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This paper is devoted to investigating some characteristic features of weighted means and convex functions in terms of the non-
Newtonian calculus which is a self-contained system independent of any other system of calculus. It is shown that there are infinitely
many such useful types of weighted means and convex functions depending on the choice of generating functions. Moreover,
some relations between classical weighted mean and its non-Newtonian version are compared and discussed in a table. Also, some
geometric interpretations of convex functions are presented with respect to the non-Newtonian slope. Finally, using multiplicative
continuous convex functions we give an application.

1. Introduction

It is well known that the theory of convex functions and
weighted means plays a very important role in mathematics
and other fields. There is wide literature covering this topic
(see, e.g., [1–8]). Nowadays the study of convex functions
has evolved into a larger theory about functions which are
adapted to other geometries of the domain and/or obey
other laws of comparison of means. Also the study of convex
functions begins in the context of real-valued functions of a
real variable. More important, they will serve as a model for
deep generalizations into the setting of several variables.

As an alternative to the classical calculus, Grossman and
Katz [9–11] introduced the non-Newtonian calculus consist-
ing of the branches of geometric, quadratic and harmonic
calculus, and so forth. All these calculi can be described
simultaneously within the framework of a general theory.
They decided to use the adjective non-Newtonian to indicate
any calculi other than the classical calculus. Every property in
classical calculus has an analogue in non-Newtonian calculus
which is a methodology that allows one to have a different
look at problems which can be investigated via calculus. In

some cases, for example, for wage-rate (in dollars, euro, etc.)
related problems, the use of bigeometric calculus which is
a kind of non-Newtonian calculus is advocated instead of a
traditional Newtonian one.

Many authors have extensively developed the notion of
multiplicative calculus; see [12–14] for details. Also some
authors have also worked on the classical sequence spaces
and related topics by using non-Newtonian calculus [15–17].
Furthermore, Kadak et al. [18, 19] characterized the classes of
matrix transformations between certain sequence spaces over
the non-Newtonian complex field and generalized Runge-
Kutta method with respect to the non-Newtonian calculus.
For more details, see [20–22].

The main focus of this work is to extend weighted
means and convex functions based on various generator
functions, that is, exp and 𝑞𝑝 (𝑝 ∈ R+) generators.

The rest of this paper is organized as follows: in Sec-
tion 2, we give some required definitions and consequences
related with the 𝛼-arithmetic and 𝑞𝑝-arithmetic. Based on
two arbitrarily selected generators 𝛼 and 𝛽, we give some
basic definitions with respect to the ∗-arithmetic. We also
report the most relevant and recent literature in this section.
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In Section 3, first the definitions of non-Newtonian means
are given which will be used for non-Newtonian convexity. In
this section, the forms of weighted means are presented and
an illustrative table is given. In Section 4, the generalized non-
Newtonian convex function is defined on the interval 𝐼𝛼 and
some types of convex function are obtained by using different
generators. In the final section of the paper, we assert the
notion of multiplicative Lipschitz condition on the closed
interval [𝑥, 𝑦] ⊂ (0,∞).
2. Preliminary, Background, and Notation

Arithmetic is any system that satisfies the whole of the
ordered field axioms whose domain is a subset of R. There
are infinitely many types of arithmetic, all of which are
isomorphic, that is, structurally equivalent.

A generator 𝛼 is a one-to-one function whose domain is
R and whose range is a subset R𝛼 of R where R𝛼 = {𝛼(𝑥) :𝑥 ∈ R}. Each generator generates exactly one arithmetic,
and conversely each arithmetic is generated by exactly one
generator. If 𝐼(𝑥) = 𝑥, for all 𝑥 ∈ R, the identity function’s
inverse is itself. In the special cases 𝛼 = 𝐼 and 𝛼 = exp, 𝛼
generates the classical and geometric arithmetic, respectively.
By 𝛼-arithmetic, we mean the arithmetic whose domain is R
and whose operations are defined as follows: for 𝑥, 𝑦 ∈ R𝛼
and any generator 𝛼,

𝛼-addition𝑥 +̇ 𝑦 = 𝛼 {𝛼−1 (𝑥) + 𝛼−1 (𝑦)} ,
𝛼-subtraction𝑥 −̇ 𝑦 = 𝛼 {𝛼−1 (𝑥) − 𝛼−1 (𝑦)} ,

𝛼-multiplication𝑥 ×̇ 𝑦 = 𝛼 {𝛼−1 (𝑥) × 𝛼−1 (𝑦)} ,
𝛼-division 𝑥 ̇/ 𝑦 = 𝛼 {𝛼−1 (𝑥) ÷ 𝛼−1 (𝑦)} ,

𝛼-order 𝑥 <̇ 𝑦 ⇐⇒ 𝛼−1 (𝑥) < 𝛼−1 (𝑦) .

(1)

As a generator, we choose exp function acting from R into
the set Rexp = (0,∞) as follows:

𝛼 : R 󳨀→ Rexp

𝑥 󳨃󳨀→ 𝑦 = 𝛼 (𝑥) = 𝑒𝑥. (2)

It is obvious that 𝛼-arithmetic reduces to the geometric arith-
metic as follows:

geometric addition 𝑥 +̇ 𝑦 = 𝑒{ln𝑥+ln𝑦} = 𝑥 ⋅ 𝑦,
geometric subtraction 𝑥 −̇ 𝑦 = 𝑒{ln𝑥−ln𝑦} = 𝑥 ÷ 𝑦,
geometric multiplication 𝑥 ×̇ 𝑦 = 𝑒{ln 𝑥 ln𝑦} = 𝑥ln𝑦
= 𝑦ln𝑥,

geometric division 𝑥 ̇/ 𝑦 = 𝑒{ln 𝑥/ ln𝑦} = 𝑥1/ ln𝑦,
geometric order 𝑥 <̇ 𝑦 ⇐⇒ ln (𝑥) < ln (𝑦) .

(3)

Following Grossman and Katz [10] we give the infinitely
many 𝑞𝑝-arithmetics, of which the quadratic and harmonic

arithmetic are special cases for𝑝 = 2 and𝑝 = −1, respectively.
The function 𝑞𝑝 : R→ R𝑞 ⊆ R and its inverse 𝑞−1𝑝 are defined
as follows (𝑝 ∈ R \ {0}):

𝑞𝑝 (𝑥) =
{{{{{{{{{

𝑥1/𝑝, 𝑥 > 0
0, 𝑥 = 0
− (−𝑥)1/𝑝 , 𝑥 < 0,

𝑞−1𝑝 (𝑥) =
{{{{{{{{{

𝑥𝑝, 𝑥 > 0
0, 𝑥 = 0
− (−𝑥)𝑝 , 𝑥 < 0.

(4)

It is to be noted that 𝑞𝑝-calculus is reduced to the classical
calculus for 𝑝 = 1. Additionally it is concluded that the 𝛼-
summation can be given as follows:

𝑛

𝛼
∑
𝑘=1

𝑥𝑘 = 𝛼{ 𝑛∑
𝑘=1

𝛼−1 (𝑥𝑘)}
= 𝛼 {𝛼−1 (𝑥1) + ⋅ ⋅ ⋅ + 𝛼−1 (𝑥𝑛)} ∀𝑥𝑘 ∈ R

+.
(5)

Definition 1 (see [15]). Let𝑋 = (𝑋, 𝑑𝛼) be an 𝛼-metric space.
Then the basic notions can be defined as follows:

(a) A sequence 𝑥 = (𝑥𝑘) is a function from the set N into
the setR𝛼. The 𝛼-real number 𝑥𝑘 denotes the value of
the function at 𝑘 ∈ N and is called the 𝑘th term of the
sequence.

(b) A sequence (𝑥𝑛) in 𝑋 = (𝑋, 𝑑𝛼) is said to be 𝛼-
convergent if, for every given 𝜀 >̇ 0̇ (𝜀 ∈ R𝛼), there
exist an 𝑛0 = 𝑛0(𝜀) ∈ N and 𝑥 ∈ 𝑋 such that𝑑𝛼(𝑥𝑛, 𝑥) = |𝑥𝑛 −̇ 𝑥|𝛼 <̇ 𝜀 for all 𝑛 > 𝑛0 and is denoted
by 𝛼lim𝑛→∞𝑥𝑛 = 𝑥 or 𝑥𝑛 𝛼󳨀→ 𝑥, as 𝑛 → ∞.

(c) A sequence (𝑥𝑛) in𝑋 = (𝑋, 𝑑𝛼) is said to be 𝛼-Cauchy
if for every 𝜀 >̇ 0̇ there is an 𝑛0 = 𝑛0(𝜀) ∈ N such that𝑑𝛼(𝑥𝑛, 𝑥𝑚) <̇ 𝜀 for all𝑚, 𝑛 > 𝑛0.

Throughout this paper, we define the 𝑝th 𝛼-exponent 𝑥𝑝𝛼
and 𝑞th 𝛼-root 𝑥(1/𝑞)𝛼 of 𝑥 ∈ R+ by

𝑥2𝛼 = 𝑥 ×̇ 𝑥 = 𝛼 {𝛼−1 (𝑥) × 𝛼−1 (𝑥)}
= 𝛼 {[𝛼−1 (𝑥)]2} ,

𝑥3𝛼 = 𝑥2𝛼 ×̇ 𝑥
= 𝛼 {𝛼−1 {𝛼 [𝛼−1 (𝑥) × 𝛼−1 (𝑥)]} × 𝛼−1 (𝑥)}
= 𝛼 {[𝛼−1 (𝑥)]3} ,

...
𝑥𝑝𝛼 = 𝑥(𝑝−1)𝛼 ×̇ 𝑥 = 𝛼 {[𝛼−1 (𝑥)]𝑝} ,

(6)
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and 𝛼√𝑥 = 𝑥(1/2)𝛼 = 𝑦 provided there exists an 𝑦 ∈ R𝛼 such
that 𝑦2𝛼 = 𝑥.
2.1. ∗-Arithmetic. Suppose that 𝛼 and 𝛽 are two arbitrarily
selected generators and (“star-”) also is the ordered pair
of arithmetics (𝛽-arithmetic and 𝛼-arithmetic). The sets(R𝛽, +̈, −̈, ×̈, ̈/, <̈) and (R𝛼, +̇, −̇, ×̇, ̇/, <̇) are complete ordered
fields and 𝑏𝑒𝑡𝑎(𝑎𝑙𝑝ℎ𝑎)-generator generates 𝑏𝑒𝑡𝑎(𝑎𝑙𝑝ℎ𝑎)-
arithmetic, respectively. Definitions given for 𝛽-arithmetic
are also valid for 𝛼-arithmetic. Also 𝛼-arithmetic is used for
arguments and 𝛽-arithmetic is used for values; in particu-
lar, changes in arguments and values are measured by 𝛼-
differences and 𝛽-differences, respectively.

Let 𝑥 ∈ (R𝛼, +̇, −̇, ×̇, ̇/, <̇) and 𝑦 ∈ (R𝛽, +̈, −̈, ×̈, ̈/, <̈) be
arbitrarily chosen elements from corresponding arithmetic.
Then the ordered pair (𝑥, 𝑦) is called a ∗-point and the set
of all ∗-points is called the set of ∗-complex numbers and is
denoted by C∗; that is,

C
∗ fl {𝑧∗ = (𝑥, 𝑦) | 𝑥 ∈ R𝛼, 𝑦 ∈ R𝛽} . (7)

Definition 2 (see [17]). (a) The ∗-limit of a function 𝑓 at an
element 𝑎 inR𝛼 is, if it exists, the unique number 𝑏 inR𝛽 such
that
∗ lim
𝑥→𝑎

𝑓 (𝑥) = 𝑏 ⇐⇒
∀𝜀 >̈ 0̈, ∃𝛿 >̇ 0̇ ∋ 󵄨󵄨󵄨󵄨𝑓 (𝑥) −̈ 𝑏󵄨󵄨󵄨󵄨𝛽 <̈ 𝜀

∀𝑥, 𝜀 ∈ R𝛼, 󵄨󵄨󵄨󵄨𝑥 −̇ 𝑎󵄨󵄨󵄨󵄨𝛼 <̇ 𝛿,
(8)

for 𝛿 ∈ R𝛽, and is written as ∗lim𝑥→𝑎𝑓(𝑥) = 𝑏.
A function𝑓 is∗-continuous at a point 𝑎 inR𝛼 if and only

if 𝑎 is an argument of 𝑓 and ∗lim𝑥→𝑎𝑓(𝑥) = 𝑓(𝑎). When𝛼 and 𝛽 are the identity function 𝐼, the concepts of ∗-limit
and ∗-continuity are reduced to those of classical limit and
classical continuity.

(b) The isomorphism from 𝛼-arithmetic to 𝛽-arithmetic
is the unique function 𝜄 (iota) which has the following three
properties:

(i) 𝜄 is one to one.
(ii) 𝜄 is from R𝛼 to R𝛽.

(iii) For any numbers 𝑢, V ∈ R𝛼,

𝜄 (𝑢 +̇ V) = 𝜄 (𝑢) +̈ 𝜄 (V) ;
𝜄 (𝑢 −̇ V) = 𝜄 (𝑢) −̈ 𝜄 (V) ;
𝜄 (𝑢 ×̇ V) = 𝜄 (𝑢) ×̈ 𝜄 (V) ;
𝜄 (𝑢 ̇/ V) = 𝜄 (𝑢) ̈/ 𝜄 (V) .

(9)

It turns out that 𝜄(𝑥) = 𝛽{𝛼−1(𝑥)} for every 𝑥 in R𝛼 and
that 𝜄(𝑛̇) = 𝑛̈ for every 𝛼-integer 𝑛̇. Since, for example,𝑢 +̇ V = 𝜄−1{𝜄(𝑢) +̈ 𝜄(V)}, it should be clear that any statement in

𝛼-arithmetic can readily be transformed into a statement in𝛽-arithmetic.

Definition 3 (see [10]). The following statements are valid:

(i) The ∗-points 𝑃1, 𝑃2, and 𝑃3 are ∗-collinear provided
that at least one of the following holds:

𝑑∗ (𝑃2, 𝑃1) +̈ 𝑑∗ (𝑃1, 𝑃3) = 𝑑∗ (𝑃2, 𝑃3) ,
𝑑∗ (𝑃1, 𝑃2) +̈ 𝑑∗ (𝑃2, 𝑃3) = 𝑑∗ (𝑃1, 𝑃3) ,
𝑑∗ (𝑃1, 𝑃3) +̈ 𝑑∗ (𝑃3, 𝑃2) = 𝑑∗ (𝑃1, 𝑃2) .

(10)

(ii) A ∗-line is a set 𝐿 of at least two distinct points such
that, for any distinct points𝑃1 and𝑃2 in 𝐿, a point𝑃3 is
in 𝐿 if and only if 𝑃1, 𝑃2, and 𝑃3 are ∗-collinear. When𝛼 = 𝛽 = 𝐼, the ∗-lines are the straight lines in two-
dimensional Euclidean space.

(iii) The ∗-slope of a ∗-line through the points (𝑎1, 𝑏1) and(𝑎2, 𝑏2) is given by

𝑚∗ = (𝑏2 −̈ 𝑏1) ̈/ 𝜄 (𝑎2 −̇ 𝑎1)
= 𝛽{ 𝛽−1 (𝑏2) − 𝛽−1 (𝑏1)𝛼−1 (𝑎2) − 𝛼−1 (𝑎1)} , (𝑎1 ̸= 𝑎2) , (11)

for 𝑎1, 𝑎2 ∈ R𝛼 and 𝑏1, 𝑏2 ∈ R𝛽.

If the following ∗-limit in (12) exists, we denote it by𝑓∗(𝑡), call it the ∗-derivative of 𝑓 at 𝑡, and say that 𝑓 is ∗-
differentiable at 𝑡 (see [19]):

∗lim
𝑥→𝑡

(𝑓 (𝑥) −̈ 𝑓 (𝑡)) ̈/ 𝜄 (𝑥 −̇ 𝑡)
= lim
𝑥→𝑡

𝛽{𝛽−1 {𝑓 (𝑥)} − 𝛽−1 {𝑓 (𝑡)}𝛼−1 (𝑥) − 𝛼−1 (𝑡) }

= lim
𝑥→𝑡

𝛽{𝛽−1 {𝑓 (𝑥)} − 𝛽−1 {𝑓 (𝑡)}𝑥 − 𝑡
⋅ 𝑥 − 𝑡𝛼−1 (𝑥) − 𝛼−1 (𝑡)} = 𝛽

{{{
(𝛽−1 ∘ 𝑓)󸀠 (𝑡)
(𝛼−1)󸀠 (𝑡)

}}}
.

(12)

3. Non-Newtonian (Weighted) Means

Definition 4 (𝛼-arithmetic mean). Consider that 𝑛 positive
real numbers 𝑥1, 𝑥2, . . . , 𝑥𝑛 are given. The 𝛼-mean (average),
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denoted by 𝐴𝛼, is the 𝛼-sum of 𝑥𝑛’s 𝛼-divided by 𝑛̇ for all𝑛 ∈ N. That is,

𝐴𝛼 = 𝑛

𝛼
∑
𝑘=1

𝑥𝑘 ̇/ 𝑛̇ = 𝑛

𝛼
∑
𝑘=1

𝛼{𝛼−1 (𝑥𝑘)𝑛 }

= 𝛼{𝛼−1 (𝑥1) + 𝛼−1 (𝑥2) + ⋅ ⋅ ⋅ + 𝛼−1 (𝑥𝑛)𝑛 } .
(13)

For 𝛼 = exp, we obtain that

𝐴exp = ( 𝑛∏
𝑘=1

𝑥𝑘)
1/𝑛

= (𝑥1 ⋅ 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛)1/𝑛 . (14)

Similarly, for 𝛼 = 𝑞𝑝, we get

𝐴𝑝 = (𝑥
𝑝
1 + 𝑥𝑝2 + ⋅ ⋅ ⋅ + 𝑥𝑝𝑛𝑛 )1/𝑝 , 𝑝 ∈ R \ {0} . (15)

𝐴exp and 𝐴𝑝 are called multiplicative arithmetic mean and𝑝-arithmetic mean (as usually known p-mean), respectively.
One can conclude that 𝐴𝑝 reduces to arithmetic mean and
harmonic mean in the ordinary sense for 𝑝 = 1 and 𝑝 = −1,
respectively.

Remark 5. It is clear that Definition 4 can be written by
using various generators. In particular if we take𝛽-arithmetic
instead of 𝛼-arithmetic then the mean can be defined by

𝐴𝛽 = 𝑛

𝛽
∑
𝑘=1

𝑥𝑘 ̈/ 𝑛̈. (16)

Definition 6 (𝛼-geometric mean). Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ R+.
The 𝛼-geometric mean, namely, 𝐺𝛼, is 𝑛th 𝛼-root of the 𝛼-
product of (𝑥𝑛)’s:

𝐺𝛼 = ( 𝑛

𝛼
∏
𝑘=1

𝑥𝑘)
(1/𝑛)𝛼 = 𝛼{{{

( 𝑛∏
𝑘=1

𝛼−1 (𝑥𝑘))
1/𝑛}}}

= 𝛼{(𝛼−1 (𝑥1) , 𝛼−1 (𝑥2) , . . . , 𝛼−1 (𝑥𝑛))1/𝑛} .
(17)

We conclude similarly, by taking the generators 𝛼 = exp
or 𝛼 = 𝑞𝑝, that the 𝛼-geometric mean can be interpreted as
follows:

𝐺exp = exp {(ln𝑥1, ln𝑥2, . . . , ln𝑥𝑛)1/𝑛} , (𝑥𝑛 > 1)
𝐺𝑝 = {(𝑥𝑝1 , 𝑥𝑝2 , . . . , 𝑥𝑝𝑛)1/𝑛}1/𝑝 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)1/𝑛 ,

(𝑝 ̸= 0) .
(18)

𝐺exp and 𝐺𝑝 are called multiplicative geometric mean and𝑝-geometric mean, respectively. It would clearly have 𝐺𝑝 =𝐴exp for 𝑝 = 1.
Definition 7 (𝛼-harmonic mean). Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ R+ and𝛼−1(𝑥𝑛) ̸= 0 for each 𝑛 ∈ N. The 𝛼-harmonic mean 𝐻𝛼 is
defined by

𝐻𝛼 = 𝑛̇ ̇/ 𝑛
𝛼
∑
𝑘=1

(1̇ ̇/𝑥𝑘)
= 𝑛̇ ̇/ (1̇ ̇/ 𝑥1 +̇ 1̇ ̇/ 𝑥2 +̇ ⋅ ⋅ ⋅ +̇ 1̇ ̇/ 𝑥𝑛)
= 𝛼{ 𝑛1/𝛼−1 (𝑥1) + 1/𝛼−1 (𝑥2) + ⋅ ⋅ ⋅ + 1/𝛼−1 (𝑥𝑛)} .

(19)

Similarly, one obtains that

𝐻exp

= exp{ 𝑛1/ln (𝑥1) + 1/ln (𝑥2) + ⋅ ⋅ ⋅ + 1/ln (𝑥𝑛)} ,
(𝑥𝑛 > 1) ,

𝐻𝑝 = { 𝑛
1/ (𝑥1)𝑝 + 1/ (𝑥2)𝑝 + ⋅ ⋅ ⋅ + 1/ (𝑥𝑛)𝑝}

1/𝑝 .

(20)

𝐻exp and𝐻𝑝 are called multiplicative harmonic mean and 𝑝-
harmonic mean, respectively. Obviously the inclusion (20) is
reduced to ordinary harmonic mean and ordinary arithmetic
mean for 𝑝 = 1 and 𝑝 = −1, respectively.

3.1. Non-Newtonian Weighted Means. The weighted mean is
similar to an arithmetic mean, where instead of each of the
data points contributing equally to the final average, some
data points contributemore than others.Moreover the notion
of weighted mean plays a role in descriptive statistics and
also occurs in a more general form in several other areas of
mathematics.

The following definitions can give the relationships
between the non-Newtonian weighted means and ordinary
weighted means.

Definition 8 (weighted 𝛼-arithmetic mean). Formally, the
weighted 𝛼-arithmetic mean of a nonempty set of data{𝑥1, 𝑥2, . . . , 𝑥𝑛} with nonnegative weights {𝑤1, 𝑤2, . . . , 𝑤𝑛} is
the quantity
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𝐴̃𝛼 = 𝑛

𝛼
∑
𝑖=1

(𝑥𝑖 ×̇ 𝑤̇𝑖) ̇/ 𝑛
𝛼
∑
𝑖=1

𝑤̇𝑖 = (𝑥1 ×̇ 𝑤̇1 +̇ 𝑥2 ×̇ 𝑤̇2 +̇ ⋅ ⋅ ⋅ +̇ 𝑥𝑛 ×̇ 𝑤̇𝑛) ̇/ (𝑤̇1 +̇ 𝑤̇2 +̇ ⋅ ⋅ ⋅ +̇ 𝑤̇𝑛) = 𝛼{∑
𝑛
𝑖=1 𝑤𝑖𝛼−1 (𝑥𝑖)∑𝑛𝑖=1 𝑤𝑖 } . (21)

The formulas are simplified when the weights are 𝛼-
normalized such that they 𝛼-sum up to 𝛼∑𝑛𝑖=1𝑤̇𝑖 = 1̇. For
such normalized weights the weighted 𝛼-arithmetic mean is
simply 𝐴̃𝛼 = 𝛼∑𝑛𝑖=1 𝑥𝑖 ×̇ 𝑤̇𝑖. Note that if all the weights are
equal, the weighted 𝛼-arithmetic mean is the same as the 𝛼-
arithmetic mean.

Taking 𝛼 = exp and 𝛼 = 𝑞𝑝, the weighted 𝛼-arithmetic
mean can be given with the weights {𝑤1, 𝑤2, . . . , 𝑤𝑛} as fol-
lows:

𝐴̃exp = exp{∑𝑛𝑖=1 ln (𝑥𝑖) 𝑤𝑖∑𝑛𝑖=1 𝑤𝑖 } = ( 𝑛∏
𝑖=1

𝑥𝑤𝑖𝑖 )
1/∑𝑛𝑖=1 𝑤𝑖 ,
(𝑥𝑛 > 1) ,

𝐴̃𝑞𝑝 = {𝑤1 (𝑥1)
𝑝 + 𝑤2 (𝑥2)𝑝 + ⋅ ⋅ ⋅ + 𝑤𝑛 (𝑥𝑛)𝑝𝑤1 + 𝑤2 + ⋅ ⋅ ⋅ + 𝑤𝑛 }1/𝑝 .

(22)

𝐴̃exp and 𝐴̃𝑝 are called multiplicative weighted arithmetic
mean and weighted 𝑝-arithmetic mean, respectively. 𝐴̃exp
turns out to the ordinary weighted geometric mean. Also,
one easily can see that 𝐴̃𝑝 is reduced to ordinary weighted
arithmetic mean and weighted harmonic mean for 𝑝 = 1 and𝑝 = −1, respectively.
Definition 9 (weighted 𝛼-geometric mean). Given a set of
positive reals {𝑥1, 𝑥2, . . . , 𝑥𝑛} and corresponding weights{𝑤1, 𝑤2, . . . , 𝑤𝑛}, then the weighted 𝛼-geometric mean 𝐺̃𝛼 is
defined by

𝐺̃𝛼 = { 𝑛

𝛼
∏
𝑖=1

𝑥𝑖}
(𝑤𝑖/∑

𝑛
𝑖=1 𝑤𝑖)𝛼 = 𝑥(𝑤1/(𝑤1+⋅⋅⋅+𝑤𝑛))𝛼1

×̇ 𝑥(𝑤2/(𝑤1+⋅⋅⋅+𝑤𝑛))𝛼2 ×̇ ⋅ ⋅ ⋅ ×̇ 𝑥(𝑤𝑛/(𝑤1+⋅⋅⋅+𝑤𝑛))𝛼𝑛

= 𝛼{[𝛼−1 (𝑥1)]𝑤1/(𝑤1+⋅⋅⋅+𝑤𝑛) ,
[𝛼−1 (𝑥2)]𝑤2/(𝑤1+⋅⋅⋅+𝑤𝑛) , . . . , [𝛼−1 (𝑥𝑛)]𝑤𝑛/(𝑤1+⋅⋅⋅+𝑤𝑛)} .

(23)

Note that if all the weights are equal, the weighted 𝛼-
geometric mean is the same as the 𝛼-geometric mean.
Taking 𝛼 = exp and 𝛼 = 𝑞𝑝, theweighted 𝛼-geometricmean
can be written for the weights {𝑤1, 𝑤2, . . . , 𝑤𝑛} as follows:

𝐺̃exp = exp {[ln (𝑥1)]𝑤1/(𝑤1+⋅⋅⋅+𝑤𝑛) ,
[ln (𝑥2)]𝑤2/(𝑤1+⋅⋅⋅+𝑤𝑛) , . . . , [ln (𝑥𝑛)]𝑤𝑛/(𝑤1+⋅⋅⋅+𝑤𝑛)} ,

(𝑥𝑛 > 1) ,
𝐺̃𝑝 = {𝑥𝑝𝑤1/(𝑤1+⋅⋅⋅+𝑤𝑛)1 , 𝑥𝑝𝑤2/(𝑤1+⋅⋅⋅+𝑤𝑛)2 , . . . ,
𝑥𝑝𝑤𝑛/(𝑤1+⋅⋅⋅+𝑤𝑛)𝑛 }1/𝑝 = ( 𝑛∏

𝑖=1

𝑥𝑤𝑖𝑖 )
1/∑𝑛𝑖=1 𝑤𝑖 .

(24)

𝐺̃exp and 𝐺̃𝑝 are called weighted multiplicative geometric
mean and weighted 𝑞-geometric mean. Also we have 𝐺̃𝑝 =𝐴̃exp for all 𝑥𝑛 > 1.
Definition 10 (weighted 𝛼-harmonic mean). If a set {𝑤1,𝑤2, . . . , 𝑤𝑛} of weights is associated with the data set{𝑥1, 𝑥2, . . . , 𝑥𝑛} then the weighted 𝛼-harmonic mean is
defined by

𝐻̃𝛼 = 𝑛

𝛼
∑
𝑘=1

𝑤̇𝑘 ̇/ 𝑛𝛼∑
𝑘=1

(𝑤̇𝑘 ̇/ 𝑥𝑘)
= (𝑤̇1 +̇ ⋅ ⋅ ⋅ +̇ 𝑤̇𝑛) ̇/ (𝑤̇1 ̇/ 𝑥1 +̇ 𝑤̇2 ̇/ 𝑥2 +̇ ⋅ ⋅ ⋅ +̇ 𝑤̇𝑛 ̇/ 𝑥𝑛)
= 𝛼{ 𝑤1 + 𝑤2 + ⋅ ⋅ ⋅ + 𝑤𝑛𝑤1/𝛼−1 (𝑥1) + 𝑤2/𝛼−1 (𝑥2) + ⋅ ⋅ ⋅ + 𝑤𝑛/𝛼−1 (𝑥𝑛)} .

(25)

Taking 𝛼 = exp and 𝛼 = 𝑞𝑝, the weighted 𝛼-harmonic
mean with the weights {𝑤1, 𝑤2, . . . , 𝑤𝑛} can be written as
follows:

𝐻̃exp

= exp{ 𝑤1 + 𝑤2 + ⋅ ⋅ ⋅ + 𝑤𝑛𝑤1/ ln𝑥1 + 𝑤2/ ln𝑥2 + ⋅ ⋅ ⋅ + 𝑤𝑛/ ln𝑥𝑛} ,
(𝑥𝑛 > 1) ,

𝐻̃𝑝
= { 𝑤1 + 𝑤2 + ⋅ ⋅ ⋅ + 𝑤𝑛𝑤1/ (𝑥1)𝑝 + 𝑤2/ (𝑥2)𝑝 + ⋅ ⋅ ⋅ + 𝑤𝑛/ (𝑥𝑛)𝑝}

1/𝑝 .

(26)

𝐻̃exp and 𝐻̃𝑝 are called multiplicative weighted harmonic
mean and weighted 𝑝-geometric mean, respectively. It is
obvious that 𝐻̃𝑝 is reduced to ordinary weighted harmonic
mean and ordinary weighted arithmetic mean for 𝑝 = 1 and𝑝 = −1, respectively.
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Table 1: Comparison of the non-Newtonian (weighted) means and ordinary (weighted) means.

Weight Data 𝑝 𝐴𝑝 𝐺𝑝 𝐻𝑝 𝐴̃𝑝 𝐺̃𝑝 𝐻̃𝑝 𝐺exp 𝐻exp 𝐺̃exp 𝐻̃exp𝑤1 = 2 𝑥1 = 15 1.0 27.50 24.74 22.64 32.82 29.88 27.27 24.02 23.36 29.05 28.26𝑤2 = 5 𝑥2 = 20 0.1 24.99 24.74 24.50 30.16 29.88 29.59 24.02 23.36 29.05 28.26𝑤3 = 7 𝑥3 = 25 2.0 30.61 24.74 21.14 35.77 29.88 25.21 24.02 23.36 29.05 28.26𝑤4 = 9 𝑥4 = 50 5.0 38.22 24.74 18.73 41.69 29.88 21.55 24.02 23.36 29.05 28.26

In Table 1, the non-Newtonian means are obtained by
using different generating functions. For 𝛼 = 𝑞𝑝, the𝑝-means𝐴𝑝, 𝐺𝑝 and𝐻𝑝 are reduced to ordinary arithmeticmean, geo-
metric mean, and harmonic mean, respectively. In particular
some changes are observed for each value of 𝐴𝑝, 𝐺𝑝, and𝐻𝑝
means depending on the choice of 𝑝. As shown in the table,
for increasing values of 𝑝, the 𝑝-arithmetic mean 𝐴𝑝 and its
weighted form 𝐴̃𝑝 increase; in particular 𝑝 tends to ∞, and
these means converge to the value of max{𝑥𝑛}. Conversely,
for increasing values of 𝑝, the 𝑝-harmonic mean 𝐻𝑝 and
its weighted forms 𝐻̃𝑝 decrease. In particular, these means
converge to the value of min{𝑥𝑛} as 𝑝 → ∞. Depending
on the choice of 𝑝, weighted forms 𝐴̃𝑝 and 𝐻̃𝑝, can be
increased or decreased without changing any weights. For
this reason, this approach brings a new perspective to the
concept of classical (weighted) mean. Moreover, when we
compare 𝐻exp and ordinary harmonic mean in Table 1, we
also see that ordinary harmonic mean is smaller than 𝐻exp.
On the contrary𝐴exp and𝐺exp are smaller than their classical
forms 𝐴𝑝 and 𝐺𝑝 for 𝑝 = 1. Therefore, we assert that
the values of 𝐺exp, 𝐻exp, 𝐺̃exp, and 𝐻̃exp should be evaluated
satisfactorily.

Corollary 11. Consider 𝑛 positive real numbers 𝑥1, 𝑥2, . . . , 𝑥𝑛.
Then, the conditions𝐻𝛼 < 𝐺𝛼 < 𝐴𝛼 and 𝐻̃𝛼 < 𝐺̃𝛼 < 𝐴̃𝛼 hold
when 𝛼 = exp for all 𝑥𝑛 > 1 and 𝛼 = 𝑞𝑝 for all 𝑝 ∈ R+.

4. Non-Newtonian Convexity

In this section, the notion of non-Newtonian convex (∗-
convex) functions will be given by using different genera-
tors. Furthermore the relationships between ∗-convexity and
non-Newtonian weighted mean will be determined.

Definition 12 (generalized ∗-convex function). Let 𝐼𝛼 be an
interval in R𝛼. Then 𝑓 : 𝐼𝛼 → R𝛽 is said to be ∗-convex if

𝑓 (𝜆1 ×̇ 𝑥 +̇ 𝜆2 ×̇ 𝑦) ≤̈ 𝜇1 ×̈ 𝑓 (𝑥) +̈ 𝜇2 ×̈ 𝑓 (𝑦) (27)

holds, where 𝜆1 +̇ 𝜆2 = 1̇ and 𝜇1 +̈ 𝜇2 = 1̈ for all 𝜆1, 𝜆2 ∈[0̇, 1̇] and 𝜇1, 𝜇2 ∈ [0̈, 1̈]. Therefore, by combining this with
the generators 𝛼 and 𝛽, we deduce that

𝑓 (𝛼 {𝛼−1 (𝜆1) 𝛼−1 (𝑥) + 𝛼−1 (𝜆2) 𝛼−1 (𝑦)})
≤̈ 𝛽 {𝛽−1 (𝜇1) 𝛽−1𝑓 (𝑥) + 𝛽−1 (𝜇2) 𝛽−1𝑓 (𝑦)} . (28)

If (28) is strict for all 𝑥 ̸= 𝑦, then 𝑓 is said to be strictly ∗-
convex. If the inequality in (28) is reversed, then 𝑓 is said to

be ∗-concave. On the other hand the inclusion (28) can be
written with respect to the weighted 𝛼-arithmetic mean in
(21) as follows:

𝑓 (𝐴̃𝛼 {𝑥, 𝑦}) ≤̈ 𝐴̃𝛽 {𝑓 (𝑥) , 𝑓 (𝑦)} . (29)

Remark 13. We remark that the definition of ∗-convexity in
(27) can be evaluated by non-Newtonian coordinate system
involving ∗-lines (see Definition 3). For 𝛼 = 𝛽 = 𝐼, the ∗-
lines are straight lines in two-dimensional Euclidean space.
For this reason, we say that almost all the properties of
ordinary Cartesian coordinate system will be valid for non-
Newtonian coordinate system under ∗-arithmetic.

Also depending on the choice of generator functions,
the definition of ∗-convexity in (27) can be interpreted as
follows.

Case 1. (a) If we take 𝛼 = 𝛽 = exp and 𝜆1 = 𝜇1, 𝜆2 = 𝜇2 in
(28), then

𝑓 (𝑥ln𝜆1𝑦ln𝜆2) ≤ 𝑓 (𝑥)ln𝜆1 𝑓 (𝑦)ln𝜆2 ,
(𝜆1, 𝜆2 ∈ [1, 𝑒]) ,

(30)

where 𝜆1𝜆2 = 𝑒 holds and 𝑓 : 𝐼exp → Rexp = (0,∞) is
called bigeometric (usually known as multiplicative) convex
function (cf. [2]). Equivalently, 𝑓 is bigeometric convex if
and only if log𝑓(𝑥) is an ordinary convex function.

(b) For 𝛼 = exp and 𝛽 = 𝐼 we have
𝑓 (𝑥ln𝜆1𝑦ln𝜆2) ≤ 𝜇1𝑓 (𝑥) + 𝜇2𝑓 (𝑦) ,

(𝜆1, 𝜆2 ∈ [1, 𝑒] ; 𝜇1, 𝜇2 ∈ [0, 1]) , (31)

where 𝜆1𝜆2 = 𝑒 and 𝜇1 +𝜇2 = 1. In this case the function 𝑓 :𝐼exp → R is called geometric convex function. Every
geometric convex (usually known as log-convex) function is
also convex (cf. [2]).

(c) Taking 𝛼 = 𝐼 and 𝛽 = exp, one obtains

𝑓 (𝜆1𝑥 + 𝜆2𝑦) ≤ 𝑓 (𝑥)ln 𝜇1 𝑓 (𝑦)ln 𝜇2 ,
(𝜇1, 𝜇2 ∈ [1, 𝑒] ; 𝜆1, 𝜆2 ∈ [0, 1]) , (32)

where 𝜇1𝜇2 = 𝑒 and 𝜆1 + 𝜆2 = 1, and 𝑓 : 𝐼 → Rexp is called
anageometric convex function.

Case 2. (a) If 𝛼 = 𝛽 = 𝑞𝑝 in (28) then

𝑓(((𝜆1𝑥)𝑝 + (𝜆2𝑦)𝑝)1/𝑝)
≤ ((𝜆1𝑓 (𝑥))𝑝 + (𝜆2𝑓 (𝑦))𝑝)1/𝑝 (𝑝 ∈ R

+) ,
(33)
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where 𝜆1, 𝜆2 ∈ [0, 1], 𝜆𝑝1 + 𝜆𝑝2 = 1, and 𝑓 : 𝐼𝑞𝑝 → R𝑞𝑝 is
called 𝑄𝑄-convex function.

(b) For 𝛼 = 𝑞𝑝 and 𝛽 = 𝐼, we write that
𝑓(((𝜆1𝑥)𝑝 + (𝜆2𝑦)𝑝)1/𝑝) ≤ 𝜇1𝑓 (𝑥) + 𝜇2𝑓 (𝑦) ,

(𝜆1, 𝜆2, 𝜇1, 𝜇2 ∈ [0, 1]) ,
(34)

where 𝜆𝑝1 + 𝜆𝑝2 = 1, 𝜇1 + 𝜇2 = 1, and 𝑓 : 𝐼𝑞𝑝 → R is called𝑄𝐼-convex function.
(c) For 𝛼 = 𝐼 and 𝛽 = 𝑞𝑝, we obtain that

𝑓 (𝜆1𝑥 + 𝜆2𝑦) ≤ ((𝜇1𝑓 (𝑥))𝑝 + (𝜇2𝑓 (𝑦))𝑝)1/𝑝 ,
(𝜆1, 𝜆2, 𝜇1, 𝜇2 ∈ [0, 1]) ,

(35)

where 𝜇𝑝1 +𝜇𝑝2 = 1, 𝜆1 +𝜆2 = 1, and 𝑓 : 𝐼 → R𝑞𝑝 is called 𝐼𝑄-
convex function.

The ∗-convexity of a function 𝑓 : 𝐼𝛼 → R𝛽 means geo-
metrically that the ∗-points of the graph of 𝑓 are under the
chord joining the endpoints (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)) on non-
Newtonian coordinate system for every 𝑎, 𝑏 ∈ 𝐼𝛼. By taking
into account the definition of ∗-slope in Definition 3 we have

(𝑓 (𝑥) −̈ 𝑓 (𝑎)) ̈/ 𝜄 (𝑥 −̇ 𝑎)
≤̈ (𝑓 (𝑏) −̈ 𝑓 (𝑎)) ̈/ 𝜄 (𝑏 −̇ 𝑎) (36)

which implies

𝑓 (𝑥) ≤̈ 𝑓 (𝑎) +̈ ((𝑓 (𝑏) −̈ 𝑓 (𝑎)) ̈/ 𝜄 (𝑏 −̇ 𝑎))
×̈ 𝜄 (𝑥 −̇ 𝑎) (37)

for all 𝑥 ∈ [𝑎̇, 𝑏̇].
On the other hand (37) means that if 𝑃,𝑄, and 𝑅 are any

three ∗-points on the graph of 𝑓 with 𝑄 between 𝑃 and 𝑅,
then 𝑄 is on or below chord 𝑃𝑅. In terms of ∗-slope, it is
equivalent to

𝑚∗ (𝑃𝑄) ≤̈𝑚∗ (𝑃𝑅) ≤̈𝑚∗ (𝑄𝑅) (38)

with strict inequalities when 𝑓 is strictly ∗-convex.
Now to avoid the repetition of the similar statements, we

give some necessary theorems and lemmas.

Lemma 14 (Jensen’s inequality). A 𝛽-real-valued function 𝑓
defined on an interval 𝐼𝛼 is ∗-convex if and only if

𝑓( 𝑛

𝛼
∑
𝑘=1

𝜆𝑘 ×̇ 𝑥𝑘) ≤̈ 𝑛

𝛽
∑
𝑘=1

𝜇𝑘 ×̈ 𝑓 (𝑥𝑘) (39)

holds, where 𝛼∑𝑛𝑘=1 𝜆𝑘 = 1̇ and 𝛽∑𝑛𝑘=1 𝜇𝑘 = 1̈ for all 𝜆𝑛 ∈ [0̇, 1̇]
and 𝜇𝑛 ∈ [0̈, 1̈].
Proof. The proof is straightforward, hence omitted.

Theorem 15. Let 𝑓 : 𝐼𝛼 → R𝛽 be a ∗-continuous function.
Then 𝑓 is ∗-convex if and only if 𝑓 is midpoint ∗-convex,
that is,

𝑥1, 𝑥2 ∈ 𝐼𝛼 implies

𝑓 (𝐴𝛼 {𝑥1, 𝑥2}) ≤̈ 𝐴𝛽 {𝑓 (𝑥1) , 𝑓 (𝑥2)} . (40)

Proof. The proof can be easily obtained using the inequality
(39) in Lemma 14.

Theorem16 (cf. [2]). Let 𝑓 : 𝐼exp → Rexp be a∗-differentiable
function (see [19]) on a subinterval 𝐼exp ⊆ (0,∞). Then the
following assertions are equivalent:

(i) 𝑓 is bigeometric convex (concave).
(ii) The function 𝑓∗(𝑥) is increasing (decreasing).

Corollary 17. A positive 𝛽-real-valued function 𝑓 defined on
an interval 𝐼exp is bigeometric convex if and only if

𝑓 (𝑥ln𝜆11 , 𝑥ln𝜆22 , . . . , 𝑥ln𝜆𝑛𝑛 )
≤ 𝑓 (𝑥1)ln𝜆1 , 𝑓 (𝑥2)ln𝜆2 , . . . , 𝑓 (𝑥𝑛)ln𝜆𝑛

(41)

holds, where ∏𝑛𝑘=1𝜆𝑘 = 𝑒 for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝐼exp and𝜆1, 𝜆2, . . . , 𝜆𝑛 ∈ [1, 𝑒]. Besides, we have
𝑓 (𝐴̃exp {𝑥1, 𝑥2, . . . , 𝑥𝑛})
≤ 𝐴̃exp {𝑓 (𝑥1) , 𝑓 (𝑥2) , . . . , 𝑓 (𝑥𝑛)} . (42)

Corollary 18. A 𝛽-real-valued function𝑓 defined on an inter-
val 𝐼𝑞𝑝 is 𝑄𝑄-convex if and only if

𝑓[((𝜆1𝑥1)𝑝 + (𝜆2𝑥2)𝑝 + ⋅ ⋅ ⋅ + (𝜆𝑛𝑥𝑛)𝑝)1/𝑝]
≤ ((𝜆1𝑓 (𝑥1))𝑝 + (𝜆2𝑓 (𝑥2))𝑝 + ⋅ ⋅ ⋅
+ (𝜆𝑛𝑓 (𝑥𝑛))𝑝)1/𝑝

(43)

holds, where ∑𝑛𝑘=1 𝜆𝑝𝑘 = 1 for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝐼𝑞𝑝 and𝜆1, 𝜆2, . . . , 𝜆𝑛 ∈ [0, 1]. Thus, we have

𝑓 (𝐴̃𝑝 {𝑥1, 𝑥2, . . . , 𝑥𝑛})
≤ 𝐴̃𝑝 {𝑓 (𝑥1) , 𝑓 (𝑥2) , . . . , 𝑓 (𝑥𝑛)} , (𝑝 ∈ R

+) . (44)

5. An Application of Multiplicative Continuity

In this section based on the definition of bigeometric convex
function and multiplicative continuity, we get an analogue of
ordinary Lipschitz condition on any closed interval.

Let 𝑓 be a bigeometric (multiplicative) convex function
and finite on a closed interval [𝑥, 𝑦] ⊂ R+. It is obvious that𝑓is bounded from above by 𝑀 = max{𝑓(𝑥), 𝑓(𝑦)}, since,
for any 𝑧 = 𝑥𝜆𝑦1−𝜆 in the interval, 𝑓(𝑧) ≤ 𝑓(𝑥)𝜆𝑓(𝑦)1−𝜆 for



8 International Journal of Analysis

𝜆 ∈ [1, 𝑒]. It is also bounded from below as we see by writing
an arbitrary point in the form 𝑡√𝑥𝑦 for 𝑡 ∈ R+. Then

𝑓2 (√𝑥𝑦) ≤ 𝑓 (𝑡√𝑥𝑦)𝑓(√𝑥𝑦𝑡 ) . (45)

Using 𝑀 as the upper bound 𝑓(√𝑥𝑦/𝑡) we obtain
𝑓 (𝑡√𝑥𝑦) ≥ 1𝑀𝑓2 (√𝑥𝑦) = 𝑚. (46)

Thus a bigeometric convex functionmay not be continuous at
the boundary points of its domain.Wewill prove that, for any
closed subinterval [𝑥, 𝑦] of the interior of the domain, there
is a constant 𝐾 > 0 so that, for any two points 𝑎, 𝑏 ∈ [𝑥, 𝑦] ⊂
R+,

𝑓 (𝑎)𝑓 (𝑏) ≤ (𝑎𝑏)
𝐾 . (47)

A function that satisfies (47) for some 𝐾 and all 𝑎 and 𝑏 in
an interval is said to satisfy bigeometric Lipschitz condition
on the interval.

Theorem 19. Suppose that 𝑓 : 𝐼 → R+ is multiplicative con-
vex. Then, 𝑓 satisfies the multiplicative Lipschitz condition on
any closed interval [𝑥, 𝑦] ⊂ R+ contained in the interior 𝐼0 of𝐼; that is, 𝑓 is continuous on 𝐼0.
Proof. Take 𝜀 > 1 so that [𝑥/𝜀, 𝑦𝜀] ∈ 𝐼, and let 𝑚 and 𝑀 be
the lower and upper bounds for 𝑓 on [𝑥/𝜀, 𝑦𝜀]. If 𝑟 and 𝑠 are
distinct points of [𝑥, 𝑦] with 𝑠 > 𝑟, set

𝑧 = 𝑠𝜀,
𝜆 = ( 𝑠𝑟)

1/ ln(𝜀𝑠/𝑟) , (𝜆 ∈ (1, 𝑒)) . (48)

Then 𝑧 ∈ [𝑥/𝜀, 𝑦𝜀] and 𝑠 = 𝑧ln𝜆𝑟1−ln𝜆, and we obtain

𝑓 (𝑠) ≤ 𝑓 (𝑧)ln𝜆 𝑓 (𝑟)1−ln𝜆 = (𝑓 (𝑧)𝑓 (𝑟) )
ln𝜆 𝑓 (𝑟) (49)

which yields

ln(𝑓 (𝑠)𝑓 (𝑟)) ≤ ln 𝜆 ln(𝑓 (𝑧)𝑓 (𝑟) )
< ln( 𝑠𝑟)

1/ ln(𝜀)
ln(𝑀𝑚 ) ,

𝑓 (𝑠)𝑓 (𝑟) ≤ ( 𝑠𝑟)
ln(𝑀/𝑚)/ ln(𝜀) ,

(50)

where 𝐾 = ln(𝑀/𝑚)/ ln(𝜀) > 0. Since the points 𝑟, 𝑠 ∈ [𝑥, 𝑦]
are arbitrary, we get 𝑓 that satisfies a multiplicative Lipschitz
condition. The remaining part can be obtained in the similar
way by taking 𝑠 < 𝑟 and 𝑧 = 𝑠/𝜀. Finally, 𝑓 is continuous,
since [𝑥, 𝑦] is arbitrary in 𝐼0.

6. Concluding Remarks

Although all arithmetics are isomorphic, only by distinguish-
ing among them do we obtain suitable tools for construct-
ing all the non-Newtonian calculi. But the usefulness of
arithmetic is not limited to the construction of calculi; we
believe there is a more fundamental reason for considering
alternative arithmetics; theymay also be helpful in developing
and understanding new systems of measurement that could
yield simpler physical laws.

In this paper, it was shown that, due to the choice of
generator function, 𝐴𝑝, 𝐺𝑝 , and 𝐻𝑝 means are reduced to
ordinary arithmetic, geometric, and harmonic mean, respec-
tively. As shown in Table 1, for increasing values of 𝑝, 𝐴𝑝
and 𝐴̃𝑝 means increase, especially 𝑝 → ∞; these means
converge to the value of max{𝑥𝑛}. Conversely for increasing
values of 𝑝, 𝐻𝑝 and 𝐻̃𝑝 means decrease, especially 𝑝 → ∞;
these means converge to the value of min{𝑥𝑛}. Additionally
we give some new definitions regarding convex functions
which are plotted on the non-Newtonian coordinate system.
Obviously, for different generator functions, one can obtain
some new geometrical interpretations of convex functions.
Our future works will include the most famous Hermite
Hadamard inequality for the class of ∗-convex functions.
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[14] E. Mısırlı and Y. Gürefe, “Multiplicative adams-bashforth-
moulton methods,” Numerical Algorithms, vol. 57, no. 4, pp.
425–439, 2011.
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