
𝑘+1

for some 𝑘 implies 𝐴
𝑘
= 𝑇(𝐴

𝑘
) and this

completes the proof. Take 𝐴
𝑚

̸= 𝐴
𝑚+1

for all 𝑚 ∈ N. From
(18), we have

𝜏 (𝑀
𝑇
(𝐴
𝑚
, 𝐴
𝑚+1
)) + 𝐹 (𝐻 (𝐴

𝑚+1
, 𝐴
𝑚+2
))

= 𝜏 (𝑀
𝑇
(𝐴
𝑚
, 𝐴
𝑚+1
))

+ 𝐹 (𝐻 (𝑇 (𝐴
𝑚
) , 𝑇 (𝐴

𝑚+1
)))

≤ 𝐹 (𝑀
𝑇
(𝐴
𝑚
, 𝐴
𝑚+1
)) ,

(24)
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where

𝑀
𝑇
(𝐴
𝑚
, 𝐴
𝑚+1
) = max{𝐻(𝐴

𝑚
, 𝐴
𝑚+1
) ,

𝐻 (𝐴
𝑚
, 𝑇 (𝐴

𝑚
)) ,𝐻 (𝐴

𝑚+1
, 𝑇 (𝐴

𝑚+1
)) ,

𝐻 (𝐴
𝑚
, 𝑇 (𝐴

𝑚+1
)) + 𝐻 (𝐴

𝑚+1
, 𝑇 (𝐴

𝑚
))

2𝑏
,

𝐻 (𝑇
2

(𝐴
𝑚
) , 𝑇 (𝐴

𝑚
)) ,𝐻 (𝑇

2

(𝐴
𝑚
) , 𝐴
𝑚+1
) ,

𝐻 (𝑇
2

(𝐴
𝑚
) , 𝑇 (𝐴

𝑚+1
))} = max{𝐻(𝐴

𝑚
, 𝐴
𝑚+1
) ,

𝐻 (𝐴
𝑚
, 𝐴
𝑚+1
) ,𝐻 (𝐴

𝑚+1
, 𝐴
𝑚+2
) ,

𝐻 (𝐴
𝑚
, 𝐴
𝑚+2
) + 𝐻 (𝐴

𝑚+1
, 𝐴
𝑚+1
)

2𝑏
,

𝐻 (𝐴
𝑚+2
, 𝐴
𝑚+1
) ,𝐻 (𝐴

𝑚+2
, 𝐴
𝑚+1
) ,

𝐻 (𝐴
𝑚+2
, 𝐴
𝑚+2
)} = max {𝐻 (𝐴

𝑚
, 𝐴
𝑚+1
) ,

𝐻 (𝐴
𝑚+1
, 𝐴
𝑚+2
)} .

(25)

In case𝑀
𝑇
(𝐴
𝑚
, 𝐴
𝑚+1
) = 𝐻(𝐴

𝑚+1
, 𝐴
𝑚+2
), we have

𝐹 (𝐻 (𝐴
𝑚+1
, 𝐴
𝑚+2
)) ≤ 𝐹 (𝐻 (𝐴

𝑚+1
, 𝐴
𝑚+2
))

− 𝜏 (𝐻 (𝐴
𝑚+1
, 𝐴
𝑚+2
)) ,

(26)

a contradiction as 𝜏(𝐻(𝐴
𝑚+1
, 𝐴
𝑚+2
)) > 0.Therefore𝑀

𝑇
(𝐴
𝑚
,

𝐴
𝑚+1
) = 𝐻(𝐴

𝑚
, 𝐴
𝑚+1
) and we have

𝐹 (𝐻 (𝐴
𝑚+1
, 𝐴
𝑚+2
)) ≤ 𝐹 (𝐻 (𝐴

𝑚
, 𝐴
𝑚+1
))

− 𝜏 (𝐻 (𝐴
𝑚
, 𝐴
𝑚+1
))

< 𝐹 (𝐻 (𝐴
𝑚
, 𝐴
𝑚+1
)) .

(27)

Thus {𝐻(𝐴
𝑚+1
, 𝐴
𝑚+2
)} is decreasing and hence convergent.

We now show that lim
𝑚→∞

𝐻(𝐴
𝑚+1
, 𝐴
𝑚+2
) = 0. By prop-

erty of 𝜏, there exists 𝑐 > 0 with 𝑛
0
∈ N such that

𝜏(𝐻(𝐴
𝑚
, 𝐴
𝑚+1
)) > 𝑐 for all𝑚 ≥ 𝑛

0
. Note that

𝐹 (𝐻 (𝐴
𝑚+1
, 𝐴
𝑚+2
)) ≤ 𝐹 (𝐻 (𝐴

𝑚
, 𝐴
𝑚+1
))

− 𝜏 (𝐻 (𝐴
𝑚
, 𝐴
𝑚+1
)) ≤ 𝐹 (𝐻 (𝐴

𝑚−1
, 𝐴
𝑚
))

− 𝜏 (𝐻 (𝐴
𝑚−1
, 𝐴
𝑚
)) − 𝜏 (𝐻 (𝐴

𝑚
, 𝐴
𝑚+1
)) ≤ ⋅ ⋅ ⋅

≤ 𝐻 (𝐴
0
, 𝐴
1
) − [𝜏 (𝐻 (𝐴

0
, 𝐴
1
))

+ 𝜏 (𝐻 (𝐴
1
, 𝐴
2
)) + ⋅ ⋅ ⋅ + 𝜏 (𝐻 (𝐴

𝑚
, 𝐴
𝑚+1
))]

≤ 𝐹 (𝐻 (𝐴
0
, 𝐴
1
)) − 𝑛

0

(28)

gives lim
𝑚→∞

𝐹(𝐻(𝐴
𝑚+1
, 𝐴
𝑚+2
)) = −∞ which together with

(𝐹
2
) implies that lim

𝑚→∞
𝐻(𝐴
𝑚+1
, 𝐴
𝑚+2
) = 0. By (𝐹

3
), there

exists ℎ ∈ (0, 1) such that

lim
𝑛→∞

[𝐻 (𝐴
𝑚+1
, 𝐴
𝑚+2
)]
ℎ

𝐹 (𝐻 (𝐴
𝑚+1
, 𝐴
𝑚+2
)) = 0. (29)

Thus we have

[𝐻 (𝐴
𝑚
, 𝐴
𝑚+1
)]
ℎ

𝐹 (𝐻 (𝐴
𝑚
, 𝐴
𝑚+1
))

− [𝐻 (𝐴
𝑚
, 𝐴
𝑚+1
)]
ℎ

𝐹 (𝐻 (𝐴
0
, 𝐴
1
))

≤ [𝐻 (𝐴
𝑚
, 𝐴
𝑚+1
)]
ℎ

(𝐹 (𝐻 (𝐴
0
, 𝐴
1
) − 𝑛
0
))

− [𝐻 (𝐴
𝑚
, 𝐴
𝑚+1
)]
ℎ

𝐹 (𝐻 (𝐴
0
, 𝐴
1
))

≤ −𝑛
0
[𝐻 (𝐴

𝑚
, 𝐴
𝑚+1
)]
ℎ

≤ 0.

(30)

On taking limit as 𝑛 → ∞weobtain that lim
𝑚→∞

𝑚[𝐻(𝐴
𝑚+1

,
𝐴
𝑚+2
)]
ℎ

= 0. Hence lim
𝑚→∞

𝑚
1/ℎ

𝐻(𝐴
𝑚+1
, 𝐴
𝑚+2
) = 0.There

exists 𝑛
1
∈ N such that 𝑚1/ℎ𝐻(𝐴

𝑚+1
, 𝐴
𝑚+2
) ≤ 1 for all 𝑚 ≥

𝑛
1
and hence 𝐻(𝐴

𝑚+1
, 𝐴
𝑚+2
) ≤ 1/𝑚

1/ℎ for all 𝑚 ≥ 𝑛
1
. For

𝑚, 𝑛 ∈ N with𝑚 > 𝑛 ≥ 𝑛
1
, we have

𝐻(𝐴
𝑛
, 𝐴
𝑚
) ≤ 𝐻 (𝐴

𝑛
, 𝐴
𝑛+1
) + 𝐻 (𝐴

𝑛+1
, 𝐴
𝑛+2
) + ⋅ ⋅ ⋅

+ 𝐻 (𝐴
𝑚−1
, 𝐴
𝑚
) ≤

∞

∑

𝑖=𝑛

1

𝑖1/ℎ
.

(31)

By the convergence of the series ∑∞
𝑖=1
(1/𝑖
1/ℎ

), we get
𝐻(𝐴
𝑛
, 𝐴
𝑚
) → 0 as 𝑛,𝑚 → ∞. Therefore {𝐴

𝑛
} is a Cauchy

sequence in𝑋. Since (H(𝑋), 𝑑) is complete, we have𝐴
𝑛
→ 𝑈

as 𝑛 → ∞ for some 𝑈 ∈H(𝑋).
In order to show that 𝑈 is the fixed point of 𝑇, we on the

contrary assume that Pompeiu-Hausdorff weight assigned to
𝑈 and 𝑇(𝑈) is not zero. Now

𝜏 (𝑀
𝑇
(𝐴
𝑛
, 𝑈)) + 𝐹 (𝐻 (𝐴

𝑛+1
, 𝑇 (𝑈)))

= 𝜏 + 𝐹 (𝐻 (𝑇 (𝐴
𝑛
) , 𝑇 (𝑈))) ≤ 𝐹 (𝑀

𝑇
(𝐴
𝑛
, 𝑈)) ,

(32)

where

𝑀
𝑇
(𝐴
𝑛
, 𝑈) = max{𝐻(𝐴

𝑛
, 𝑈) ,𝐻 (𝐴

𝑛
, 𝑇 (𝐴

𝑛
)) ,

𝐻 (𝑈, 𝑇 (𝑈)) ,
𝐻 (𝐴
𝑛
, 𝑇 (𝑈)) + 𝐻 (𝑈, 𝑇 (𝐴

𝑛
))

2𝑏
,

𝐻 (𝑇
2

(𝐴
𝑛
) , 𝑇 (𝐴

𝑛
)) ,𝐻 (𝑇

2

(𝐴
𝑛
) , 𝑈) ,

𝐻 (𝑇
2

(𝐴
𝑛
) , 𝑇 (𝑈))} = max{𝐻(𝐴

𝑛
, 𝑈) ,

𝐻 (𝐴
𝑛
, 𝐴
𝑛+1
) ,𝐻 (𝑈, 𝑇 (𝑈)) ,

𝐻 (𝐴
𝑛
, 𝑇 (𝑈)) + 𝐻 (𝑈,𝐴

𝑛+1
)

2𝑏
,𝐻 (𝐴

𝑛+2
, 𝐴
𝑛+1
) ,

𝐻 (𝐴
𝑛+2
, 𝑈) ,𝐻 (𝐴

𝑛+2
, 𝑇 (𝑈))} .

(33)

Now we consider the following cases:

(1) If𝑀
𝑇
(𝐴
𝑛
, 𝑈) = 𝐻(𝐴

𝑛
, 𝑈), then, on taking lower limit

as 𝑛 → ∞ in (32), we have

lim inf
𝑛→∞

𝜏 (𝐻 (𝐴
𝑛
, 𝑈)) + 𝐹 (𝐻 (𝑇 (𝑈) , 𝑈))

≤ 𝐹 (𝐻 (𝑈,𝑈)) ,

(34)

a contradiction as lim inf
𝑡→0
𝜏(𝑡) > 0 for all 𝑡 ≥ 0.
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(2) When 𝑀
𝑇
(𝐴
𝑛
, 𝑈) = 𝐻(𝐴

𝑛
, 𝐴
𝑛+1
), then, by taking

lower limit as 𝑛 → ∞, we obtain

lim inf
𝑛→∞

𝜏 (𝐻 (𝐴
𝑛
, 𝐴
𝑛+1
)) + 𝐹 (𝐻 (𝑇 (𝑈) , 𝑈))

≤ 𝐹 (𝐻 (𝑈,𝑈)) ,

(35)

which gives a contradiction.
(3) In case𝑀

𝑇
(𝐴
𝑛
, 𝑈) = 𝐻(𝑈, 𝑇(𝑈)), we get

𝜏 (𝐻 (𝑈, 𝑇 (𝑈))) + 𝐹 (𝐻 (𝑇 (𝑈) , 𝑈))

≤ 𝐹 (𝐻 (𝑈, 𝑇 (𝑈))) ,

(36)

a contradiction as 𝜏(𝐻(𝑈, 𝑇(𝑈))) > 0.
(4) If 𝑀

𝑇
(𝐴
𝑛
, 𝑈) = (𝐻(𝐴

𝑛
, 𝑇(𝑈)) + 𝐻(𝑈,𝐴

𝑛+1
))/2𝑏,

then, on taking lower limit as 𝑛 → ∞, we have

lim inf
𝑛→∞

𝜏(
𝐻 (𝐴
𝑛
, 𝑇 (𝑈)) + 𝐻 (𝑈,𝐴

𝑛+1
)

2𝑏
)

+ 𝐹 (𝐻 (𝑇 (𝑈) , 𝑈))

≤ 𝐹(
𝐻 (𝑈, 𝑇 (𝑈)) + 𝐻 (𝑈,𝑈)

2𝑏
)

= 𝐹(
𝐻 (𝑈, 𝑇 (𝑈))

2𝑏
) ,

(37)

a contradiction as 𝐹 is strictly increasing map.
(5) When𝑀

𝑇
(𝐴
𝑛
, 𝑈) = 𝐻(𝐴

𝑛+2
, 𝐴
𝑛+1
), then

lim inf
𝑛→∞

𝜏 (𝐻 (𝐴
𝑛+2
, 𝐴
𝑛+1
)) + 𝐹 (𝐻 (𝑇 (𝑈) , 𝑈))

≤ 𝐹 (𝐻 (𝑈,𝑈)) ,

(38)

which gives a contradiction.
(6) In case 𝑀

𝑇
(𝐴
𝑛
, 𝑈) = 𝐻(𝐴

𝑛+2
, 𝑈), then, on taking

lower limit as 𝑛 → ∞ in (32), we get

lim inf
𝑛→∞

𝜏 (𝐻 (𝐴
𝑛+2
, 𝑈)) + 𝐹 (𝐻 (𝑇 (𝑈) , 𝑈))

≤ 𝐹 (𝐻 (𝑈,𝑈)) ,

(39)

a contradiction.
(7) Finally if 𝑀

𝑇
(𝐴
𝑛
, 𝑈) = 𝐻(𝐴

𝑛+2
, 𝑇(𝑈)), then, on

taking lower limit as 𝑛 → ∞, we have

lim inf
𝑛→∞

𝜏 (𝐻 (𝐴
𝑛+2
, 𝑇 (𝑈))) + 𝐹 (𝐻 (𝑇 (𝑈) , 𝑈))

≤ 𝐹 (𝐻 (𝑈, 𝑇 (𝑈))) ,

(40)

a contradiction.

Thus, 𝑈 is the fixed point of 𝑇.

To show the uniqueness of fixed point of𝑇, assume that𝑈
and 𝑉 are two fixed points of 𝑇 with𝐻(𝑈,𝑉) being not zero.
Since 𝑇 is 𝐹-contraction map, we obtain that

𝜏 (𝑀
𝑇
(𝑈, 𝑉)) + 𝐹 (𝐻 (𝑈,𝑉))

= 𝜏 (𝑀
𝑇
(𝑈, 𝑉)) + 𝐹 (𝐻 (𝑇 (𝑈) , 𝑇 (𝑉)))

≤ 𝐹 (𝑀
𝑇
(𝑈, 𝑉)) ,

(41)

where

𝑀
𝑇
(𝑈, 𝑉) = max {𝐻 (𝑈,𝑉) ,𝐻 (𝑈, 𝑇 (𝑈)) ,

𝐻 (𝑉, 𝑇 (𝑉)) ,
𝐻 (𝑈, 𝑇 (𝑉)) + 𝐻 (𝑉, 𝑇 (𝑈))

2𝑏
,

𝐻 (𝑇
2

(𝑈) , 𝑈) ,𝐻 (𝑇
2

(𝑈) , 𝑉) ,𝐻 (𝑇
2

(𝑈) , 𝑇 (𝑉))}

= max {𝐻 (𝑈,𝑉) ,𝐻 (𝑈,𝑈) ,𝐻 (𝑉,𝑉) ,

𝐻 (𝑈,𝑉) + 𝐻 (𝑉,𝑈)

2𝑏
,𝐻 (𝑈,𝑈) ,𝐻 (𝑈,𝑉) ,𝐻 (𝑈,𝑉)}

= 𝐻 (𝑈,𝑉) ;

(42)

that is,

𝜏 (𝐻 (𝑈,𝑉)) + 𝐹 (𝐻 (𝑈,𝑉)) ≤ 𝐹 (𝐻 (𝑈,𝑉)) , (43)

a contradiction as 𝜏(𝐻(𝑈,𝑉)) > 0. Thus 𝑇 has a unique fixed
point 𝑈 ∈H(𝑋).

Remark 16. In Theorem 15, if we take S(𝑋) the collection
of all singleton subsets of 𝑋, then clearly S(𝑋) ⊆ H(𝑋).
Moreover, consider 𝑓

𝑛
= 𝑓 for each 𝑛, where 𝑓 = 𝑓

𝑖
for any

𝑖 ∈ {1, 2, 3, . . . , 𝑘}; then the mapping 𝑇 becomes

𝑇 (𝑥) = 𝑓 (𝑥) . (44)

With this setting we obtain the following fixed point result.

Corollary 17. Let (𝑋, 𝑑) be a complete 𝑏-metric space and let
{𝑋 : 𝑓

𝑛
, 𝑛 = 1, 2, . . . , 𝑘} be a generalized iterated function

system. Let 𝑓 : 𝑋 → 𝑋 be a mapping defined as in Remark 16.
If there exist some 𝐹 ∈ ϝ and 𝜏 ∈ Υ such that, for any 𝑥, 𝑦 ∈
H(𝑋) with 𝑑(𝑓(𝑥), 𝑓(𝑦)) ̸= 0, the following holds:

𝜏 (𝑀
𝑓
(𝑥, 𝑦)) + 𝐹 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝐹 (𝑀

𝑓
(𝑥, 𝑦)) , (45)

where

𝑀
𝑇
(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑓𝑦) ,

𝑑 (𝑥, 𝑓𝑦) + 𝑑 (𝑦, 𝑓𝑥)

2𝑏
, 𝑑 (𝑓
2

𝑥, 𝑦) , 𝑑 (𝑓
2

𝑥, 𝑓𝑥) ,

𝑑 (𝑓
2

𝑥, 𝑓𝑦)} ,

(46)

then 𝑓 has a unique fixed point in 𝑋.Moreover, for any initial
set 𝑥
0
∈ 𝑋, the sequence of compact sets {𝑥

0
, 𝑓𝑥
0
, 𝑓
2

𝑥
0
, . . .}

converges to a fixed point of 𝑓.
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Corollary 18. Let (𝑋, 𝑑) be a complete 𝑏-metric space and let
(𝑋; 𝑓
𝑛
, 𝑛 = 1, 2, . . . , 𝑘) be iterated function system where each

𝑓
𝑖
for 𝑖 = 1, 2, . . . , 𝑘 is a contraction self-mapping on 𝑋. Then

𝑇 : H(𝑋) → H(𝑋) defined in Theorem 15 has a unique
fixed point inH(𝑋). Furthermore, for any set𝐴

0
∈H(𝑋), the

sequence of compact sets {𝐴
0
, 𝑇(𝐴
0
), 𝑇
2

(𝐴
0
), . . .} converges to

a fixed point of 𝑇.

Proof. It follows from Theorem 10 that if each 𝑓
𝑖
for 𝑖 =

1, 2, . . . , 𝑘 is a contraction mapping on 𝑋, then the mapping
𝑇 :H(𝑋) →H(𝑋) defined by

𝑇 (𝐴) =

𝑘

⋃

𝑛=1

𝑓
𝑛
(𝐴) , ∀𝐴 ∈H (𝑋) , (47)

is contraction onH(𝑋). UsingTheorem 15, the result follows.

Corollary 19. Let (𝑋, 𝑑) be a complete 𝑏-metric space and let
(𝑋; 𝑓
𝑛
, 𝑛 = 1, 2, . . . , 𝑘) be an iterated function system. Suppose

that each 𝑓
𝑖
for 𝑖 = 1, 2, . . . , 𝑘 is a mapping on𝑋 satisfying

𝑑 (𝑓
𝑖
𝑥, 𝑓
𝑖
𝑦) 𝑒
𝑑(𝑓
𝑖
𝑥,𝑓
𝑖
𝑦)−𝑑(𝑥,𝑦)

≤ 𝑒
−𝜏(𝑑(𝑥,𝑦))

𝑑 (𝑥, 𝑦) , (48)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑓
𝑖
𝑥 ̸= 𝑓
𝑖
𝑦, where 𝜏 ∈ Υ.Then the mapping 𝑇 :

H(𝑋) →H(𝑋) defined inTheorem 15 has a unique fixed point
in H(𝑋). Furthermore, for any set 𝐴

0
∈ H(𝑋), the sequence

of compact sets {𝐴
0
, 𝑇(𝐴
0
), 𝑇
2

(𝐴
0
), . . .} converges to a fixed

point of 𝑇.

Proof. Take 𝐹(𝜆) = ln(𝜆) + 𝜆, 𝜆 > 0 inTheorem 10; then each
mapping 𝑓

𝑖
for 𝑖 = 1, 2, . . . , 𝑘 on𝑋 satisfies

𝑑 (𝑓
𝑖
𝑥, 𝑓
𝑖
𝑦) 𝑒
𝑑(𝑓
𝑖
𝑥,𝑓
𝑖
𝑦)−𝑑(𝑥,𝑦)

≤ 𝑒
−𝜏(𝑑(𝑥,𝑦))

𝑑 (𝑥, 𝑦) , (49)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑓
𝑖
𝑥 ̸= 𝑓

𝑖
𝑦, where 𝜏 ∈ Υ. Again from

Theorem 10, the mapping 𝑇 :H(𝑋) →H(𝑋) defined by

𝑇 (𝐴) =

𝑘

⋃

𝑛=1

𝑓
𝑛
(𝐴) , ∀𝐴 ∈H (𝑋) , (50)

satisfies

𝐻(𝑇 (𝐴) , 𝑇 (𝐵)) 𝑒
𝐻(𝑇(𝐴),𝑇(𝐵))−𝐻(𝐴,𝐵)

≤ 𝑒
−𝜏

𝐻(𝐴, 𝐵) , (51)

for all 𝐴, 𝐵 ∈ H(𝑋) and 𝐻(𝑇(𝐴), 𝑇(𝐵)) ̸= 0. Using
Theorem 15, the result follows.

Corollary 20. Let (𝑋, 𝑑) be a complete 𝑏-metric space and let
(𝑋;𝑓
𝑛
, 𝑛 = 1, 2, . . . , 𝑘) be iterated function system. Suppose

that each 𝑓
𝑖
for 𝑖 = 1, 2, . . . , 𝑘 is a mapping on𝑋 satisfying

𝑑 (𝑓
𝑖
𝑥, 𝑓
𝑖
𝑦) (𝑑 (𝑓

𝑖
𝑥, 𝑓
𝑖
𝑦) + 1)

≤ 𝑒
−𝜏(𝑑(𝑥,𝑦))

𝑑 (𝑥, 𝑦) (𝑑 (𝑥, 𝑦) + 1) ,

(52)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑓
𝑖
𝑥 ̸= 𝑓
𝑖
𝑦, where 𝜏 ∈ Υ. Then the mapping 𝑇 :

H(𝑋) →H(𝑋) defined inTheorem 15 has a unique fixed point
in H(𝑋). Furthermore, for any set 𝐴

0
∈ H(𝑋), the sequence

of compact sets {𝐴
0
, 𝑇(𝐴
0
), 𝑇
2

(𝐴
0
), . . .} converges to a fixed

point of 𝑇.

Proof. By taking 𝐹(𝜆) = ln(𝜆2 + 𝜆) + 𝜆, 𝜆 > 0, inTheorem 10,
we obtain that each mapping 𝑓

𝑖
for 𝑖 = 1, 2, . . . , 𝑘 on 𝑋

satisfies

𝑑 (𝑓
𝑖
𝑥, 𝑓
𝑖
𝑦) (𝑑 (𝑓

𝑖
𝑥, 𝑓
𝑖
𝑦) + 1)

≤ 𝑒
−𝜏(𝑑(𝑥,𝑦))

𝑑 (𝑥, 𝑦) (𝑑 (𝑥, 𝑦) + 1) ,

(53)

for all 𝑥, 𝑦 ∈ 𝑋,𝑓
𝑖
𝑥 ̸= 𝑓
𝑖
𝑦, where 𝜏 ∈ Υ. Again it follows from

Theorem 10 that the mapping 𝑇 :H(𝑋) →H(𝑋) defined by

𝑇 (𝐴) =

𝑘

⋃

𝑛=1

𝑓
𝑛
(𝐴) , ∀𝐴 ∈H (𝑋) , (54)

satisfies

𝐻(𝑇 (𝐴) , 𝑇 (𝐵)) (𝐻 (𝑇 (𝐴) , 𝑇 (𝐵)) + 1)

≤ 𝑒
−𝜏(𝐻(𝐴,𝐵))

𝐻(𝐴, 𝐵) (𝐻 (𝐴, 𝐵) + 1) ,

(55)

for all 𝐴, 𝐵 ∈ H(𝑋), 𝐻(𝑇(𝐴), 𝑇(𝐵)) ̸= 0. Using Theorem 15,
the result follows.

Corollary 21. Let (𝑋, 𝑑) be a complete 𝑏-metric space and let
(𝑋; 𝑓
𝑛
, 𝑛 = 1, 2, . . . , 𝑘) be iterated function system. Suppose

that each 𝑓
𝑖
for 𝑖 = 1, 2, . . . , 𝑘 is a mapping on𝑋 satisfying

𝑑 (𝑓
𝑖
𝑥, 𝑓
𝑖
𝑦) ≤

1

(1 + 𝜏 (𝑑 (𝑥, 𝑦))√𝑑 (𝑥, 𝑦))

2
𝑑 (𝑥, 𝑦) , (56)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑓
𝑖
𝑥 ̸= 𝑓
𝑖
𝑦, where 𝜏 ∈ Υ.Then the mapping 𝑇 :

H(𝑋) →H(𝑋) defined inTheorem 15 has a unique fixed point
H(𝑋). Furthermore, for any set 𝐴

0
∈ H(𝑋), the sequence of

compact sets {𝐴
0
, 𝑇(𝐴
0
), 𝑇
2

(𝐴
0
), . . .} converges to a fixed point

of 𝑇.

Proof. Take 𝐹(𝜆) = −1/√𝜆, 𝜆 > 0, in Theorem 10, and then
each mapping 𝑓

𝑖
for 𝑖 = 1, 2, . . . , 𝑘 on𝑋 satisfies

𝑑 (𝑓
𝑖
𝑥, 𝑓
𝑖
𝑦) ≤

1

(1 + 𝜏 (𝑑 (𝑥, 𝑦))√𝑑 (𝑥, 𝑦))

2
𝑑 (𝑥, 𝑦) ,

∀𝑥, 𝑦 ∈ 𝑋, 𝑓
𝑖
𝑥 ̸= 𝑓
𝑖
𝑦,

(57)

where 𝜏 ∈ Υ. Again it follows from Theorem 10 that the
mapping 𝑇 :H(𝑋) →H(𝑋) defined by

𝑇 (𝐴) =

𝑘

⋃

𝑛=1

𝑓
𝑛
(𝐴) , ∀𝐴 ∈H (𝑋) , (58)

satisfies

𝐻(𝑇 (𝐴) , 𝑇 (𝐵))

≤
1

(1 + 𝜏 (𝐻 (𝐴, 𝐵))√𝐻 (𝐴, 𝐵))
2
𝐻(𝐴, 𝐵) ,

(59)

for all 𝐴, 𝐵 ∈ H(𝑋), 𝐻(𝑇(𝐴), 𝑇(𝐵)) ̸= 0. Using Theorem 15,
the result follows.
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