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For a Z𝑑-valued random walk (𝑆𝑛)𝑛∈N0 , let 𝑙(𝑛, 𝑥) be its local time at the site 𝑥 ∈ Z𝑑. For 𝛼 ∈ N, define the 𝛼-fold self-
intersection local time as 𝐿𝑛(𝛼) fl ∑

𝑥
𝑙(𝑛, 𝑥)

𝛼. Also let 𝐿SRW
𝑛

(𝛼) be the corresponding quantities for the simple random walk in
Z𝑑. Without imposing any moment conditions, we show that the variance of the self-intersection local time of any genuinely
𝑑-dimensional random walk is bounded above by the corresponding quantity for the simple symmetric random walk; that is,
var(𝐿𝑛(𝛼)) = 𝑂(var(𝐿SRW

𝑛
(𝛼))). In particular, for any genuinely𝑑-dimensional randomwalk, with𝑑 ≥ 4, we have var(𝐿𝑛(𝛼)) = 𝑂(𝑛).

On the other hand, in dimensions 𝑑 ≤ 3 we show that if the behaviour resembles that of simple random walk, in the sense that
lim inf𝑛→∞ var(𝐿𝑛(𝛼))/ var(𝐿

SRW
𝑛

(𝛼)) > 0, then the increments of the randomwalkmust have zeromean and finite secondmoment.

1. Introduction and Main Results

Let𝑋,𝑋1, 𝑋2, . . . be independent, identically distributed,Z
𝑑-

valued randomvariables, and define the randomwalk 𝑆0 fl 0,
𝑆𝑛 = ∑

𝑛

𝑗=1
𝑋𝑗, for 𝑛 ≥ 1. The special case with P(𝑋𝑖 = 𝑒) =

1/(2𝑑), for all 𝑒 ∈ Z𝑑 with |𝑒| = 1, is known as the simple
random walk in Z𝑑 and will be denoted by (SRW𝑛)𝑛∈N0 .

Let 𝑙(𝑛, 𝑥) = ∑
𝑛

𝑗=1
1(𝑆𝑗 = 𝑥) be the local time of (𝑆𝑛)𝑛∈N0 at

the site 𝑥 ∈ Z𝑑, and define for a positive integer 𝛼 the 𝛼-fold
self-intersection local time

𝐿𝑛 = 𝐿𝑛 (𝛼) = ∑

𝑥∈Z𝑑

𝑙 (𝑛, 𝑥)
𝛼

=

𝑛

∑
𝑖1 ,...,𝑖𝛼=0

1 (𝑆𝑖1 = ⋅ ⋅ ⋅ = 𝑆𝑖𝛼) .

(1)

We will denote the corresponding quantities for simple
random walk in Z𝑑 by 𝐿SRW

𝑛
(𝛼, 𝑑) or simply 𝐿SRW

𝑛
(𝛼) when

the dimension is clear from the context.

Let 𝑅
+ and 𝑅

− be, respectively, the semigroup and the
group generated by the support of𝑋,

𝑅
+ fl {𝑥 ∈ Z

𝑑
| P (𝑆𝑛 = 𝑥) > 0 for some 𝑛 ≥ 0} ,

𝑅 fl {𝑥 ∈ Z
𝑑
| 𝑥 = 𝑦 − 𝑧 for some 𝑥, 𝑦 ∈ 𝑅

+
} .

(2)

Following Spitzer [1], we call the random variable 𝑋 and
the random walk it generates genuinely 𝑑-dimensional if the
group 𝑅 is 𝑑-dimensional.

The quantity 𝐿𝑛(𝛼) has received considerable attention
in the literature due to its relation to self-avoiding walks
and random walks in random scenery. In particular let the
random scenery {𝜉𝑥, 𝑥 ∈ Z𝑑} be a collection of i.i.d. random
variables, independent of (𝑆𝑛)𝑛, and define the process 𝑍0 =

0, 𝑍𝑛 = ∑
𝑛

𝑖=1
𝜉𝑆𝑖 . Then (𝑍𝑛)𝑛 is commonly referred to

as random walk in random scenery and was introduced in
Kesten and Spitzer [2], where functional limit theorems were
obtained for 𝑍[𝑛𝑡] under appropriate normalization for the
case 𝑑 = 1. The case 𝑑 = 2, with 𝑋𝑖 centered with
nonsingular covariance matrix, was treated in [3] where it
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was shown that𝑍[𝑛𝑡]/√𝑛 log 𝑛 converges weakly to Brownian
motion.As is obvious from the identities𝑍𝑛 = ∑

𝑥∈Z𝑑 𝑙(𝑛, 𝑥)𝜉𝑥
and var(𝑍𝑛) = var[𝐿𝑛(2)] var(𝜉𝑥), limit theorems for (𝑍𝑛)𝑛
usually require asymptotic results for the local times of the
random walk (𝑆𝑛)𝑛.

Such asymptotic results are usually obtained fromFourier
techniques applied to the characteristic function 𝑓(𝑡) =

E[exp(i𝑡 ⋅ 𝑋)], under the additional assumption of a Taylor
expansion of the form 𝑓(𝑡) = 1 − ⟨Σ𝑡, 𝑡⟩ + 𝑜(|𝑡|2), where Σ

is a positive definite covariance matrix [3–7], which further
requires that E|𝑋|2 < ∞ and E𝑋 = 0. Similar restrictions are
also required for the application of local limit theorems such
as in [8, 9].

In this paper, motivated by the results of Spitzer [1] for
genuinely 𝑑-dimensional random walks and the approach of
Becker and König [10], we will study the asymptotic behavior
of var(𝐿𝑛(𝛼)) without imposing any moment assumptions
on the random walk. The central idea behind our approach
is to compare the self-intersection local times 𝐿𝑛(𝛼) of a
general 𝑑-dimensional walk with those of its symmetrised
version. In addition we will compare the self-intersection
local times of a general 𝑑-dimensional random walk with
those of the 𝑑-dimensional simple symmetric random walk,
(SRW𝑛)𝑛∈N0 . It is well known that, for some positive constants
𝐾𝛼,𝑑, var(𝐿

SRW
𝑛

(𝛼, 𝑑)) ∼ 𝐾𝛼,𝑑V𝑑,𝛼(𝑛) as 𝑛 → ∞, for

V1,𝛼 (𝑛) fl 𝑛
1+𝛼

,

V2,𝛼 (𝑛) fl 𝑛
2 log (𝑛)2𝛼−4 ,

V3,𝛼 (𝑛) fl 𝑛 log (𝑛) ,

V𝑑,𝛼 (𝑛) fl 𝑛, 𝑑 ≥ 4.

(3)

Several other cases have been treated in the literature, using a
variety of methods.

A careful look at the literature reveals that the most
difficult case in 𝑑 = 2 is the near transient recurrent case,
where P(𝑆𝑛 = 0) ∼ 𝐶/𝑛, which corresponds to genuinely 2-
dimensional symmetric recurrent random walks, which will
be referred to as a critical case. Surprisingly enough, the
variance of the self-intersection local times in the critical case
is asymptotically the largest.

Theorem 1. Let 𝑋,𝑋1, 𝑋2, . . . be independent, identically
distributed, and genuinely 𝑑-dimensional Z𝑑-valued random
variables, for any 𝑑 ≥ 1. Then, there exist positive constants
𝐶𝛼,𝑋 > 𝑐𝛼,𝑋 > 0, depending on 𝛼 and the distribution of 𝑋,
such that for all 𝑛 large enough

var (𝐿𝑛 (𝛼)) ≤ 𝑐𝛼,𝑋 var (𝐿𝑆𝑅𝑊

𝑛
(𝛼, 𝑑)) ≤ 𝐶𝛼,𝑋V𝑑,𝛼 (𝑛) . (4)

The result was motivated by [1, 10] and improves related
results of Becker and König for 𝑑 = 3 and 𝑑 = 4. Several
cases treated in [3, 4, 10–13] can then be obtained as particular
cases.

Moreover, we also show the surprising converse. More
precisely, we show that the right asymptotic behaviour of
var(𝐿𝑛) implies that the jumpsmust have zeromean andfinite
second moment.

Theorem 2. Let 𝑋,𝑋1, 𝑋2, . . ., be independent, identically
distributed, and genuinely 𝑑-dimensional with 𝑑 ≤ 3. If

lim inf
𝑛→∞

var (𝐿𝑛 (𝛼))

var (𝐿𝑆𝑅𝑊
𝑛

(𝛼))
> 0, (5)

then E|𝑋|
2 < ∞ and E𝑋 = 0.

As it follows from Theorem 3 given below for 𝑑 = 2, 3

and from Theorem 5.2.3 in Chen [12] for 𝑑 = 1, if E𝑋 = 0

and 0 < E|𝑋|
2 < ∞, then lim inf𝑛 var(𝐿𝑛(𝛼))/V𝑑,𝛼(𝑛) > 0.

For any genuinely𝑑-dimensional randomwalkwith finite
second moments and zero mean, the asymptotic behaviour
of var(𝐿𝑛(𝛼)) is similar to that of the 𝑑-dimensional simple
symmetric random walk. Also, as it follows from our general
bounds (see Proposition 4 and Corollary 7) that the asymp-
totic results for the genuinely 𝑑-dimensional random walk
can be reproduced by those of the symmetric one-dimensional
random walk with appropriately chosen heavy tails, as was
indicated by Kesten and Spitzer [2]. The proofs are based on
adapting the Tauberian approach developed in [13].

Theorem 3. Let 𝑑 = 1, 2, 3, and suppose that for 𝑡 ∈ Γ fl
[−𝜋, 𝜋]

𝑑 one has

𝑓 (𝑡) = 1 − 𝛾 |𝑡| + 𝑅 (𝑡) , 𝑓𝑜𝑟 𝑑 = 1,

𝑜𝑟 𝑓 (𝑡) = 1 − ⟨Σ𝑡, 𝑡⟩ + 𝑅 (𝑡) , 𝑓𝑜𝑟 𝑑 = 2, 3,
(6)

where Σ is a nonsingular covariance matrix and 𝑅(𝑡) = 𝑜(|𝑡|)

for 𝑑 = 1 and 𝑜(|𝑡|2) for 𝑑 = 2, 3 as 𝑡 → 0. Then

var (𝐿𝑛 (𝛼))

∼

{{{{{{{{{

{{{{{{{{{

{

(𝜋
2 + 6)

12

(𝛼!)
2
(𝛼 − 1)

2

(𝛾𝜋)
2𝛼−2

𝑛2 log (𝑛)2𝛼−4 , 𝑓𝑜𝑟 𝑑 = 1,

(𝛼!)
2
(𝛼 − 1)

2

2 (2𝜋√|Σ|)
2𝛼−2

𝑛2 log (𝑛)2𝛼−4 (𝜅 + 1) , 𝑓𝑜𝑟 𝑑 = 2,

(𝜅1 + 𝜅2) 𝑛 log 𝑛, 𝑓𝑜𝑟 𝑑 = 3, 𝛼 = 2,

(7)

where

𝜅 fl ∬
∞

0

d𝑟 d𝑠 [(1 + 𝑟) (1 + 𝑠)√(1 + 𝑟 + 𝑠)
2
− 4𝑟𝑠]

−1

−
𝜋2

6
,

(8)

and 𝜅1 and 𝜅2 are defined in (58) and (63), respectively.
Moreover, if 𝐿(𝑛, 𝛼) is the self-intersection local time of

another randomwalk, independent of (𝑆𝑛)𝑛, whose characteris-
tic function also satisfies (6), then var(𝐿

𝑛
(𝛼)) = var(𝐿𝑛(𝛼))(1+

𝑜(1)).

2. Proofs

2.1. General Bounds. We first develop a technique to treat
random walks with independent but not necessarily identi-
cally distributed increments.
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Proposition 4 (general upper bound). Assume that 𝑋1,

𝑋2, . . . are independent Z𝑑-valued random variables and let
𝑆𝑢,V fl 𝑋𝑢 + ⋅ ⋅ ⋅ + 𝑋𝑢+V. Suppose further that for all 𝑛 ∈ N and
integers 𝑎, 𝑢, 𝑏, V ≥ 0, with 𝑎 + 𝑢 ≤ 𝑏 and any 𝑥 ∈ Z𝑑, one has

P (𝑆𝑎,𝑢 ± 𝑆𝑏,V = 𝑥) ≤ 𝜙 (𝑢 + V) , (A)

P (𝑆𝑎,𝑢 = 0) − P (𝑆𝑎,𝑢 + 𝑆𝑏,V = 0) ≤ 𝜓 (𝑢, V) , (B)

where 𝜙(𝑢) is nonincreasing and 𝜓(𝑢, V) is nonincreasing in 𝑢

and is nondecreasing and subadditive in V in the sense that
𝜓(𝑢, V + 𝑤) ≤ 𝐴𝜓[𝜓(𝑢, V) + 𝜓(𝑢, 𝑤)], for some constant 𝐴𝜓

independent of 𝑢, V, and 𝑤. Then, for some constant 𝐾 =

𝑐𝐴𝜓(1 + 𝐴𝜓)
𝛼−2 depending only on 𝛼

var (𝐿𝑛 (𝛼)) ≤ 𝐾𝑛(

𝑛−1

∑
𝑖=0

𝜙 (𝑖))

2𝛼−4

⋅

𝑛−1

∑
𝑖,𝑗,𝑘=0

[𝜙 (𝑗 ∨ 𝑖) 𝜙 (𝑘 ∨ 𝑖) + 𝜙 (𝑗) 𝜓 (𝑖 + 𝑘, 𝑗)] .

(9)

Proof of Proposition 4. Wefirst write out the variance as a sum

var (𝐿𝑛 (𝛼)) = (𝛼!)
2

⋅ ∑
𝑘1≤⋅⋅⋅≤𝑘𝛼

∑
𝑙1≤⋅⋅⋅≤𝑙𝛼

(P [𝑆𝑘1 = ⋅ ⋅ ⋅ = 𝑆𝑘𝛼 , 𝑆𝑙1 = ⋅ ⋅ ⋅ = 𝑆𝑙𝛼]

− P [𝑆𝑘1 = ⋅ ⋅ ⋅ = 𝑆𝑘𝛼]P [𝑆𝑙1 = ⋅ ⋅ ⋅ = 𝑆𝑙𝛼]) .

(10)

An important role is played by the manner in which the two
sequences are interlaced, since, for example, if 𝑘𝛼 ≤ 𝑙1 or 𝑙𝛼 ≤

𝑘1, the term vanishes by the Markov property.
We will treat the sum over indices with 𝑘1 ≤ 𝑙1. The sum

over the remaining index set with 𝑘1 > 𝑙1 can be treated
in a similar fashion and will contribute a constant factor.
Therefore, we assume that 𝑘1 ≤ 𝑙1 and we arrange the two
sequences in an ordered sequence of combined length 2𝛼

which we denote as (𝑝1, . . . , 𝑝2𝛼); we also define (𝜖1, . . . , 𝜖2𝛼)

where 𝜖𝑖 = 0 if 𝑝𝑖 came from k fl {𝑘1, . . . , 𝑘𝛼} and 𝜖𝑖 = 1

if 𝑝𝑖 came from l fl {𝑙1, . . . , 𝑙𝛼}. Finally we define two new
sequences 𝑚0, 𝑚1, . . . , 𝑚2𝛼−1, and 𝛿1, . . . , 𝛿2𝛼−1, where 𝑚0 fl
𝑝1, 𝑚𝑖 = 𝑝𝑖+1 − 𝑝𝑖, and 𝛿𝑖 = 𝜖𝑖+1 − 𝜖𝑖, for 𝑖 = 1, . . . , 2𝛼 − 1.
Notice that since we assume that 𝑘1 ≤ 𝑙1, we have 𝑝1 = 𝑘1 and
𝜖1 = 0. Let V(𝛿) fl ∑

2𝛼−1

𝑖=1
|𝛿𝑖| denote the interlacement index.

The terms with V = 1 vanish, while the terms with V = 2 will
be considered separately.

Terms with V ≥ 3. We first consider the sum 𝐼𝑛 over the terms
with V ≥ 3 for which we drop the negative part and obtain the
bound

𝐼𝑛 fl ∑
𝑘1≤⋅⋅⋅≤𝑘𝛼

𝑙1≤⋅⋅⋅≤𝑙𝛼

𝑘1≤𝑙1 ,V(𝛿)≥3

P [𝑆𝑘1 = ⋅ ⋅ ⋅ = 𝑆𝑘𝛼 , 𝑆𝑙1 = ⋅ ⋅ ⋅ = 𝑆𝑙𝛼]

= ∑

𝑥,𝑦∈Z𝑑

∑
𝑝1≤⋅⋅⋅≤𝑝2𝛼≤𝑛

∑
𝜖:V(𝛿)≥3

P [𝑆𝑝1 = 𝑥, 𝑆𝑝2 = 𝑥 + 𝜖2𝑦, . . . , 𝑆𝑝2𝛼 = 𝑥 + 𝜖2𝛼𝑦]

≤ ∑

𝑥,𝑦∈Z𝑑

∑
𝑚0,...,𝑚2𝛼−1≤𝑛

∑
𝛿:V(𝛿)≥3

P (𝑆𝑚0 = 𝑥)P (𝑆𝑚0 ,𝑚1 = 𝛿1𝑦) ⋅ ⋅ ⋅P (𝑆𝑚2𝛼−2,𝑚2𝛼−1 = 𝛿2𝛼−1𝑦)

= ∑

𝑦∈Z𝑑

∑
𝑚0 ,...,𝑚2𝛼−1≤𝑛

∑
𝛿:V(𝛿)≥3

P (𝑆𝑚0 ,𝑚1 = 𝛿1𝑦) ⋅ ⋅ ⋅P (𝑆𝑚2𝛼−2 ,𝑚2𝛼−1 = 𝛿2𝛼−1𝑦) .

(11)

Summing over the free index𝑚0, it is clear that

𝐼𝑛 ≤ (𝑛 + 1)

⋅ ∑
𝑚1,...,𝑚2𝛼−1

∑

𝑦∈Z𝑑

∑
𝛿:V(𝛿)≥3

2𝛼−1

∏
𝑡=1

sup
𝑤

P (𝑆𝑤,𝑚𝑡
= 𝛿𝑡𝑦) .

(12)

For any 𝛿 = (𝛿1, . . . , 𝛿2𝛼−1)with V(𝛿) = V, exactly𝑢 fl 2𝛼−1−V
elements are equal to 0, and therefore byAssumption (A)with
𝑥 = 0 we have

𝐼𝑛 ≤ 𝐶 (𝑛 + 1)

𝛼

∑
V=3

[

𝑛

∑
𝑖=0

𝜙 (𝑖)]

2𝛼−1−V

⋅

𝑛

∑
𝑗1,...,𝑗V=0

∑

𝑦∈Z𝑑

∑

𝛿∈{−1,+1}V

V

∏
𝑡=1

sup
𝑤𝑡

P (𝑆𝑤𝑡 ,𝑗𝑡 = 𝛿𝑡𝑦) .

(13)

Letting (�̃�𝑛)𝑛∈N0 denote an independent copy of the random
walk (𝑆𝑛)𝑛∈N0 and assuming without loss of generality that
𝑗1 ≤ ⋅ ⋅ ⋅ ≤ 𝑗V, we have that for any 𝛿 ∈ {−1, +1}

V

∑

𝑦∈Z𝑑

V

∏
𝑡=1

sup
𝑤𝑡

P (𝑆𝑤𝑡 ,𝑗𝑡 = 𝛿𝑡𝑦)

≤ (

V−1

∏
𝑡=2

sup
𝑦

sup
𝑤𝑡

P (𝑆𝑤𝑡 ,𝑗𝑡 = 𝑦))

⋅ sup
𝑤1 ,𝑤V

P (𝑆𝑤1 ,𝑗1 − 𝛿V�̃�𝑤V ,𝑗V
= 0) ≤ [

V−1

∏
𝑡=2

𝜙 (𝑗𝑡)]

⋅ 𝜙 (𝑗1 + 𝑗V) ≤

V

∏
𝑡=2

𝜙 (𝑗𝑡 ∨ 𝑗1) .

(14)
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Let 𝐺𝑛 fl ∑
𝑛

𝑖=0
𝜙(𝑖). Since 𝜙 is nonincreasing we have that

Δ 𝑛,V fl ∑
0≤𝑗1≤⋅⋅⋅≤𝑗V≤𝑛

V

∏
𝑡=2

𝜙 (𝑗𝑡 ∨ 𝑗1)

≤

𝑛

∑
𝑗V=0

𝜙 (𝑗V) ∑
0≤𝑗1≤⋅⋅⋅≤𝑗V−1≤𝑛

V−1

∏
𝑡=2

𝜙 (𝑗𝑡 ∨ 𝑗1)

= 𝐺𝑛Δ 𝑛,V−1,

(15)

and iterating this procedure, for V ≥ 3, we have that Δ 𝑛,V ≤

Δ 𝑛,3𝐺
V−3
𝑛

. Combining the two bounds and summing over V =

3, . . . , 2𝛼 − 1, we have that

𝐼𝑛 ≤

2𝛼−1

∑
V=3

𝑐 (𝛼) 𝑛𝐺
2𝛼−1−V
𝑛

Δ 𝑛,V ≤ 𝑐 (𝛼) 𝑛𝐺
2𝛼−1−V+V−3
𝑛

Δ 𝑛,3

= 𝑐 (𝛼) 𝑛𝐺
2𝛼−4

𝑛
Δ 𝑛,3,

(16)

where 𝑐(𝛼) is a constant depending only on 𝛼.

Terms with V = 2. Next we consider the sum 𝐽𝑛 over the
terms with V = 2, which occurs when, for some 𝑗, the indices
𝑙1, . . . , 𝑙𝛼 all lie in [𝑘𝑗, 𝑘𝑗+1]. Then it is easy to see that this sum
𝐽𝑛 is bounded above by

𝐽𝑛 ≤ 𝐶𝑛 sup
𝑤0 ,...,𝑤2𝛼−1

𝑛

∑
𝑚𝛼+1 ,...,𝑚2𝛼−2=0

2𝛼−2

∏
𝑟=𝛼+1

P (𝑆𝑤𝑟 ,𝑚𝑟 = 0)

⋅

𝑛

∑
𝑚0 ,...,𝑚𝛼=0

[

𝛼−1

∏
𝑡=1

P (𝑆𝑤𝑡 ,𝑚𝑡 = 0)] [P (𝑆𝑤0 ,𝑚0 + 𝑆𝑤𝛼 ,𝑚𝛼

= 0) − P (𝑆𝑤0 ,𝑚0 + ⋅ ⋅ ⋅ + 𝑆𝑤𝛼 ,𝑚𝛼 = 0)] ≤ 𝐶𝑛𝐺
𝛼−2

𝑛

⋅ sup
𝑤0 ,...,𝑤𝛼

𝑛

∑
𝑚0,...,𝑚𝛼=0

[

𝛼−1

∏
𝑡=1

P (𝑆𝑤𝑡 ,𝑚𝑡 = 0)]

⋅ [P (𝑆𝑤0 ,𝑚0 + 𝑆𝑤𝛼 ,𝑚𝛼 = 0)

− P (𝑆𝑤0 ,𝑚0 + ⋅ ⋅ ⋅ + 𝑆𝑤𝛼 ,𝑚𝛼 = 0)]

≤ 𝐶𝑛𝐺
𝛼−2

𝑛

𝑛

∑
𝑚0 ,...,𝑚𝛼=0

[

𝛼−1

∏
𝑡=1

𝜙 (𝑚𝑡)]𝜓 (𝑚0 + 𝑚𝛼, 𝑚1

+ ⋅ ⋅ ⋅ + 𝑚𝛼−1) ≤ 𝐶𝛼𝑛𝐺
𝛼−2

𝑛
𝐴𝜓 (1 + 𝐴𝜓)

𝛼−2

⋅ ( ∑
𝑚2,...,𝑚𝛼−1

𝛼−1

∏
𝑡=2

𝜙 (𝑚𝑡)) ∑
𝑚0 ,𝑚1,𝑚𝛼

𝜙 (𝑚1) 𝜓 (𝑚0 + 𝑚𝛼,

𝑚1) ≤ 𝐶𝛼𝐴𝜓 (1 + 𝐴𝜓)
𝛼−2

𝑛𝐺
2𝛼−4

𝑛

𝑛

∑
𝑖,𝑗,𝑘=0

𝜙 (𝑗) 𝜓 (𝑖

+ 𝑘, 𝑗) .

(17)

The following corollary provides explicit bounds in the
cases that are usually considered in the literature.

Corollary 5. Assume that the conditions of Proposition 4 are
satisfied with 𝜙(𝑚) = 𝑇𝑚

−𝑟 and 𝜓(𝑚, 𝑘) = 𝑇𝑚−𝑟−1(𝑘 ∧ 𝑚).
Then,

var (𝐿𝑛 (𝛼))

≤ 𝑐𝛼𝑇
2𝛼−2

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑛
2 log (𝑛)2𝛼−4 , 𝑖𝑓 𝑟 = 1,

𝑛4−2𝑟, 𝑖𝑓 1 < 𝑟 <
3

2
,

𝑛 log (𝑛) , 𝑖𝑓 𝑟 =
3

2
,

𝑛, 𝑖𝑓 𝑟 >
3

2
.

(18)

It is straightforward to see that Corollary 5 includes
random walks with mean zero and finite second moment;
for example, 𝑑 = 2 corresponds to 𝑟 = 1 and 𝑑 = 3

to 𝑟 = 3/2. Therefore several relevant results in [3, 7–13]
are obtained as a special case of Corollary 5 and extended
to the case of independent but not necessarily identically
distributed variables, for example, by applying the local limit
theorem, as conducted in [8].

Alsowhen the randomwalk increment𝑋 is in the domain
of attraction of the one-dimensional symmetric Cauchy law
[13, 14] or in the case of planar random walk with second
moments [3, 7–9, 11], it is well known that the conditions of
Proposition 4 are satisfied with 𝜙(𝑚) = 𝑇/𝑚 and 𝜓(𝑚, 𝑘) =

𝑇𝑚
−2(𝑘 ∧ 𝑚).
However, we can do better for symmetric variables and

show that condition (A) implies (B), which together with the
comparison technique motivates the following results. For a
real number 𝑥, we write [𝑥] for the integer part of 𝑥.

Proposition 6 (bounds via comparison with characteristic
function of symmetric random variables). Let 𝑋1, 𝑋2, . . ., be
independent Z𝑑-valued random variables and let 𝑓𝑖(𝑡) fl
E exp(𝑖𝑡𝑋𝑖). Assume that there exist a measurable function 𝑓 :

Γ → [0, 1] and a positive nonincreasing sequence (𝜙(𝑚))𝑚∈N0
,

such that

1 − 𝑓𝑖 (𝑡)
 ≤ 𝑇𝑓 (𝑡) ,

𝑓𝑖 (±𝑡)
 ≤ 𝑓 (𝑡) ,

∫
Γ

𝑓 (𝑡)
𝑚 d𝑡 ≤ 𝜙 (𝑚) ,

(19)

for all integers 𝑖, 𝑚 ≥ 0, all 𝑡 ∈ Γ, and some positive constant 𝑇.
Then there exists another positive constant𝐾 = 𝑐(𝛼, 𝑑, 𝑇) such
that

var (𝐿𝑛 (𝛼))

≤ 𝐾𝑛(

𝑛−1

∑
𝑖=0

𝜙([
𝑖

2
]))

2𝛼−4
𝑛

∑
𝑗=0

𝑗𝜙 ([
𝑗

2
])

2𝑛

∑
𝑘=𝑗

𝜙([
𝑘

2
]) .

(20)
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Proof of Proposition 6. Using the notation of Proposition 4,
for positive integers 𝑎, 𝑢, 𝑏, and V, with 𝑎 + 𝑢 ≤ 𝑏, 𝜖𝑗 = ±1,
and any 𝑥 ∈ Z𝑑

P (𝑆𝑎,𝑢 + 𝜖 ⋅ 𝑆𝑏,V = 𝑥)

≤
1

(2𝜋)
𝑑
∫
Γ

∏
𝑗∈[𝑎,𝑎+𝑢]∪[𝑏,𝑏+V]


𝑓𝑗 (𝜖𝑗𝑡)


d𝑡

≤
1

(2𝜋)
𝑑
∫
Γ

𝑓 (𝑡)
𝑢+V d𝑡 ≤

1

(2𝜋)
𝑑
𝜙 (𝑢 + V) .

(21)

To find 𝜓(𝑢, V), notice that since 𝑓(𝑡) ≥ 0,

𝜙 (𝑚) ≥ ∫
Γ

𝑓 (𝑡)
𝑚
[1 − 𝑓 (𝑡)

𝑚
] d𝑡

=

𝑚−1

∑
𝑗=0

∫
Γ

𝑓 (𝑡)
𝑚+𝑗

(1 − 𝑓 (𝑡)) d𝑡

≥ 𝑚∫
Γ

𝑓 (𝑡)
2𝑚

(1 − 𝑓 (𝑡)) d𝑡 š 𝑚𝑄 (2𝑚)

(22)

whence 𝑄(𝑚) ≤ 2𝜙([𝑚/2])/𝑚. Therefore,

P (𝑆𝑎,𝑢 = 0) − P (𝑆𝑎,𝑢 + 𝑆𝑏,1 = 0)


=



1

(2𝜋)
𝑑
∫
Γ

[

[

𝑎+𝑢

∏
𝑗=𝑎

𝑓𝑗 (𝑡)
]

]

(1 − 𝑓𝑏+1 (𝑡)) d𝑡


≤ 𝐶𝑇∫
Γ

𝑓 (𝑡)

𝑢 1 − 𝑓 (𝑡)

 d𝑡 ≤
𝐶𝑇𝜙 ([𝑢/2])

𝑢
.

(23)

A telescoping argument implies that

P (𝑆𝑎,𝑢 = 0) − P (𝑆𝑎,𝑢 + 𝑆𝑏,V = 0)
 ≤ 𝐶𝑇𝜙([

𝑢

2
])

V
𝑢
. (24)

On the other hand for 𝑢 ≤ V we can obtain a tighter bound
through

P (𝑆𝑎,𝑢 = 0) − P (𝑆𝑎,𝑢 + 𝑆𝑏,V = 0) ≤ P (𝑆𝑎,𝑢 = 0)

≤ 𝜙 (𝑢) .
(25)

Combining the two bounds above it follows that (B) is satis-
fied with 𝜓(𝑢, V) fl 𝜙([𝑢/2])min(𝑢, V)/𝑢. Thus all conditions
of Proposition 4 are satisfied and the result follows.

The following corollary allows for the case where 𝜙(𝑚) is
regularly varying.

Corollary 7. Assume that the conditions of Proposition 6 are
satisfied with 𝜙(𝑚) = ℎ(𝑚)𝑚−𝑟, 𝑟 ≥ 1, where ℎ(⋅) is slowly
varying at ∞. Then,

var (𝐿𝑛 (𝛼)) ≤ 𝐾Δ 𝑛 (𝛼, 𝜙)

≤ 𝑐𝛼𝑇
2𝛼−2

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑛
2 [

𝑛

∑
𝑘=1

ℎ (𝑘)

𝑘
]

2𝛼−4

, 𝑓𝑜𝑟 𝑟 = 1,

𝑛4−2𝑟ℎ2
(𝑛) , 𝑓𝑜𝑟 1 < 𝑟 <

3

2
,

𝑛

𝑛

∑
𝑘=1

ℎ (𝑘)
2

𝑘
, 𝑓𝑜𝑟 𝑟 =

3

2
,

𝑛, 𝑓𝑜𝑟 𝑟 >
3

2
.

(26)

Several results in [3, 7–13] are obtained as a special case of
Corollary 7 and can be extended to dependent variables, for
example, a randomwalk driven by a hiddenMarkov chain. In
addition, following [2], we can construct a one-dimensional
symmetric random walk with characteristic function 𝑓(𝑡) =

1 − 𝑐|𝑡|
1/𝑟 + 𝑜(|𝑡|1/𝑟), where 𝑟 = 2/𝑑 for 𝑑 = 2, 3 and 𝑟 = 1/2

for 𝑑 ≥ 4, whose asymptotic behaviour is similar to that of
genuinely 𝑑-dimensional random walk.

The following example of genuinely 2-dimensional recur-
rent walk with infinite variance was motivated by Spitzer [1,
pp. 87].

Example 8. Let 𝑋1, 𝑋2, . . . be independent, identically dis-
tributed, Z2-valued random variables, such that P(|𝑋1| =

𝑘) = 𝑐/(𝑘3 log(𝑘)𝑔), for 𝑘 ≥ 4 and 𝑔 ∈ [0, 1). Let (𝑆𝑛)𝑛∈N0
be the corresponding random walk in Z2. Then we have

var (𝐿𝑛 (𝛼))

≤ 𝑐𝑛
2 max {[log 𝑛]𝑔 , log log 𝑛}

2𝛼−4

log 𝑛−2(1−𝑔)
,

(27)

for 𝑛 ≥ 10. Under these assumptions we have that P(𝑆𝑛 =

0) ≤ 𝑐/𝑛 log(𝑛)1−𝑔, which is in the critical range, where the
random walk is recurrent, without second moment. To see
why, we note that by a lengthy but straightforward calculation
it can be shown that the characteristic function of 𝑋 satisfies
(19) with

𝜙 (𝑛) =
𝑐

𝑛 log (e ∨ 𝑛)
1−𝑔

,

𝑓 (𝑡) = exp [−𝐴 |𝑡|
2
ℎ (|𝑡|

2
)] ,

where ℎ (𝑟) fl [1 + log(1

𝑟
)
+

]
1−𝑔

.

(28)

The sequence 𝜙(𝑚) is identified via Fourier inversion, polar
coordinates, and a Laplace argument,

∫
Γ

𝑓 (𝑡)
𝑛 d𝑡 ≤ 𝑐 ∫

1

0

exp(−𝑛𝑟 (1 + log(1

𝑟
))

1−𝑔

)

+ 𝑂 (e−𝑛) ≤
𝑐

𝑛 log (e ∨ 𝑛)
1−𝑔

š 𝜙 (𝑛) .

(29)

2.2. Bounds for Identically Distributed Variables

Proposition 9 (general upper bound for i.i.d.). Let
𝑋,𝑋1, 𝑋2, . . ., be independent, identically distributed,
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Z𝑑-valued random variables. Suppose that for any 𝑥 ∈ Z𝑑 and
all positive integers 𝑎, 𝑢, 𝑏, and V, with 𝑎 + 𝑢 ≤ 𝑏, it holds that

P (𝑆𝑎,𝑢 ± 𝑆𝑏,V = 𝑥) ≤ 𝜙 (𝑢 + V) , (30)

where {𝜙(𝑚)}𝑚∈N0
is a nonincreasing sequence. Then for some

constant 𝐾 = 𝑐(𝛼) we have that

var (𝐿𝑛 (𝛼))

≤ 𝐾𝑛(

𝑛−1

∑
𝑖=0

𝜙 (𝑖))

2𝛼−4
𝑛

∑
𝑗=0

𝑗𝜙 (𝑗)

[𝛼𝑛]+1

∑
𝑘=𝑗

𝜙([
𝑘

𝛼
]) .

(31)

Proof of Proposition 9. By inspecting the proof of Proposi-
tion 6, we notice that we only need to bound the term 𝐽𝑛.
Consider typical ordering

0 ≤ 𝑖1 ≤ ⋅ ⋅ ⋅ ≤ 𝑖𝑘 ≤ 𝑗1 ≤ ⋅ ⋅ ⋅ ≤ 𝑗𝛼 ≤ 𝑖𝑘+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑖𝛼 ≤ 𝑛, (32)

and let us change variables to (𝑚0, . . . , 𝑚2𝛼) such that 𝑚0 +

⋅ ⋅ ⋅ + 𝑚2𝛼 = 𝑛. Then the contribution to 𝐽𝑛 is given by

∑
𝑚0 ,...,𝑚2𝛼

∏
𝑗 ̸=𝑘,𝑘+𝛼

1≤𝑗≤2𝛼−1

P (𝑆𝑚𝑗 = 0)

⋅ [P (𝑆𝑚𝑘+𝑚𝑘+𝛼 = 0) − P (𝑆𝑚𝑘+⋅⋅⋅+𝑚𝑘+𝛼 = 0)] .

(33)

We keep 𝑚𝑗 fixed for 𝑗 ̸= 𝛼, 𝑘 + 𝛼 and we sum over 𝑚 =

𝑚𝑘 + 𝑚𝑘+𝛼 from 0 to some 𝑀 = 𝑀(𝑛, {𝑚𝑗}𝑗 ̸=𝑘,𝑘+𝛼). Then for
given𝑚𝑘+1, . . . , 𝑚𝑘+𝛼−1, the term in the sum is

𝑀

∑
𝑚=0

(𝑚 + 1) [P (𝑆𝑚 = 0) − P (𝑆𝑚+𝑞 = 0)] , (34)

where 𝑞 fl 𝑚𝑘+1 + ⋅ ⋅ ⋅ +𝑚𝑘+𝛼−1. Then since𝑀 ≤ 𝑛− 𝑞, it is an
easy exercise to show that this sum is bounded above by

𝑀

∑
𝑚=0

(𝑚 + 1) [P (𝑆𝑚 = 0) − P (𝑆𝑚+𝑞 = 0)]

≤

𝑞−1

∑
𝑚=0

(𝑚 + 1)P (𝑆𝑚 = 0) + 𝑞1 (𝑛 − 𝑞 ≥ 𝑞)

⋅

𝑛−𝑞

∑
𝑚=𝑞

P (𝑆𝑚 = 0) ≤

(𝛼𝑚
∗
)∧𝑛

∑
𝑚=0

(𝑚 + 1)P (𝑆𝑚 = 0)

+ 𝛼𝑚
∗

𝑛

∑
𝑚=𝑚∗

P (𝑆𝑚 = 0) ,

(35)

where 𝑚∗ = max{𝑚𝑘+1, . . . , 𝑚𝑘+𝛼−1}. The result follows by
summing over all indices apart from 𝑚

∗ and changing the
order of summation.

2.3. Proofs of Main Results

Proof of Theorem 1. We apply a comparison argument found
to be useful in many areas (e.g., Montgomery-Smith and
Pruss [15], and Lefèvre and Utev [16]). More specifically we

bound the quantity var(𝐿𝑛) by the corresponding quantity for
the symmetrised random walk.

Following Spitzer’s argument we notice that with 𝑓(𝑡) =

E[exp(i𝑡 ⋅ 𝑋1)]

P (𝑆𝑎,𝑢 + 𝜖𝑆𝑏,V = 𝑥) ≤ 𝑐∫
Γ

𝑓 (𝑡)

𝑢 𝑓 (−𝑡)


V d𝑡

= 𝑐 ∫
Γ

[
𝑓 (𝑡)


2
]
𝑢/2

[
𝑓 (−𝑡)


2
]
V/2

d𝑡.
(36)

Since |𝑓(𝑡)|2 is the characteristic function of a symmetric
random variable in Z𝑑, for some positive 𝜆, we have 1 −

|𝑓(𝑡)|2 ≥ 𝜆|𝑡|2, and, hence,

P (𝑆𝑎,𝑢 + 𝜖𝑆𝑏,V = 𝑥) ≤ 𝑐∫
Γ

exp [−
𝜆 (𝑢 + V)

2
|𝑡|

2
] d𝑡

≤ 𝑐 (𝑢 + V)−𝑑/2 .

(37)

The result follows from Proposition 9 applied with 𝜙(𝑚) =

𝑚−𝑑/2.

The proof of Theorem 2 will be based on the following
lemma.

Lemma 10. Assume𝑋,𝑋1, 𝑋2, . . . are independent, identically
distributed, genuinely 𝑑-dimensional random variables such
that E|𝑋|2 = ∞. Then there exists a monotone, slowly varying
sequence (ℎ𝑛)𝑛∈N0 , such that ℎ𝑛 → 0 as 𝑛 → ∞ and

sup
𝑥∈Z𝑑

P (𝑆𝑛 = 𝑥) ≤ 𝑐𝑑 ∫
Γ


E𝑒

𝑖𝑡⋅𝑋

𝑛

d𝑡 ≤ ℎ𝑛𝑛
−𝑑/2

. (38)

Proof of Lemma 10. Without loss of generality we assume that
𝑋 is symmetric. Let 𝜎𝑒,𝐿 fl E[(𝑒 ⋅ 𝑋)

2
1(|𝑋| ≤ 𝐿)]. Following

Spitzer, since 𝑋 is genuinely 𝑑-dimensional, we may assume
that there exist positive constants 𝑐,𝑊, such that for any unit
vector |𝑒| = 1 we have that 𝜎𝑒,𝑊 ≥ 𝑐 and 1 − 𝑓(𝑡) ≥ 𝑐|𝑡|2 for
all 𝑡 ∈ Γ. Let 𝜆𝑑 be the 𝑑-dimensional Lebesgue measure on
R𝑑 and 𝜇𝑑 the Lebesgue-Haar measure on 𝑆𝑑−1 fl {𝑒 ∈ Γ :

|𝑒| = 1}. Notice that since E|𝑋|2 = ∞, for any 𝐾, we have
𝜇𝑑{𝑒 : 𝜎𝑒,∞ < 𝐾} = 0.

Fix a small positive 𝑥 such that √𝑐/𝑥 ≥ 2𝑊, and for any
𝜖 > 0 let 𝐾 = 𝐾(𝜖) = 𝜖−𝑑/2. Then there exists 𝐿 = 𝐿(𝜖) > 0

small enough so that 𝜇𝑑{𝑒 : 𝜎𝑒,𝐿 < 𝐾} ≤ 𝜖𝑑/2. We partition
𝑆𝑑−1 in two sets

𝐴𝐿,𝐾 = {𝑒 ∈ 𝑆𝑑 : 𝜎𝑒,𝐿 ≥ 𝐾} ,

𝐴𝐿,𝐾 = {𝑒 ∈ 𝑆𝑑 : 𝜎𝑒,𝐿 < 𝐾} ,
(39)

so that, for any direction 𝑒 ∈ 𝐴𝐿,𝐾,

{𝑧 ∈ R : 1 − 𝑓 (𝑧𝑒) ≤ 𝑥} ⊆ {𝑧 : 𝑐𝑧
2
≤ 𝑥}

⊆ {𝑧 : |𝑧| ≤ √
𝑥

𝑐
} .

(40)
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Hence, using 𝑑-dimensional spherical coordinates,

𝜆𝑑 {(𝑧, 𝑒) ∈ R × 𝐴𝐿,𝐾 : 1 − 𝑓 (𝑒𝑧) ≤ 𝑥}

≤ 𝜇𝑑 {𝐴𝐿,𝐾} (
𝑥

𝑐
)
𝑑/2

(
1

𝑑
) ≤ 𝜖

𝑑/2
(
𝑥

𝑐
)
𝑑/2

(
1

𝑑
) .

(41)

On the other hand, for any 𝑡,

1 − 𝑓 (𝑡) = 2 ∑

𝑘∈𝑍𝑑

sin(
[𝑡 ⋅ 𝑘]

2
)

2

𝑃 (𝑋 = 𝑘)

≥ (
1

4
)𝐸 [(𝑡 ⋅ 𝑋)

2
𝐼 (|𝑡 ⋅ 𝑋| ≤

1

2
)]

= (
|𝑡|

2

4
)𝜎𝑡/|𝑡|,1/2|𝑡|.

(42)

Now, assume that √𝑐/𝑥 ≥ 2𝐿. Then for any direction 𝑒 ∈

𝐴𝐿,𝐾, by choice of 𝑥 and since 𝜎𝑒,𝐿 is increasing in 𝐿, for 𝑐𝑧2 ≤

1 − 𝑓(𝑒𝑧) ≤ 𝑥 or |𝑧| ≤ √𝑥/𝑐, it must be the case that

𝑥 ≥ 1 − 𝑓 (𝑒𝑧) ≥ (
𝑧2

4
)𝜎𝑒,1/2𝑧 ≥ (

𝑧2

4
)𝜎𝑒,𝐿

≥ (
𝑧2

4
)𝐾,

(43)

implying that, on the set 𝐴𝐿,𝐾, it must be that |𝑧| ≤ 2√𝑥/𝐾.
Changing to 𝑑-dimensional polar coordinates, we find that

𝜆𝑑 {(𝑧, 𝑒) ∈ R × 𝐴𝐿,𝐾 : 1 − 𝑓 (𝑒𝑧) ≤ 𝑥}

≤ ∫
𝐴𝐿,𝐾

∫
√4𝑥/𝐾

0

𝑟
𝑑−1d𝑟 d𝑒 ≤ 𝐶𝑑𝜖

𝑑/2
𝑥
𝑑/2

.
(44)

Overall, for 𝑥 ≤ 𝑐/4𝐿2, 𝜆𝑑{𝑡 : 1 − 𝑓(𝑡) ≤ 𝑥} ≤ 𝑐𝑑(𝑥𝜖)
𝑑/2, and

hence {𝑡 ∈ Γ : 1 − 𝑓(𝑡) ≤ 𝑥} has Lebesgue measure 𝑜(𝑥𝑑/2).
Let 𝐹(𝑥) be the cumulative distribution function of the

random variable log(1/𝑓(⋅)) defined on the probability space
Γ with normalised Lebesgue measure. Then 𝐹 is continuous
at 𝑥 = 0 and supported on R+. Moreover, we have that
𝐹(𝑥) = 𝑜(𝑥𝑑/2) as 𝑥 ↓ 0. Therefore, for some positive
sequence (𝜖𝑛)𝑛∈N0 with 𝜖𝑛 → 0, we have that

1

(2𝜋)
2
∫
Γ

𝑓 (𝑡)
𝑛 d𝑡 = ∫

∞

0

e−𝑛𝑥d𝐹 (𝑥)

= 𝑛∫
∞

0

e−𝑛𝑥𝐹 (𝑥) d𝑥 ≤ 𝑛
−𝑑/2

𝜖𝑛.

(45)

It remains to show that there exists a positive, monotone,
slowly varying sequence (ℎ𝑛)𝑛∈N0 , such that 𝜖𝑛 ≤ ℎ(𝑛) → 0 as
𝑛 → ∞. Let 𝛿𝑛 = sup

𝑗≥𝑛
𝜖𝑗 and 𝑎0 fl 0 and for 𝑛 ≥ 1 define

𝑎𝑛 recursively by 𝑎𝑛 = min(2𝑎2𝑟−1 , 1/𝛿𝑛), for 2
𝑟−1 < 𝑛 ≤ 2𝑟, so

that 𝑎𝑛 → ∞ is monotone, 𝑎2𝑟 ≤ 2𝑎2𝑟−1 implying that 𝑎2𝑛 ≤

4𝑎𝑛, and 1/𝑎𝑛 ≥ 𝛿𝑛 ≥ 𝜖𝑛. Finally, take ℎ𝑛 fl 1/max(𝑎0, log 𝑎𝑛).

Proof ofTheorem 2. Assume thatE|𝑋|2 = ∞ and 𝑑 = 2 or 𝑑 =

3. Then, by Lemma 10 there exists a slowly varying sequence
ℎ𝑛 → 0 as 𝑛 → ∞ such that ∫

Γ
|E exp(i𝑡 ⋅ 𝑋)|𝑛d𝑡 ≤ ℎ𝑛𝑛

−𝑑/2.
Applying Corollary 7 with 𝑟 = 1 and 𝑟 = 3/2 we, respectively,
find that

var (𝐿𝑛 (𝛼))

≤

{{{{{{

{{{{{{

{

𝐾𝑛
2 (

𝑛

∑
𝑘=1

ℎ (𝑘)

𝑘
)

2𝛼−4

= 𝑜 (𝑛2 (log 𝑛)2𝛼−4) , for 𝑑 = 2,

𝐾𝑛(

𝑛

∑
𝑘=1

ℎ (𝑘)
2

𝑘
) = 𝑜 (𝑛 ln 𝑛) , for 𝑑 = 3.

(46)

Finally assume that E|𝑋|2 < ∞ and 𝐸[𝑋] = 𝜇 ̸= 0. Then
P(𝑆𝑛 = 0) = P(𝑆

𝑛
= −𝑛𝜇) whence it follows that P(𝑆𝑛 =

0) = 𝑜(𝑛−𝑑/2) (see, e.g., [17,Theorem 2.3.10]).Then inspecting
the proof of Proposition 4, one can readily obtain the desired
bound for the 𝐽𝑛 term, while with slight modification the
bound for the 𝐼𝑛 term also follows.

Note that for 𝑑 = 1 the situation is much simpler since
then var(𝐿SRW

𝑛
(𝛼)) ∼ 𝐶[E𝐿SRW

𝑛
(𝛼, 𝑑)]

2 and if E|𝑋|2 = ∞ or
E[𝑋] ̸= 0, E𝐿SRW

𝑛
(𝛼, 𝑑) = 𝑜(𝑛(1+𝛼)/2).

Proof of Theorem 3. We first give the proof for the case 𝑑 = 1.
As in the proof of Proposition 4we begin from expression (10)
and define the sequences 𝑝𝑖 and 𝛿𝑖 for 𝑖 = 1, . . . , 2𝛼 − 1, and
the quantity V(𝛿) = ∑

2𝛼−1

𝑖=1
|𝛿𝑖|. Recall that V(𝛿) measures the

interlacement of the two sequences 𝑘1, . . . , 𝑘𝛼 and 𝑙1, . . . , 𝑙𝛼.
For example, V(𝛿) = 1 occurs when either 𝑘𝛼 ≤ 𝑙1 or 𝑙𝛼 ≤

𝑘1, in which case the contribution vanishes by the Markov
property. On the other hand V(𝛿) = 2 when, for example,
𝑙1, . . . , 𝑙𝛼 ∈ [𝑘𝑖, 𝑘𝑖+1] for some 𝑖. Finally V(𝛿) = 3 occurs when,
for example,

𝑘1 ≤ ⋅ ⋅ ⋅ ≤ 𝑘𝑟 ≤ 𝑙1 ≤ ⋅ ⋅ ⋅ ≤ 𝑙𝑠 ≤ 𝑘𝑟+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑘𝛼 ≤ 𝑙𝑠+1

≤ ⋅ ⋅ ⋅ ≤ 𝑙𝛼 ≤ 𝑛.
(47)

From the proof of Proposition 4, and using the boundP(𝑆𝑛 =

0) ≤ 𝑐/𝑛, the terms of the sum are bounded above by
𝑛2log(𝑛)2𝛼−1−V(𝛿), and thus the leading term appears when
either V(𝛿) = 2, 3, with other terms giving strictly lower order.
We will therefore analyze these two situations in detail in
order to derive the exact asymptotic constants. When V = 3,
the two terms in the difference individually give the correct
order and will be treated by the classical Tauberian theory.
However for V = 2, the two terms only give the correct
order when considered together. This however forbids the
use of Karamata’s Tauberian theorem since the monotonicity
restriction would require roughly that𝑋𝑖 is symmetric. Thus
the complex Tauberian approach, as developed in [13], is
required to justify the answer.

Case 1 (V(𝛿) = 3). Assume that part of the sequence l =

{𝑙1, . . . , 𝑙𝛼} lies between 𝑘𝑟 and 𝑘𝑟+1 and the rest between 𝑘𝑠

and 𝑘𝑠+1. Then using the change of variables
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𝑖1 = 𝑚0,

𝑖2 = 𝑚0 + 𝑚1,

...

𝑖𝑟 = 𝑚0 + ⋅ ⋅ ⋅ + 𝑚𝑟−1

𝑗1 = 𝑚0 + ⋅ ⋅ ⋅ + 𝑚𝑟,

𝑗2 = 𝑚0 + ⋅ ⋅ ⋅ + 𝑚𝑟+1,

...

𝑗𝑠 = 𝑚0 + ⋅ ⋅ ⋅ + 𝑚𝑟+𝑠−1,

𝑖𝑟+1 = 𝑚0 + ⋅ ⋅ ⋅ + 𝑚𝑟+𝑠,

𝑖𝑟+2 = 𝑚0 + ⋅ ⋅ ⋅ + 𝑚𝑟+𝑠+1,

...

𝑖𝛼 = 𝑚0 + ⋅ ⋅ ⋅ + 𝑚𝛼+𝑠−1,

𝑗𝑠+1 = 𝑚0 + ⋅ ⋅ ⋅ + 𝑚𝛼+𝑠,

𝑗𝑠+2 = 𝑚0 + ⋅ ⋅ ⋅ + 𝑚𝛼+𝑠+1,

...

𝑗𝛼 = 𝑚2𝛼−1,

𝑛 = 𝑚0 + ⋅ ⋅ ⋅ + 𝑚2𝛼,

(48)

we rewrite the positive term in (10) as

𝑎 (𝑛)

= ∑P [𝑆 (𝑖1) = ⋅ ⋅ ⋅ = 𝑆 (𝑖𝛼) ; 𝑆 (𝑗1) = ⋅ ⋅ ⋅ = 𝑆 (𝑗𝛼)]

= ∑
𝑚0 ,...,𝑚2𝛼−1

[
[
[

[

2𝛼−1

∏
𝑗=1

𝑗 ̸=𝑟,𝑟+𝑠,𝛼+𝑠

P (𝑆𝑚𝑗 = 0)
]
]
]

]

⋅ P (𝑆𝑚𝑟 + 𝑆


𝑚𝑟+𝑠
= 𝑆



𝑚𝑟+𝑠
+ 𝑆



𝑚𝛼+𝑠
= 0) .

(49)

Notice that from [13] we have that ∑
𝑛≥0

𝜆𝑛P(𝑆𝑛 = 0) ∼

log(1/(1 − 𝜆))/𝜋𝛾. Let

𝑎 (𝜆) = (1 − 𝜆)
−3

[− log (1 − 𝜆)]
2𝛼−4

,

𝑐𝛾 = (𝜋𝛾)
−2𝛼+4

.
(50)

Then, by direct calculations and Fourier inversion formula

∑
𝑛≥0

𝜆
𝑛
𝑎 (𝑛) = 𝑐𝛾 (1 − 𝜆) 𝑎 (𝜆)

⋅ ∑
𝑥∈Z

∑
𝑘1 ,𝑘2,𝑘3≥0

𝜆
𝑘1+𝑘2+𝑘3P (𝑆𝑘1 = 𝑥)P (𝑆𝑘2 = −𝑥)

⋅ P (𝑆𝑘3 = 𝑥) = 𝑐𝛾 (1 − 𝜆) 𝑎 (𝜆)
1

(2𝜋)
2

⋅ ∬
Γ

d𝑡 d𝑠
(1 − 𝜆𝑓 (𝑡)) (1 − 𝜆𝑓 (𝑠)) (1 − 𝜆𝑓 (𝑡 + 𝑠))

∼ 𝑐𝛾 (1 − 𝜆) 𝑎 (𝜆)
1

(2𝜋)
2
𝛾2

1

1 − 𝜆

⋅ ∬
R2

d𝑥 d𝑦
(1 + |𝑥|) (1 +

𝑦
) (1 +

𝑥 + 𝑦
)

∼ (
1

4𝛾2
)

⋅ 𝑐𝛾𝑎 (𝜆) .

(51)

Next we consider the negative term in (10)

𝑏 (𝑛) fl ∑
𝑚0,...,𝑚2𝛼−1

P [𝑆𝑚1 = ⋅ ⋅ ⋅ = 𝑆𝑚𝑟−1 = 𝑆𝑚𝑟 + ⋅ ⋅ ⋅

+ 𝑆𝑚𝑟+𝑠 = 𝑆𝑚𝑟+𝑠+1 = ⋅ ⋅ ⋅ = 𝑆𝑚𝛼+𝑠−1 = 0]P [𝑆𝑚𝑟+1 = ⋅ ⋅ ⋅

= 𝑆𝑚𝑟+𝑠 + ⋅ ⋅ ⋅ + 𝑆𝑚𝛼+𝑠 = 𝑆𝑚𝛼+𝑠+1 = ⋅ ⋅ ⋅ = 𝑆𝑚2𝛼−1 = 0] .

(52)

By direct calculations and (6),

∑
𝑛

𝜆
𝑛
𝑏 (𝑛) = (

1

𝜋𝛾
log( 1

1 − 𝜆
))

𝛼−𝑠+𝑟−2

(1 − 𝜆)
−2

⋅

∞

∑
𝑚𝑟,...,𝑚𝛼+𝑠=0

𝜆
𝑚𝑟+⋅⋅⋅+𝑚𝛼+𝑠

⋅ ∏
𝑡=𝑟+1,...,𝛼+𝑠−1

𝑡 ̸=𝑟+𝑠

P (𝑆𝑚𝑡 = 0)

⋅ P (𝑆𝑚𝑟 + ⋅ ⋅ ⋅ + 𝑆𝑚𝑟+𝑠 = 0)

⋅ P (𝑆𝑚𝑟+𝑠 + ⋅ ⋅ ⋅ + 𝑆𝑚𝛼+𝑠 = 0) ,

(53)

and using Fourier inversion and (6) the internal sum behaves
as

(2𝜋)
−𝛼−𝑠+𝑟

∫
𝜋

−𝜋

⋅ ⋅ ⋅ ∫
𝜋

−𝜋

(1 − 𝜆𝜙 (𝑥))
−1

(1 − 𝜆𝜙 (𝑥) 𝜙 (𝑦))
−1

(1 − 𝜆𝜙 (𝑦))
−1

⋅ [

[

𝑟+𝑠−1

∏
𝑗=𝑟+1

𝛼+𝑠−1

∏
𝑘=𝑟+𝑠+1

(1 − 𝜆𝜙 (𝑥) 𝜙 (𝑡𝑗))
−1

(1 − 𝜆𝜙 (𝑦) 𝜙 (𝑡𝑘))
−1 d𝑡𝑗 d𝑡𝑘]

]

d𝑥 d𝑦 ∼ (𝜋𝛾)
−𝛼−𝑠+𝑟

(1 − 𝜆)
−1

⋅ log( 1

1 − 𝜆
)
𝛼−𝑟+𝑠−2 𝜋2

6
.

(54)
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Then, we have ∑
𝑛
𝜆𝑛𝑏(𝑛) ∼ (𝜋2/6(𝜋𝛾)

2𝛼−2
)𝑎(𝜆), whence

the Tauberian theorem implies that 𝑎(𝑛) − 𝑏(𝑛) ∼

𝑛2log(𝑛)2𝛼−4/24𝜋2𝛼−4𝛾2𝛼−2. Most importantly we see that the
lengths and locations of the chains, 𝑟 and 𝑠, do not affect the
asymptotic behaviour. Noting that if 1 ≤ 𝑟, 𝑠 ≤ 𝛼 − 1, we can
partition 2𝛼 = 𝑟 + 𝑠 + (𝛼 − 𝑟) + (𝛼 − 𝑠) in (𝛼 − 1)

2 ways, and
thus overall the total contribution from terms with V = 3 is

[
(𝛼! (𝛼 − 1))

2

12𝜋2𝛼−4𝛾2𝛼−2
] 𝑛

2log (𝑛)2𝛼−4 . (55)

Case 2 (V(𝛿) = 2). The typical term 𝑐(𝑛) was introduced in
(33) in the proof of Proposition 9. Now we let 𝜆 ∈ C, with
|𝜆| < 1. By lengthy but direct calculations we can derive an
expression of the form

∑
𝑛

𝜆
𝑛
𝑐 (𝑛) =

𝛼 − 1

(𝛾𝜋)
2𝛼−2

𝑎 (𝜆) + 𝑜 (𝑎 (𝜆)) , 𝜆 → 1. (56)

The approach developed in [13] can then be used to
bound the error terms and show that 𝑐(𝑛) ∼ [(𝛼 −

1)/2(𝛾𝜋)
2𝛼−2

]𝑛
2log(𝑛)2𝛼−4.

Finally taking into account the fact that 𝑙1, . . . , 𝑙𝛼 can be
in any of the 𝛼 − 1 intervals [𝑘𝑖, 𝑘𝑖+1], for 𝑖 = 1, . . . , 𝛼 − 1, the
result follows the overall contribution of terms with V(𝛿) = 2

(𝛼 − 1)
2

2 (𝛾𝜋)
2𝛼−2

𝑛
2 log (𝑛)2𝛼−4 . (57)

The case for 𝑑 = 2 is very similar, so we move on to the
case 𝑑 = 3.

Case 3 (𝑑 = 3 and 𝛼 = 2). Using the same notation as before,
we have three terms to consider 𝑎(𝑛), 𝑏(𝑛), and 𝑐(𝑛). We first
consider 𝑐(𝑛). Letting 𝐾 fl 𝜖/√1 − 𝜆 and using the usual
power series construction and spherical coordinates

∑
𝑛

𝜆
𝑛
𝑐 (𝑛) = (1 − 𝜆)

−2
(2𝜋)

−6

⋅ ∬
𝐽3×𝐽3

𝜆𝑓 (𝑦) (1 − 𝑓 (𝑥)) d𝑥 d𝑦
(1 − 𝜆𝑓 (𝑥))

2
(1 − 𝜆𝑓 (𝑦)) (1 − 𝜆𝑓 (𝑥) 𝑓 (𝑦))

∼ 2 (2𝜋)
−4

|Σ|
−1

(1 − 𝜆)
−2

⋅ ∬
𝐾

0

𝑟
4
𝑠
2d𝑟 d𝑠

(1 + 𝑟2)
2
(1 + 𝑠)

2
(1 + 𝑟2 + 𝑠2)

∼ 2 (2𝜋)
−4

|Σ|
−1

⋅
𝜋

2
(1 − 𝜆)

−2 log( 1

1 − 𝜆
) š 𝜅1 (1 − 𝜆)

−2 log( 1

1 − 𝜆
) ,

(58)

and thus 𝑐(𝑛) ∼ 𝜅1𝑛 log 𝑛, where 𝜅1 > 0, where the answer
can be justified following [13].

The term 𝑎(𝑛) − 𝑏(𝑛) is trickier to compute. As usual we
consider the power series

∑
𝑛≥0

𝜆
𝑛
(𝑎 (𝑛) − 𝑏 (𝑛)) = (1 − 𝜆)

−2
(2𝜋)

−6

⋅ ∬
𝐵(𝜖)

d𝑥 d𝑦
(1 − 𝜆𝑓 (𝑥)) (1 − 𝜆𝑓 (𝑦)) (1 − 𝜆𝑓 (𝑥 + 𝑦))

− (1 − 𝜆)
−2

(2𝜋)
−6

⋅ ∬
𝐵(𝜖)

d𝑥 d𝑦
(1 − 𝜆𝑓 (𝑥)) (1 − 𝜆𝑓 (𝑦)) (1 − 𝜆𝑓 (𝑥) 𝑓 (𝑦))

= (1 − 𝜆)
−2

(2𝜋)
−6

(𝐼1 (𝜆) − 𝐼2 (𝜆)) .

(59)

Let 𝐴 ∈ [−1, 1] be the cosine of the angle between 𝑥 and 𝑦,
which in spherical coordinates is

𝐴 = 𝐴 (𝜃1, 𝜃2, 𝜙1, 𝜙2)

= cos (𝜙1 − 𝜙2) sin (𝜃1) sin (𝜃2)

+ cos (𝜃1) cos (𝜃2) .

(60)

Then as 0 < 𝜆 ↑ 1, using the expansion (6)

𝐼1 (𝜆) ∼ |Σ|
−1

∫
𝜖

𝑟,𝑠=0

∫
2𝜋

𝜙1,2=0

∫
𝜋

𝜃1 ,𝜃2=0

𝑟2𝑠2 sin (𝜃1) sin (𝜃2) d𝜃1 d𝜃2 d𝜙1 d𝜙2 d𝑟 d𝑠
(1 − 𝜆 + 𝜆𝑟2) (1 − 𝜆 + 𝜆𝑠2) [1 − 𝜆 + 𝜆 (𝑟2 + 𝑠2 + 2𝐴𝑟𝑠)]

= |Σ|
−1

∫
𝜋

𝜃1 ,𝜃2=0

∫
2𝜋

𝜙1 ,𝜙2=0

∫
𝐾

𝑟,𝑠=0

sin (𝜃1) sin (𝜃2) 𝑟
2𝑠2d𝑠 d𝑟 d𝜙1 d𝜙2 d𝜃1 d𝜃2

(1 + 𝑟2) (1 + 𝑠2) [1 + 𝑟2 + 𝑠2 + 2𝐴𝑟𝑠]

∼ |Σ|
−1 log (𝐾)∫

𝜋

𝜃1,𝜃2=0

∫
2𝜋

𝜙1 ,𝜙2=0

sin (𝜃1) sin (𝜃2)
arccos (𝐴 (𝜃1, 𝜃2, 𝜙1, 𝜙2))

√1 − 𝐴 (𝜃1, 𝜃2, 𝜙1, 𝜙2)
2

d𝜙1 d𝜙2 d𝜃1 d𝜃2.

(61)

The other integral is slightly easier

𝐼2 (𝜆) ∼ |Σ|
−1 𝜋

2
log𝐾

⋅ ∫
𝜋

𝜃1,𝜃2=0

∫
2𝜋

𝜙1 ,𝜙2=0

sin (𝜃1) sin (𝜃2) d𝜙1 d𝜙2 d𝜃1 d𝜃2,
(62)

and thus overall we must have that

(𝐼1 − 𝐼2) (𝜆) ∼
1

2
(2𝜋)

−6
|Σ|

−1
(1 − 𝜆)

−2 log( 1

1 − 𝜆
)

⋅ ∫
𝜋

𝜃1,𝜃2=0

∫
2𝜋

𝜙1 ,𝜙2=0

[
arccos (𝐴)

√1 − 𝐴2
−

𝜋

2
] sin (𝜃1)
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⋅ sin (𝜃2) d𝜙1 d𝜙2 d𝜃1 d𝜃2 š 𝜅2 (1

− 𝜆)
−2 log( 1

1 − 𝜆
) ,

(63)

whence it follows that var(𝐿𝑛(2)) ∼ (𝜅1 + 𝜅2)𝑛 log 𝑛.
To prove the last claim let 𝑆

𝑛
= 𝑋

1
+ ⋅ ⋅ ⋅ + 𝑋

𝑛
be another

random walk, independent of 𝑆𝑛, such that its characteristic
function𝑓(𝑡) = E[exp(i𝑡𝑋

𝑖
)] also satisfies the expansion (6).

Then using [13, Lemma 3.1], one can adapt the proof of [13,
Theorem 2.1] to show that 𝐿

𝑛
(𝛼) = 𝐿𝑛(𝛼) + 𝑜(𝐿𝑛(𝛼)).
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