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The aim of this paper is to compare the efficiency of various techniques for squeezing flow of an incompressible viscous fluid in a
porous medium under the influence of a uniform magnetic field squeezed between two large parallel plates having slip boundary.
Fourth-order nonlinear ordinary differential equation is obtained by transforming theNavier-Stokes equations. Resulting boundary
value problem is solved using Differential Transform Method (DTM), Daftardar Jafari Method (DJM), Adomian Decomposition
Method (ADM), Homotopy Perturbation Method (HPM), and Optimal Homotopy Asymptotic Method (OHAM). The problem
is also solved numerically using Mathematica solver NDSolve. The residuals of the problem are used to compare and analyze the
efficiency and consistency of the abovementioned schemes.

1. Introduction

The study of squeezing flow started in 19th century and it
continues to receive considerable attention due to its practical
applications in physical and biophysical areas, namely, food
industry, chemical engineering, polymer processing, com-
pression, and injection modeling. Stefan [1] accomplished
elementary research in this field. Analysis of Newtonian fluid
squeezed between two infinite planar plates is studied by Ran
et al. [2].ThinNewtonian liquid films squeezing between two
plates were studied by Grimm [3]. Squeezing flow under the
influence of magnetic field is broadly applied to bearing with
liquid-metal lubrication [4–7].

The study of magnetic field effects on lubrication fluid
films has attracted many scientists for a number of years. The
flows of electrically conducting fluid through porousmedium
have attained incomparable status and have been the lime-
light of concern of many researchers in the last few decades.
The particular applications are investigated in the study of
ground water flow, irrigation problems, crude petroleum
recovery, heat-storage beds, thermal and insulating engineer-
ing, chromatography, chemical catalytic reactors, and many
more. Hughes and Elco [8] investigated the dynamics of
an electrically conducting fluid in the presence of magnetic

field between two parallel disks, one rotating at a constant
angular velocity, for two cases, an axial magnetic field with
a radial current and a radial magnetic field with an axial
current. They discovered that the magnetic field affects the
load capacity of the bearing and that the frictional torque
on the rotor becomes zero for both the cases by applying
electrical energy through the electrodes to the fluid. Ullah
et al. studied the squeezing flow, in a porous medium, of a
Newtonian fluid under the influence of imposed magnetic
field [9]. The velocity profile of the fluid is discussed in the
last work by considering various relations between the values
of Reynolds and Hartmann number.

High order nonlinear boundary value problems arise in
the study of squeezing flow of Newtonian as well as non-
Newtonian fluids. The exact solution of these problems is
sometimes difficult to find due to the mathematical com-
plexity of Navier-Stokes equations. In order to solve these
problems, various seminumerical techniques are widely used.
We discuss here one by one these techniques and apply them
to obtain the velocity profile of the fluid.

Homotopy Perturbation Method (HPM) was first intro-
duced byHe [10, 11].Marinca et al. [12, 13] introducedOHAM
for approximate solution of nonlinear problems of thin film
flow of a fourth-grade fluid down a vertical cylinder and for
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the study of the behavior of nonlinear mechanical vibration
of electrical machines. It is scrutinized that HPM and HAM
are the special cases of OHAM [14].

Differential Transform Method (DTM) was initially
introduced by Zhou in 1986 [15]. Islam et al. [16] successfully
applied this technique for squeezing flow of a Newtonian
fluid in porous medium channel. Ullah et al. [17] investigated
the squeezing fluid flow under the influence of magnetic
field with slip boundary condition using DTM. Ayaz [18]
studied the applications of two-dimensional DTM in case
of partial differential equations. Hassan [19] compared DTM
with ADM in solving PDEs.

Adomian [20, 21] (1923–1996), in 1980, introduced Ado-
mian Decomposition Method for solving nonlinear func-
tional equations. The technique is based on the decompo-
sition of solution of nonlinear operator equation in a series
of functions. Wazwaz [22] introduced the modified form
of ADM and used it in many BVPs successfully. The basic
idea of Daftardar Jafari Method (DJM) is introduced by
Daftardar-Gejji et al. [23, 24] to solve fractional boundary
value problems with Dirichlet boundary conditions. The
solution of fifth- and sixth-order boundary value problem
using DJM is studied by Ullah et al. and they got excellent
results [25].

The goal of this research paper is to solve the model of
squeezing flow of a Newtonian fluid in a porous medium
with MHD effect by using HPM, OHAM, DTM, ADM,
NIM, and the Mathematica solver NDSolve. Furthermore,
to check the efficiency of each scheme, the residuals of the
problem are used. Preparation of the model and basic ideas
of thementioned techniques along with their applications are
discussed in the respective sections.

2. Problem Modeling

Thecontinuity andmomentum equation for steady squeezing
flow in a porous medium under the influence of magnetic
field, as shown in Figure 1, are

∇ ⋅ 𝑊 = 0,

𝜌𝐷𝑊 = ∇ ⋅ 𝑇 + 𝐽 × 𝐵 + 𝑟.
(1)

Here𝑊 is the velocity vector,∇ is thematerial time derivative,
and 𝑇 is the Cauchy stress tensor given by 𝑇 = −𝑝𝐼 + 𝜇𝐴

with 𝐴 = ∇𝑊 + (∇𝑊)
𝑡. 𝐵 is the total magnetic field given

by 𝐵 = 𝐵
0
+ 𝑏. 𝐵

0
and 𝑏 represent the imposed and induced

magnetic fields, respectively. 𝑟 is Darcy’s resistance given by
[26, 27]

𝑟 = −
𝜇𝑊

𝑘
. (2)

The magnetohydrodynamic force can be written as follows:

𝐽 × 𝐵 = −𝜎𝐵
2

0
𝑊. (3)

Suppose that the magnetic field is applied along 𝑧-axis and
the plates are nonconducting. For small velocity 𝑤, the gap
distance 2𝐿 between the plates changes slowly with time 𝑡 so
that it can be taken constant. The flow is axisymmetric with

z = L

−w

wz = −L

2L
z = 0

r = 0

z

r

Plate 1

Plate 2

Figure 1: Geometry of the squeezing flow.

𝑧-axis perpendicular to plates and 𝑧 = ±𝐿 at the plates. The
components of𝑊 for the present case are𝑊 = (𝑤

𝑟
, 0, 𝑤
𝑧
). If

𝑃 = (𝜌/2)(𝑤2
𝑟
+𝑤2
𝑧
)+𝑝 is the generalized pressure and the flow

is steady then by comparing components the Navier-Stokes
equations (1) can be written as

𝜕𝑃

𝜕𝑟
− 𝜌(

𝜕𝑤
𝑧

𝜕𝑟
−
𝜕𝑤
𝑟

𝜕𝑧
)𝑤
𝑧

= −(𝜇
𝜕

𝜕𝑧
(
𝜕𝑤
𝑧

𝜕𝑟
−
𝜕𝑤
𝑟

𝜕𝑧
) + (

𝜇

𝑘
+ 𝜎𝐵
2

0
)𝑤
𝑟
) ,

(4)

𝜕𝑃

𝜕𝑧
+ 𝜌(

𝜕𝑤
𝑧

𝜕𝑟
−
𝜕𝑤
𝑟

𝜕𝑧
)𝑤
𝑟

=
𝜇

𝑟

𝜕

𝜕𝑟
(𝑟 (

𝜕𝑤
𝑧

𝜕𝑟
−
𝜕𝑤
𝑟

𝜕𝑧
)) − (

𝜇

𝑘
)𝑤
𝑧
.

(5)

Introducing stream function 𝜓(𝑟, 𝑧) [9], eliminating the
generalized pressure 𝑃 from (4) and (5), and using the
transformation 𝜓(𝑟, 𝑧) = 𝑟2𝑡(𝑧) and the boundary conditions

at 𝑧 = 0

𝑤
𝑧
= 0,

𝜕𝑤
𝑟

𝜕𝑧
= 0,

(6)

at 𝑧 = 𝐿

𝑤
𝑟
= 𝛽

𝜕𝑤
𝑟

𝜕𝑧
,

𝑤
𝑧
= −𝑤.

(7)

We have

𝑡
(iv)
(𝑧) − (

1

𝑘
+
𝜎𝐵
2

0

𝜇
) 𝑡
󸀠󸀠
(𝑧) + 2

𝜌

𝜇
𝑡 (𝑧) 𝑡
󸀠󸀠󸀠
(𝑧) = 0, (8)

subject to boundary conditions

𝑡 (0) = 0,

𝑡
󸀠󸀠
(0) = 0,

𝑡 (𝐿) =
𝑤

2
,

𝑡
󸀠
(𝐿) = 𝛽𝑡

󸀠󸀠
(𝐿) .

(9)
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Introducing nondimensional parameters,

𝑇
∗
=

𝑡

𝑤/2
,

𝑧
∗
=
𝑧

𝐿
,

R =
𝜌𝐿𝑤

𝜇
,

M = 𝐿√
1

𝑘
+
𝜎𝐵
2

0

𝜇
.

(10)

Omitting ∗, (8) and (9) become

𝑇
(iv)
(𝑧) −M

2
𝑇
󸀠󸀠
(𝑧) +R𝑇 (𝑧) 𝑇

󸀠󸀠󸀠
(𝑧) = 0, (11)

𝑇 (0) = 0,

𝑇
󸀠󸀠
(0) = 0,

𝑇 (1) = 1,

𝑇
󸀠
(1) = 𝛾𝑇

󸀠󸀠
(1) .

(12)

We solve (11) and (12) by fixing M = 1, R = 1, and 𝛾 = 1
to find the particular solution in each case for comparison
purpose.

3. Basic Idea and Application of DTM

For the function 𝑡(𝑧), one-dimensional differential transform
is defined as follows [28, 29]:

𝑇 (𝑧) =
1

𝑘!
[
𝑑
𝑘𝑡 (𝑧)

𝑑𝑧𝑘
]
𝑧=0

. (13)

The inverse transform of 𝑇(𝑧) is defined as follows:

𝑡 (𝑧) =

∞

∑
𝑘=0

𝑧
𝑘
𝑇 (𝑧) . (14)

Combining (13) and (14), we can write

𝑡 (𝑧) =

∞

∑
𝑘=0

𝑧𝑘

𝑘!
[
𝑑
𝑘𝑡 (𝑧)

𝑑𝑧𝑘
] . (15)

𝑡(𝑧) in a finite series is as follows:

𝑡 (𝑧) =

𝑁

∑
𝑘=0

𝑧𝑘

𝑘!
[
𝑑
𝑘𝑡 (𝑧)

𝑑𝑧𝑘
] , (16)

which means that

𝑡 (𝑧) =

∞

∑
𝑘=𝑁+1

𝑧𝑘

𝑘!
[
𝑑
𝑘𝑡 (𝑧)

𝑑𝑧𝑘
] (17)

can be considered negligibly small.
Some fundamental theorems on one-dimensional differ-

ential transform are as follows.

Theorem 1. If 𝑡(𝑧) = 𝑓(𝑧) ± ℎ(𝑧), then 𝑇(𝑘) = 𝐹(𝑘) ± 𝐻(𝑘).

Theorem 2. If 𝑡(𝑧) = ℎ(𝑛)(𝑧), then 𝑇(𝑧) = ((𝑘 + 𝑛)!/𝑘!)𝐻(𝑘 +
𝑛).

Theorem 3. If 𝑡(𝑧) = ℎ(𝑧) ⋅𝑓(𝑧), then 𝑇(𝑧) = ∑𝑘
𝑟=0
𝐻(𝑟)𝐹(𝑘−

𝑟).

Theorem 4. If 𝑡(𝑧) = 𝑧𝑛, then

𝑇 (𝑧) = 𝛿 (𝑘 − 𝑛) =
{

{

{

1 𝑖𝑓 𝑘 = 𝑛

0 𝑖𝑓 𝑘 ̸= 𝑛.
(18)

Keeping in view the abovementioned theorems, the dif-
ferential transform of (11) is given by

𝑇̃ (𝑛 + 4) =
𝑛!

(𝑛 + 4)!
(𝑚
2
(𝑛 + 1) (𝑛 + 2) 𝑇̃ (𝑛 + 2)

− 𝑅

𝑛

∑
𝑟=0

(𝑟 + 1) (𝑟 + 2) (𝑟 + 3) 𝑇̃ (𝑟 + 3) 𝑇̃ (𝑛 − 𝑟)) ,

(19)

with transformed boundary conditions

𝑇̃ (0) = 0,

𝑇̃ (1) = 𝛼,

𝑇̃ (2) = 0,

𝑇̃ (3) = 𝛽.

(20)

Using (19) and (20), the values of 𝑇̃(𝑖), 𝑖 = 1, 2, 3, . . . , 15, are

𝑇̃ (2𝑛) = 0, for 𝑛 = 0 (1) 7,

𝑇̃ (5) =
1

120
(6𝛽 − 6𝛼𝛽) ,

𝑇̃ (7) =
1

840𝛽
(1 − 4𝛼 + 3 (−2𝛽 + 𝛼

2
)) ,

𝑇̃ (9) =
𝛽

60480
(1 − 9𝛼 + 3𝛼 (32𝛽 − 5𝛼

2
) + (−72𝛽

+ 23𝛼
2
)) ,

𝑇̃ (11) =
𝛽

6652800
(1 − 16𝛼 − 44𝛼 (−39𝛽 + 4𝛼

2
)

+ (−414𝛽 + 86𝛼
2
) + 3 (432𝛽

2
− 482𝛼

2
𝛽 + 35𝛼

4
)) ,

𝑇̃ (13) =
𝛽

1037836800
(1 − 25𝛼 + 2𝛼 (7446𝛽

− 475𝛼
2
) + 2 (−948𝑏 + 115𝛼

2
) − 9𝛼 (7384𝛽

2

− 2620𝛼
2
𝛽 + 105𝛼

4
) + 3 (14616𝛽

2
− 11808𝛼

2
𝛽

+ 563𝛼
4
)) ,
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𝑇̃ (15) =
𝛽

217945728000
(1 − 36𝛼 + 24𝛼 (4106𝛽

− 145𝛼
2
) + (−7974𝛽 + 505𝛼

2
) − 12𝛼 (239508𝛽

2

− 62828𝛼
2
𝛽 + 1627𝛼

4
) + (703296𝛽

2

− 427716𝛼
2
𝛽 + 12139𝛼

4
) + 9 (−151344𝛽

3

+ 282256𝛼
2
𝛽
2
− 47590𝛼

4
𝛽 + 1155𝛼

6
)) .

(21)

To find the values of 𝛼 and 𝛽, we use the following trans-
formed boundary conditions:

15

∑
𝑛=0

(𝑛𝑇̃ [𝑛] − 𝑛 (𝑛 − 1) 𝑇̃ [𝑛]) = 0,

15

∑
𝑛=0

𝑇̃ [𝑛] = 1,

(22)

which leads us to the following values:

𝛼 = 0.754966,

𝛽 = 0.242565.

(23)

The approximate solution of the problem is as follows:

𝑇 (𝑧) = 0.754966𝑧 + 0.242565𝑧
3
+ 0.00297182𝑧

5

− 0.00050977𝑧
7
+ 3.913152541684915

× 10
−6
𝑧
9
+ 3.1529964918115006 × 10

−6
𝑧
11

− 1.2149332568415323 × 10
−7
𝑧
13

− 2.0892317176411676 × 10
−8
𝑧
15
.

(24)

4. Basic Idea and Application of DJM

Consider the nonlinear boundary value problem [9, 23, 24]:

L (𝑇 (𝑧)) +M (𝑇 (𝑧)) +N (𝑇 (𝑧)) = 𝑓 (𝑧) , (25)

where L represents the highest order derivative with respect
to 𝑧, M is the linear term reminder, and N represents
the nonlinear term. Using the operator L = 𝑑

4/𝑑𝑥4, (25)
becomes

𝑇 (𝑧) = 𝜂
0
+ 𝜂
1
𝑧 + 𝜂
2

𝑧2

2!
+ 𝜂
3

𝑧3

3!
+ L
−1
𝑓 (𝑧)

− L
−1
M (𝑇 (𝑧)) − L

−1
N (𝑇 (𝑧)) .

(26)

𝜂
𝑖
are constants to be determined later. The function 𝑇(𝑧) is

then expressed by the infinite series as

𝑇 (𝑧) =

∞

∑
𝑘=0

𝑇
𝑘
(𝑧) . (27)

The nonlinear term N(𝑇(𝑧)) is written in the sum of
Daftardar-Geiji et al. polynomials as

N (𝑇 (𝑧)) =
∞

∑
𝑛=0

𝐺
𝑛
. (28)

Here 𝐺󸀠
𝑛
s are defined as

𝐺
0
(𝑧) = N (𝑇

0
(𝑧)) ,

𝐺
𝑚
(𝑧) = N(

𝑚

∑
𝑛=0

𝑇
𝑛
(𝑧)) −N(

𝑚−1

∑
𝑛=0

𝑇
𝑛
(𝑧)) .

(29)

Using these 𝐺󸀠
𝑛
s, we have the following components of 𝑇(𝑧):

𝑇
0
(𝑧) = 𝛽

0
+ 𝛽
1
𝑧 + 𝛽
2

𝑧2

2!
+ 𝛽
3

𝑧3

3!
− 𝐿
−1
𝑓 (𝑧) ,

𝑇
𝑘+1
(𝑧) = −𝐿

−1
M (𝑇
𝑘
(𝑧)) − 𝐿

−1
(𝐺
𝑘
) .

(30)

For the solution of (11) with the help of (12), we have 𝑓(𝑧) =
0, M(𝑇(𝑧)) = −𝑚2𝑇󸀠󸀠(𝑧), and N(𝑇(𝑧)) = 𝑅𝑇(𝑧)𝑇󸀠󸀠󸀠(𝑧) the
components of 𝑇(𝑧) using DJM are as follows:

𝑇
0
(𝑧) = 𝐵𝑧 +

𝐴𝑧3

6
,

𝑇
1
(𝑧) =

1

120
(𝐴 − 𝐴𝐵) 𝑧

5
−
𝐴2𝑧7

5040
,

𝑇
2
(𝑧) =

(𝐴 − 4𝐴𝐵 + 3𝐴𝐵2) 𝑧7

5040

+ (−
𝐴2

30240
+
𝐴
2𝐵

22680
) 𝑧
9

+
(−7𝐴2 + 12𝐴3 + 14𝐴2𝐵 − 7𝐴2𝐵2) 𝑧11

13305600

+
(𝐴3 − 𝐴3𝐵) 𝑧13

38438400
−

𝐴
4𝑧15

3962649600
.

(31)

𝑇
3
(𝑧) is also obtained in the samemanner.The series solution

up to 𝑇
3
(𝑧) is then given by
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𝑇 (𝑧) = 𝑇
0
(𝑧) + 𝑇

1
(𝑧) + 𝑇

2
(𝑧) + 𝑇

3
(𝑧) + 𝑂 (𝑧

14
)

= 𝐵𝑧 +
𝐴𝑧
3

6
+
1

120
(𝐴 − 𝐴𝐵) 𝑧

5
+ (−

𝐴2

5040
+
𝐴 − 4𝐴𝐵 + 3𝐴𝐵

2

5040
) 𝑧
7

+ (−
𝐴
2

30240
+
𝐴
2
𝐵

22680
+
𝐴 − 9𝐴𝐵 + 23𝐴𝐵

2
− 15𝐴𝐵

3

362880
) 𝑧
9

+ (
−12𝐴2 + 61𝐴2𝐵 − 55𝐴2𝐵2

9979200
+
−7𝐴
2 + 12𝐴3 + 14𝐴2𝐵 − 7𝐴2𝐵2

13305600
) 𝑧
11

+ (
𝐴3 − 𝐴3𝐵

38438400
+
−183𝐴

2 + 1056𝐴3 + 1041𝐴2𝐵 − 1684𝐴3𝐵 − 1533𝐴2𝐵2 + 675𝐴2𝐵3

6227020800
) 𝑧
13
.

(32)

Use the boundary conditions at 𝑧 = 1 to get

𝐴 = 1.45535,

𝐵 = 0.754972

(33)

so that the last equation becomes

𝑇 (𝑧) = 0.75𝑧 + 0.24𝑧
3
+ 2.97 × 10

−3
𝑧
5
− 5.10

× 10
−4
𝑧
7
+ 3.91 × 10

−6
𝑧
9
+ 3.30 × 10

−6
𝑧
11

− 8.03 × 10
−8
𝑧
13
+ 𝑂 (𝑧

14
) .

(34)

5. Basic Idea and Application of ADM

Consider the differential equation

L (𝑇 (𝑧)) +M (𝑇 (𝑧)) +N (𝑇 (𝑧)) = 𝑓 (𝑧) . (35)

Following the basic concept of DJM, for the nonlinear
term N(𝑇(𝑧)) Adomian introduced polynomials so called
Adomian polynomials defined as

𝐴
𝑛
=

𝑛

∑
𝑟=1

𝑐 (𝑟, 𝑛) 𝑇
𝑟
(𝑧
0
) , (36)

where 𝑐(𝑟, 𝑛) are products (or sum of products) of 𝑟 com-
ponents of 𝑇(𝑧) whose subscripts sum to 𝑛, divided by the
factorial of the number of repeated subscripts. N(𝑇(𝑧)) is
written in the form of infinite series of Adomian polynomials
as

N (𝑇 (𝑧)) =
∞

∑
𝑘=0

𝐴
𝑘
. (37)

In our caseN(𝑇(𝑧)) = 𝑇(𝑧)𝑇󸀠󸀠󸀠(𝑧). Some polynomials for this
nonlinear term are

𝐴
0
= N (𝑇

0
(𝑧)) = 𝑇

0
(𝑧) ⋅ 𝑇

󸀠󸀠󸀠

0
(𝑧) ,

𝐴
1
= 𝑇
1
(𝑧)N
󸀠
(𝑇
0
(𝑧)) = 𝑇

1
(𝑧) (𝑇

0
(𝑧) 𝑇
(iv)
0

+ 𝑇
󸀠

0
𝑇
󸀠󸀠󸀠

0
(𝑧)) ,

𝐴
2
= 𝑇
2
(𝑧)N
󸀠
(𝑇
0
(𝑧)) +

𝑇
1
(𝑧)

2!
N
󸀠󸀠
(𝑇
0
(𝑧)) = 𝑇

2
(𝑧)

⋅ (𝑇
0
(𝑧) 𝑇
(iv)
0
+ 𝑇
󸀠

0
𝑇
󸀠󸀠󸀠

0
(𝑧))

+
𝑇
1
(𝑧)

2!
(𝑇
0
(𝑧) 𝑇
(v)
0
(𝑧) + 2𝑇

󸀠

0
(𝑧) 𝑇
(iv)
0
(𝑧)

+ 𝑇
󸀠󸀠󸀠

0
(𝑧) 𝑇
󸀠󸀠

0
(𝑧)) .

(38)

The recursive process to find the components of 𝑇(𝑧) is

𝑇
0
(𝑧) = 𝛽

0
+ 𝛽
1
𝑧 + 𝛽
2

𝑧2

2!
+ 𝛽
3

𝑧3

3!
− 𝐿
−1
𝑓 (𝑧) ,

𝑇
𝑘+1
(𝑧) = −𝐿

−1
𝑀(𝑇
𝑘
(𝑧)) − 𝐿

−1
(𝐴
𝑘
) ,

𝑘 = 0, 1, 2, . . . .

(39)

Bymeans of boundary conditions at 𝑧 = 0 the components of
𝑇(𝑧) are obtained as follows:

𝑇
0
(𝑧) = 𝑏𝑧 +

𝑎𝑧3

6
,

𝑇
1
(𝑧) =

1

120
(𝑎 − 𝑎𝑏) 𝑧

5
−
𝑎2𝑧7

5040
,

𝑇
2
(𝑧) =

(𝑎 − 𝑎𝑏) 𝑧
7

5040
+
(−𝑎2 − 𝑎2𝑏 + 𝑎2𝑏2) 𝑧9

362880

+ (−
𝑎
3

1900800
+

𝑎
3𝑏

1814400
) 𝑧
11

+
𝑎4𝑧13

172972800
.

(40)
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Considering the components up to 𝑇
4
(𝑧), we have the

following solution:

𝑇 (𝑧) = 𝑏𝑧 +
𝑎𝑧
3

6
+
1

120
(𝑎 − 𝑎𝑏) 𝑧

5
+ (−

𝑎2

5040
+
𝑎 − 𝑎𝑏

5040
)

⋅ 𝑧
7
+ (

𝑎 − 𝑎𝑏

362880
+
−𝑎
2 − 𝑎2𝑏 + 𝑎2𝑏2

362880
) 𝑧
9
+ (−

𝑎3

1900800

+
𝑎3𝑏

1814400
+

𝑎 − 𝑎𝑏

39916800
+
−𝑎
2 − 2𝑎2𝑏 + 2𝑎2𝑏2

39916800
) 𝑧
11

+ (
𝑎4

172972800
+
−𝑎
2 − 3𝑎2𝑏 + 3𝑎2𝑏2

6227020800

+
−57𝑎3 + 59𝑎3𝑏 + 𝑎3𝑏2 − 𝑎3𝑏3

6227020800
) 𝑧
13

+ (
−1295𝑎4 + 2848𝑎4𝑏 − 1463𝑎4𝑏2

1307674368000

+
−112𝑎3 + 115𝑎3𝑏 + 3𝑎3𝑏2 − 3𝑎3𝑏3

1307674368000
) 𝑧
15

+ (
𝑎5

29804544000
−

251𝑎
5𝑏

7410154752000

+
−11513𝑎

4
+ 23653𝑎

4
𝑏 − 11974𝑎

4
𝑏
2
− 𝑎
4
𝑏
3
+ 𝑎
4
𝑏
4

355687428096000
)

⋅ 𝑧
17
+ (−

41𝑎6

168951528345600

+
−26697𝑎

5
+ 309950𝑎

5
𝑏 − 441391𝑎

5
𝑏
2
+ 157724𝑎

5
𝑏
3

121645100408832000
)

⋅ 𝑧
19
.

(41)

Use the conditions at 𝑧 = 1 to get two equations which, on
solving, give

𝑎 = 1.44861,

𝑏 = 0.755971.
(42)

The approximate solution thus obtained is

𝑇 (𝑧) = 0.755971𝑧 + 0.241436𝑧
3
+ 0.002946𝑧

5

− 0.000346𝑧
7
− 5.875514 × 10

−6
𝑧
9

− 3.958095 × 10
−7
𝑧
11
+ 1.895084 × 10

−8
𝑧
13

+ 1.649921 × 10
−11
𝑧
15
+ 4.480188

× 10
−11
𝑧
17
− 1.009835 × 10

−12
𝑧
19
.

(43)

6. Basic Idea and Application of HPM

Let us consider a nonlinear differential equation as follows
[10, 11]:

M (𝑇) = 𝑔 (𝑧) . (44)

The operator M is usually divided into two parts, namely,
linear (L) and nonlinear (N); that is,

M = L +N, (45)

and 𝑔(𝑧) is a known analytic function. Equation (44) can be
written as

L (𝑇) +N (𝑇) − 𝑔 (𝑧) = 0, 𝑟 ∈ Ω, (46)

with boundary conditions

B(𝑇,
𝜕𝑇

𝜕𝑧
) = 0, 𝑧 ∈ Γ, (47)

where Γ is the boundary of the domain Ω. A homotopy
H(𝑇(𝑧, 𝑝), 𝑝) : R × [0, 1] → R is constructed which satisfies

H (V, 𝑝) = (1 − 𝑝) [L (V) − L (𝑇
0
)]

+ 𝑝 [MV − 𝑔 (𝑧)] .
(48)

𝑝 ∈ [0, 1] is an embedding parameter and 𝑇
0
is the first

approximation satisfying the boundary conditions. Taylor’s
series expansion of 𝑇(𝑧, 𝑝) about 𝑝 is used for the approxi-
mate solution of the differential equation as follows:

𝑇 (𝑧) = V
0
(𝑧) +

∞

∑
𝑟=1

V
𝑟
(𝑧) 𝑝
𝑟
. (49)

Putting (49) in (48) and equating the coefficients of like
powers of 𝑝 for the present problem, we get the following:

Zeroth-order problem:

𝑇
(iv)
(𝑧) = 0,

𝑇
0
(0) = 0,

𝑇
󸀠󸀠

0
(0) = 0,

𝑇
0
(1) = 1,

𝑇
󸀠

0
(1) = 𝑇

󸀠󸀠

0
(1) .

(50)

First-order problem:

𝑇
(iv)
1
(𝑧) = 𝑇

󸀠󸀠

0
(𝑧) − 𝑇

0
(𝑧) 𝑇
󸀠󸀠󸀠

0
(𝑧) ,

𝑇
1
(0) = 0,

𝑇
󸀠󸀠

1
(0) = 0,

𝑇
1
(1) = 0,

𝑇
󸀠

1
(1) = 𝑇

󸀠󸀠

1
(1) .

(51)

Second-order problem:

𝑇
(iv)
2
(𝑧) = 𝑇

󸀠󸀠

1
(𝑧) − 𝑇

1
(𝑧) 𝑇
󸀠󸀠󸀠

0
(𝑧) − 𝑇

0
(𝑧) 𝑇
󸀠󸀠󸀠

1
(𝑧) ,

𝑇
2
(0) = 0,

𝑇
󸀠󸀠

2
(0) = 0,

𝑇
2
(1) = 0,

𝑇
󸀠

2
(1) = 𝑇

󸀠󸀠

2
(1) .

(52)
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Third-order problem:

𝑇
(iv)
3
(𝑧) = 𝑇

󸀠󸀠

2
(𝑧) − 𝑇

2
(𝑧) 𝑇
󸀠󸀠󸀠

0
(𝑧) − 𝑇

1
(𝑧) 𝑇
󸀠󸀠󸀠

1
(𝑧)

− 𝑇
0
(𝑧) 𝑇
󸀠󸀠󸀠

2
(𝑧) ,

𝑇
3
(0) = 0,

𝑇
󸀠󸀠

3
(0) = 0,

𝑇
3
(1) = 0,

𝑇
󸀠

3
(1) = 𝑇

󸀠󸀠

3
(1) .

(53)

Fourth-order problem:

𝑇
(iv)
4
(𝑧) = 𝑇

󸀠󸀠

3
(𝑧) − 𝑇

3
(𝑧) 𝑇
󸀠󸀠󸀠

0
(𝑧) − 𝑇

2
(𝑧) 𝑇
󸀠󸀠󸀠

1
(𝑧)

− 𝑇
1
(𝑧) 𝑇
󸀠󸀠󸀠

2
(𝑧) − 𝑇

0
(𝑧) 𝑇
󸀠󸀠󸀠

3
(𝑧) ,

𝑇
4
(0) = 0,

𝑇
󸀠󸀠

4
(0) = 0,

𝑇
4
(1) = 0,

𝑇
󸀠

4
(1) = 𝑇

󸀠󸀠

4
(1) .

(54)

By considering the fourth-order solution, we have

𝑇 (𝑧) = 𝑇
0
(𝑧) + 𝑇

1
(𝑧) + 𝑇

2
(𝑧) + 𝑇

3
(𝑧) + 𝑇

4
(𝑧)

= 0.755𝑧 + 0.243𝑧
3
+ 0.003𝑧

5
− 5.097 × 10

−4
𝑧
7

+ 3.877 × 10
−6
𝑧
9
+ 3.150 × 10

−6
𝑧
11
− 1.293

× 10
−7
𝑧
13
+ 𝑂 (𝑧

14
) .

(55)

7. Basic Idea and Application of OHAM

If 𝑡(𝑧) is an unknown function, 𝑓(𝑧) is known function,
and L,N,B are linear, nonlinear, and boundary operator,
respectively, then for boundary value problem [12–14]

L [𝑡 (𝑧)] + 𝑓 (𝑧) +N [𝑡 (𝑧)] = 0, (56)

with boundary conditions

B(𝑇 (𝑧) ,
𝑑𝑇 (𝑧)

𝑑𝑧
) = 0, (57)

a homotopy H(𝑇(𝑧, 𝑝), 𝑝) : R × [0, 1] → R is constructed
which satisfies the following:

(1 − 𝑝) [L (𝑇 (𝑧, 𝑝)) + 𝑓 (𝑧)]

= H (𝑝) [L (𝑇 (𝑧, 𝑝)) + 𝑓 (𝑧) +N (𝑇 (𝑧, 𝑝))] ,

B(𝑇 (𝑧, 𝑝) ,
𝜕𝑇 (𝑧, 𝑝)

𝜕𝑧
) = 0,

(58)

where 𝑝 ∈ [0, 1] andH(𝑝) is a nonzero auxiliary function. If
𝑝 = 0, then 𝑇(𝑧, 0) = 𝑡

0
(𝑧) and if 𝑝 = 1, then 𝑇(𝑧, 1) = 𝑡(𝑧)

hold. It means that the solution𝑇(𝑧, 𝑝) approaches from 𝑡
0
(𝑧)

to 𝑡(𝑧) as 𝑝 varies from 0 to 1.
For 𝑝 = 0

L (𝑇
0
(𝑧)) + 𝑓 (𝑧) = 0,

B(𝑇
0
,
𝑑𝑇
0

𝑑𝑧
) = 0.

(59)

The auxiliary functionH(𝑝) is selected such that

H (𝑝) =
𝑛

∑
𝑘=0

𝑝
𝑘
𝐶
𝑘
, (60)

where 𝐶
𝑘
are the convergence controlling constants to be

determined. Expanding 𝑇(𝑧, 𝑝) in Taylor’s series about 𝑝 to
get

𝑇 (𝑧, 𝑝, 𝐶
𝑘
) = 𝑇
0
(𝑧) +

𝑛

∑
𝑗=1

𝑇
𝑗
(𝑧, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑗
) 𝑝
𝑗
, (61)

substituting (61) into (58) and comparing the coefficients of
the same powers of 𝑝, the general 𝑛th order problem is

L (𝑇
𝑛
(𝑧)) − L (𝑇

𝑛−1
(𝑧)) = 𝐶

𝑛
N
0
(𝑇
0
(𝑧))

+ (

𝑛−1

∑
𝑗=1

𝐶
𝑗
[L (𝑇

𝑛−𝑗
(𝑧))

+N
𝑛−𝑗
(𝑇
0
(𝑧) , 𝑇

1
(𝑧) , . . . , 𝑇

𝑛−1
(𝑧))]) ,

(62)

with boundary conditions

B(𝑇
𝑛
,
𝑑𝑇
𝑛

𝑑𝑧
) = 0, 𝑛 = 1, 2, 3, 4, . . . , (63)

where N
𝑚
(𝑇
0
(𝑧), 𝑇
1
(𝑧), . . . , 𝑇

𝑚−1
(𝑧)) is the coefficient of 𝑝𝑚

in the expansion ofN(𝑇(𝑧, 𝑝)) about 𝑝. Consider

N (𝑇 (𝑧, 𝑝, 𝐶
𝑘
)) = N

0
(𝑇
0
(𝑧))

+

∞

∑
𝑚=1

N
𝑚
(𝑇
0
, 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑚
) 𝑝
𝑚
.

(64)

The 𝑘th-order approximation 𝑇̃ is

𝑇̃ (𝑧, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) = 𝑇
0
(𝑧)

+

𝑘

∑
𝑗=1

𝑇
𝑗
(𝑧, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑗
) .

(65)

The expression for the residual is

R (𝑧, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) = L (𝑇̃ (𝑧, 𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑘
))

+ 𝑓 (𝑧)

+N (𝑇̃ (𝑧, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
)) .

(66)
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IfR = 0, then we say that 𝑇̃ is the exact solution, but, in case
of nonlinearity, it does not happen generally. To search the
constants 𝐶

𝑘
, different methods can be applied. One of these

methods is the method of least square as follows:

𝐼 = ∫
𝑥
1

𝑥
0

R
2
(𝑧, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) 𝑑𝑧. (67)

Minimizing this function, we have

𝜕𝐼

𝜕𝐶
𝑖

(𝑧, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) = 0, 𝑖 = 1, 2, 3, . . . , 𝑘. (68)

𝑥
0
and 𝑥

1
are within the domain of the problem for locating

suitable 𝐶󸀠
𝑟
s (𝑟 = 1, 2, . . . , 𝑘). Now we solve (11) with bound-

ary conditions (12); we find the following different order
problems:

Zeroth-order problem:

𝑇
(iv)
0
(𝑧) = 0,

𝑇
0
(0) = 0,

𝑇
󸀠󸀠

0
(0) = 0,

𝑇
0
(1) = 1,

𝑇
󸀠

0
(1) = 𝑇

󸀠󸀠

0
(1) .

(69)

First-order problem:

𝑇
(iv)
1
(𝑧) = 𝐶

1
𝑇
0
(𝑧) 𝑇
󸀠󸀠󸀠

0
(𝑧) + 𝑇

(iv)
0
(𝑧) + 𝐶

1
𝑇
(iv)
0
(𝑧)

− 𝐶
1
𝑇
󸀠󸀠

0
(𝑧) ,

𝑇
1
(0) = 0,

𝑇
󸀠󸀠

1
(0) = 0,

𝑇
1
(1) = 0,

𝑇
󸀠

1
(1) = 𝑇

󸀠󸀠

1
(1) .

(70)

Second-order problem:

𝑇
(iv)
2
(𝑧) = 𝐶

2
𝑇
0
(𝑧) 𝑇
󸀠󸀠󸀠

0
(𝑧) + 𝐶

1
𝑇
1
(𝑧) 𝑇
󸀠󸀠󸀠

0
(𝑧)

+ 𝐶
1
𝑇
0
(𝑧) 𝑇
󸀠󸀠󸀠

1
(𝑧) + 𝐶

2
𝑇
(iv)
0
+ 𝑇
(iv)
1
(𝑧)

+ 𝐶
1
𝑇
(iv)
1
(𝑧) − 𝐶

2
𝑇
󸀠󸀠

0
(𝑧) − 𝐶

1
𝑇
󸀠󸀠

1
(𝑧) ,

𝑇
2
(0) = 0,

𝑇
󸀠󸀠

2
(0) = 0,

𝑇
2
(1) = 0,

𝑇
󸀠

2
(1) = 𝑇

󸀠󸀠

2
(1) .

(71)

Third-order problem:

𝑇
(iv)
3
(𝑧) = 𝐶

2
𝑇
1
(𝑧) 𝑇
󸀠󸀠󸀠

0
(𝑧) + 𝐶

1
𝑇
2
(𝑧) 𝑇
󸀠󸀠󸀠

0
(𝑧)

+ 𝐶
2
𝑇
0
(𝑧) 𝑇
󸀠󸀠󸀠

1
(𝑧) + 𝐶

1
𝑇
1
(𝑧) 𝑇
󸀠󸀠󸀠

1
(𝑧)

+ 𝐶
1
𝑇
0
(𝑧) 𝑇
󸀠󸀠󸀠

2
(𝑧) + 𝐶

2
𝑇
(iv)
1
(𝑧)

+ 𝑇
(iv)
2
(𝑧) + 𝐶

1
𝑇
(iv)
2
(𝑧) − 𝐶

2
𝑇
󸀠󸀠

1
(𝑧)

+ 𝐶
1
𝑇
󸀠󸀠

2
(𝑧) ,

𝑇
3
(0) = 0,

𝑇
󸀠󸀠

3
(0) = 0,

𝑇
3
(1) = 0,

𝑇
󸀠

3
(1) = 𝑇

󸀠󸀠

3
(1) .

(72)

Similarly fourth-order problem can also be found easily. By
considering the fourth-order solution, we have

𝑇̃ (𝑧) =

4

∑
𝑖=0

𝑇
𝑖
(𝑧, 𝐶
1
, 𝐶
2
) . (73)

The residual of the problem is

Res = 𝑇̃
(iv)
(𝑧) −M

2
𝑇̃
󸀠󸀠

(𝑧) +R𝑇̃ (𝑧) 𝑇̃
󸀠󸀠󸀠

(𝑧) . (74)

In order to find 𝐶
1
and 𝐶

2
, we apply the method of least

square as follows:

𝐽 (𝐶
1
, 𝐶
2
) = ∫
1

0

Res
2
(𝑧, 𝐶
1
, 𝐶
2
) 𝑑𝑧,

𝜕𝐽

𝜕𝐶
𝑖

(𝑧, 𝐶
1
, 𝐶
2
) = 0, 𝑖 = 1, 2.

(75)

Solving (75) for 𝐶
1
, 𝐶
2
, we get

𝐶
1
= −0.89521,

𝐶
2
= −0.00031.

(76)

Using these values of𝐶
1
, 𝐶
2
, the approximate solution is given

by

𝑇 (𝑧) = 0.754966𝑧 + 0.242565𝑧
3
+ 0.0029716𝑧

5

− 0.000509457𝑧
7
+ 3.73464 × 10

−6
𝑧
9

+ 3.17424 × 10
−6
𝑧
11
− 1.10266 × 10

−7
𝑧
13

− 2.19862 × 10
−8
𝑧
15
+ 8.28889 × 10

−9
𝑧
17

+ 1.26544 × 10
−10
𝑧
19
.

(77)

8. Conclusion

In the present paper various analytical techniques are used
along with one numerical scheme to find the approximate
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Table 1: Absolute residuals for numerical and various analytical schemes.

𝑧 ADM DJM DTM HPM OHAM NDSolve
0.0 0.0 0.0 0.0 0.0 0.0 1.20 × 10−2

0.1 1.34 × 10−4 1.07 × 10−10 1.40 × 10−17 8.84 × 10−6 7.53 × 10−9 1.55 × 10−3

0.2 1.06 × 10
−3

1.40 × 10
−8

7.00 × 10
−14

1.76 × 10
−5

6.05 × 10
−9

1.50 × 10
−4

0.3 3.58 × 10
−3

2.50 × 10
−7

1.32 × 10
−11

2.63 × 10
−5

1.66 × 10
−8

2.00 × 10
−5

0.4 8.40 × 10−3 2.00 × 10−6 5.61 × 10−10 3.54 × 10−5 6.85 × 10−8 8.02 × 10−6

0.5 1.62 × 10−2 1.02 × 10−5 1.04 × 10−8 4.56 × 10−5 1.30 × 10−7 2.90 × 10−5

0.6 2.74 × 10
−2

4.10 × 10
−5

1.14 × 10
−7

6.00 × 10
−5

1.24 × 10
−7

6.20 × 10
−5

0.7 4.21 × 10−2 1.40 × 10−4 8.63 × 10−7 7.10 × 10−5 7.81 × 10−8 1.60 × 10−5

0.8 5.99 × 10−2 4.00 × 10−4 5.03 × 10−6 7.10 × 10−5 5.34 × 10−7 2.90 × 10−4

0.9 7.96 × 10
−2

1.05 × 10
−3

2.40 × 10
−5

9.00 × 10
−6

8.58 × 10
−7

1.10 × 10
−3

1.0 9.89 × 10−2 2.60 × 10−3 9.74 × 10−5 2.60 × 10−4 4.11 × 10−7 1.20 × 10−2

solution for axisymmetric squeezing flow of incompressible
Newtonian fluid having MHD effect and passing through
porousmedium channel with slip boundary. Absolute residu-
als of themodeled problem are obtained using these schemes,
that is, ADM, DJM, DTM, HPM, and OHAM. Numerical
solution is obtained using Mathematica solver NDSolve. The
residuals are given in Table 1 which shows the efficiency
of all the schemes used in the given scenario as compared
with the numerical scheme NDSolve. In comparison with
other techniques it is clear from Table 1 that OHAM is more
efficient and consistent.
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